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Abstract 
Adaptive fractional polynomial modeling of general correlated outcomes is 
formulated to address nonlinearity in means, variances/dispersions, and cor-
relations. Means and variances/dispersions are modeled using generalized li-
near models in fixed effects/coefficients. Correlations are modeled using 
random effects/coefficients. Nonlinearity is addressed using power trans-
forms of primary (untransformed) predictors. Parameter estimation is based 
on extended linear mixed modeling generalizing both generalized estimating 
equations and linear mixed modeling. Models are evaluated using likelihood 
cross-validation (LCV) scores and are generated adaptively using a heuristic 
search controlled by LCV scores. Cases covered include linear, Poisson, logis-
tic, exponential, and discrete regression of correlated continuous, count/rate, 
dichotomous, positive continuous, and discrete numeric outcomes treated as 
normally, Poisson, Bernoulli, exponentially, and discrete numerically distri-
buted, respectively. Example analyses are also generated for these five cases to 
compare adaptive random effects/coefficients modeling of correlated out-
comes to previously developed adaptive modeling based on directly specified 
covariance structures. Adaptive random effects/coefficients modeling sub-
stantially outperforms direct covariance modeling in the linear, exponential, 
and discrete regression example analyses. It generates equivalent results in the 
logistic regression example analyses and it is substantially outperformed in 
the Poisson regression case. Random effects/coefficients modeling of corre-
lated outcomes can provide substantial improvements in model selection 
compared to directly specified covariance modeling. However, directly speci-
fied covariance modeling can generate competitive or substantially better re-
sults in some cases while usually requiring less computation time. 
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1. Introduction 

Covariance structures considered in linear mixed modeling (LMM) of correlated 
continuous outcomes can be directly specified using either unstructured cova-
riance or covariance pattern matrices [1]. In the unstructured case, correlations 
are treated as all different from each other. In the covariance pattern case, corre-
lations have well known patterns, for example, exchangeable (i.e., constant) cor-
relations as used in repeated measures analyses and autoregressive correlations 
as used in time series analyses. Variances are usually treated as all the same or all 
different, but can be modeled more generally using generalized linear modeling. 
An alternative for modeling covariances is based on what is called both random 
effects [2] and random coefficients [3]. In this case, covariances are modeled us-
ing polynomials in random effects/coefficients combined with directly specified 
covariance matrices. Since these models also have means based on polynomials 
in fixed effects/coefficients, they are called mixed effects models. In what follows, 
“effects/coefficients” will be referred to as “coefficients” for brevity. 

Mixed effects models for correlated continuous outcomes can be generalized 
to address correlated categorical outcomes. The generalized estimating equations 
(GEE) approach [4] combines generalized linear models for the means [5] with 
directly specified covariance structures. The generalized linear mixed modeling 
(GLMM) approach [1] is based on random coefficients. In the GEE case, va-
riances are treated as a specific function of the means possibly multiplied by a 
constant dispersion parameter. The correlations are estimated using residuals. In 
the GLMM case, parameters can be estimated using a pseudo-likelihood ap-
proach [6]. An alternative approach used here is extended linear mixed model-
ing (ELMM) [7], extending both GEE and LMM, with parameter estimation 
based on maximizing the multivariate normal density evaluated using residuals 
for general correlated outcomes, not just normally distributed correlated out-
comes. A thorough assessment of the usefulness of ELMM for modeling corre-
lated outcomes is provided in [7] including bootstrapping assessments of its ef-
fectiveness. However, ELMM analyses have so far only considered directly speci-
fied covariance structures. 

Models for the means of general correlated outcomes are often theoretically 
based. Models for the variances are usually based on specific functions of the 
means. For example, count outcomes assumed to be Poisson distributed have 
variances equal to the means. These specific variance functions can be multiplied 
by dispersions, which are usually treated as constant. However, more general 
adaptive modeling [7] [8] is possible both for the means and the dispersions in 
terms of polynomials in power transforms of primary (untransformed) predic-
tors. These are called fractional polynomials [9]. For example, the dependence of 
the means on time could be modeled using a polynomial based on one or more 
power transforms of time (e.g., time−0.15 and time2.4) with or without an intercept. 
The power transforms are chosen using a heuristic search (an overview is given 
in Section 2.8). Since random coefficients models are based on polynomials, 
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these polynomials can also be fractional. For example, covariances for a longitu-
dinal outcome might be a nonlinear function of time. The heuristic search needs 
only to be extended to handle an extra set of power transforms. The use of frac-
tional polynomials is especially important to consider since it provides for non-
linearity in continuous predictors of means, variances/dispersions, and random 
coefficients. The consideration of nonlinearity for random coefficients is espe-
cially novel with the potential for unique insights into dependence of covariance 
on predictors that might also influence dependence of means on predictors. 

The purpose of this paper is to extend ELMM to account for random coeffi-
cients in terms of fractional polynomials and to compare the impact of such 
models to directly specified covariance models using analyses of a variety of cor-
related outcome data sets. Cases considered include linear, Poisson, logistic, ex-
ponential, and discrete regression models for correlated continuous, count/rate, 
dichotomous, positive continuous, and discrete numeric outcomes, respectively. 
Means and variances/dispersions are based on generalized linear models using 
appropriate link functions. Random coefficients are treated as independent. 

2. Methods 

Let ,i jy  denote observed outcome measurements for matched sets i of condi-
tions j (e.g., quality of life measurements for study participants observed at 
different times) for 1 i I≤ ≤  and ( )j J i∈ , subsets of size iJ  of the full set 
of possible conditions 1 j J≤ ≤ . Let , ,Ei j i jyµ =  denote the expected values or 
means of ,i jy  satisfying , , ,i j i j i jy eµ= +  for errors ,i je . Combine ,i jy , ,i jµ , 
and ,i je  for ( )j J i∈  into the 1iJ ×  vectors iy , iµ , and ie  satisfying 

.i i i= +y eµ  
Also let ( )COVi i= yΣ  denote the covariance matrices for iy  and 

1 ii
In J
=

= ∑  
be the number of outcome measurements. 

2.1. Generalized Linear Models for the Means 

The means ,i jµ  can be modeled in terms of predictors , ,i j mx  for 1 m M≤ ≤ . 
Specifically, 

( ) T
, ,i j i jg µ = ⋅x β

 
where T

,i jx  denotes the transpose of the M × 1 vector ,i jx  with entries , ,i j mx , 
β  is a M × 1 vector of fixed coefficient parameters mβ  for 1 m M≤ ≤ , and g 
is called the link function. Let iµ  be the M × 1 vector with entries ,i jµ . When 

, ,1 1i jx =  for all i and j, 1β  is an intercept parameter. This is a generalized li-
near model for the means, but it allows for nonlinearity of the link transformed 
means in terms of primary predictors ,i ju  in the sense that model predictors 
can equal power transforms of ,i ju , that is, 

, , ,
p

i j m i jx u=  
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for powers p and for some m. A description of alternative regression models for 
the means follows. 

2.1.1. Linear Regression 
The outcome measurements ,i jy  are continuous, real-valued, and treated as 
normally distributed with identity link function 

( ), ,i j i jg µ µ=
 

so that 
T

, , .i j i jµ = ⋅x β  
The identity link function is the canonical choice for this case. 

2.1.2. Poisson Regression 
The outcome measurements ,i jy  are discrete, count-valued, and treated as 
Poisson distributed with natural log link function 

( ) ( ), ,logi j i jg µ µ=
 

so that 

( )T
, ,exp .i j i jµ = ⋅x β

 
The natural log link function is the canonical choice for this case. 

The model for the means of the count outcome measurements ,i jy  are 
sometimes converted from a model for counts to a model for rates , , ,i j i j i jr y t=  
relative to associated totals ,i jt  using offsets ( ), ,logi j i jo t= . Formally, let  

( ) ( ), , ,logi j i j i jg oµ µ= +
 

so that 

( ) ( ) ( )T T
, , , , ,exp exp expi j i j i j i j i jo tµ = ⋅ ⋅ = ⋅ ⋅x xβ β

 
and then the means ,E i jr  of ,i jr  satisfy 

( ), T
, ,

,

E exp .i j
i j i j

i j

r
t
µ

= = ⋅x β
 

2.1.3. Logistic Regression 
The outcome measurements ,i jy  are dichotomous with values 0 and 1 and 
treated as Bernoulli distributed with logit link function 

( ) ,
,

,

log
1

i j
i j

i j

g
µ

µ
µ

 
=   −   

so that 

( )
( )

T
,

, T
,

exp
.

1 exp
i j

i j
i j

µ
⋅

=
+ ⋅

x

x

β

β
 

The means satisfy 

( ), ,P 1 .i j i jyµ = =
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The logit link function is the canonical choice for this case. 

2.1.4. Exponential Regression 
The outcome measurements ,i jy  are continuous, positive real-valued, and 
treated as exponentially distributed with natural log link function 

( ) ( ), ,logi j i jg µ µ=
 

so that 

( )T
, ,exp .i j i jµ = ⋅x β

 
The canonical choice for the link function for this case is the inverse function 

( ),
,

1
i j

i j

g µ
µ

=
 

so that 

, T
,

1
i j

i j

µ =
⋅x β  

with the shortcoming of requiring T
, 0i j ⋅ >x β . The use of the natural log link 

function resolves this problem. 

2.2. Discrete Regression Using Censored Poisson Probabilities 

The outcome measurements ,i jy  are discrete and numeric-valued with in-
creasing values ud  for 1 u U≤ ≤  so that the means satisfy 

( ), , ,1i j u i j uu
U d pµ
=

= ⋅∑  
where ( ), , ,Pi j u i j up y d= =  denote the probabilities of ,i jy  having values ud . 
Note that this is not a generalized linear model for the means; the probabilities 
are modeled instead of the means. The probabilities can be modeled in several 
ways [10]. The approach considered here is based on censored Poisson probabil-
ities satisfying 

( ) ,
, , ,exp , 0 ,

!

u
i j

i j u i jp u U
u
λ

λ= − ⋅ ≤ <
 

1
, , , ,01 ,U

i j U i j uup p−

=
= −∑  

T
, ,log i j i jλ = ⋅x β  

2.3. Directly Specified Correlation Structures 

The covariance matrix can be modeled in terms of variances combined with di-
rectly specified correlation structures. Specifically, with , ,i j j′Σ  denoting the en-
tries of iΣ  for ( ),j j J i′∈ , let 

i i i i= ⋅ ⋅D R DΣ  

where iD  are the i iJ J×  diagonal matrices with diagonal entries the standard 
deviations 1 2

, .i j jΣ  and the correlation matrices iR  are i iJ J×  submatrices of a 
directly specified J J×  working correlation matrix R  with entries ,j jρ ′  for 

https://doi.org/10.4236/ojs.2024.142009


G. J. Knafl 
 

 

DOI: 10.4236/ojs.2024.142009 184 Open Journal of Statistics 
 

1 ,j j J′≤ ≤  and diagonal entries , 1j jρ = . 
The most commonly considered directly specified correlation structures are 

the independent (IND), exchangeable (EXCH), autoregressive of order 1 (AR1), 
and unstructured (UN) correlation structures. The IND correlation structure has 
zero correlations, that is, , 0j jρ ′ =  for 1 j j J′≤ ≠ ≤ . The EXCH correlation 
structure has constant correlations, that is, ,j jρ ρ′ =  for 1 j j J′≤ ≠ ≤ . The AR1 
correlation structure has correlations weakening for outcome measurements fur-
ther apart. Specifically, for the more general spatial AR1 case, ( ) ( )

,
d j d j

j jρ ρ ′−
′ =  

for 1 j j J′≤ ≠ ≤  where ( )d j  is a strictly increasing function of the index j 
and ( ) ( )d j d j′−  is the absolute value of the difference ( ) ( )d j d j′− . The 
more commonly used non-spatial AR1 case sets ( )d j j= , and so treats outcome 
measurements as equally-spaced even when they are not. The UN correlation 
structure has the ( )1 2J J⋅ −  distinct correlations , ,j j j jρ ρ′ ′=  for  
1 j j J′≤ < ≤ . 

2.4. Variance Modeling 

For the generalized linear models of Section 2.1, the variances ( ), , ,VARi j j i jy=Σ  
can be modeled in terms of dispersions ,i jϕ  combined with specific functions 
( ),i jV µ  of the means ,i jµ , that is 

( ), , , , .i j j i j i jVϕ µΣ = ⋅
 

For the linear regression case of Section 2.1.1., ( ), 1i jV µ =  so that the disper-
sions ,i jϕ  are the same as the variances. For the Poisson regression case of Sec-
tion 2.1.2, ( ), ,i j i jV µ µ= . For the logistic regression case of Section 2.1.3,  
( ) ( ), , ,1i j i j i jV µ µ µ= −⋅ . For the exponential regression case of Section 2.1.4,  
( ) 2

, ,i j i jV µ µ= . 
In the discrete regression case of Section 2.2, the variances formally satisfy 

( )( )2
, , , ,1 .i j u i j i j uu

UV d pµ
=

⋅= −∑
 

These can be combined with dispersions to model the variances , ,i j jΣ  as 

, , , , .i j j i j i jVϕΣ = ⋅  
The dispersions ,i jϕ  of ,i jy  can be modeled in terms of a second set of pre-

dictors , ,i j mx ′′  for 1 m M′ ′≤ ≤ . Combine these into the 1M ′×  vectors ,i j′x . Al-
so, let ′β  be a 1M ′×  vector of fixed coefficient parameters mβ ′′  for  
1 m M′ ′≤ ≤  and set 

T
, ,log .i j i jϕ ′= ⋅ ′x β  

When , ,1 1i jx′ =  for all i and j, 1β ′  is an intercept parameter. This is a genera-
lized linear model for the dispersions using the natural log link function, but it 
allows for nonlinearity of the log of the dispersions in terms of primary predic-
tors ,i ju′  in the sense that model predictors can equal power transforms of ,i ju′ , 
that is, 

, , ,
p

i j m i jx u ′
′′ ′=  
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for powers p′  and for some m′ . 
For the Poisson regression case with offsets , ,logi j i jo t=  included to convert 

the model for the counts ,i jy  to one for rates , , ,i j i j i jr y t= , the offsets can be 
added to the dispersions as well as to the means. Specifically, let the dispersions 
satisfy 

T
, , ,log i j i j i joϕ ′′= ⋅ +x β  

so that 

( ) ( ) ( )
( ) ( )

T T 2
, , , , , ,

T T 2
, ,

exp exp exp

exp exp

i j j i j i j i j sc i j

i j sc i j

o

t

ϕ µ ′= ⋅ = ⋅ ⋅ ⋅ ⋅Σ

′= ⋅ ⋅ ⋅

′

′ ⋅

x x

x x

β β

β β
 

and then the variances ( ),VAR i jr  of ,i jr  satisfy 

( ) ( ) ( ), , T T
, ,2

,

VAR exp exp .i j j
i j i j sc

i j

r
t

′= = ⋅ ⋅ ⋅
Σ

′x xβ β
 

2.5. Random Coefficients Modeling of Covariance 

Let , ,i j mx ′′′′  for 1 m M′′ ′′≤ ≤  be a third set of predictors. Combine these into the 
1M ′′×  vectors ,i j′′x  and let i′′X  be the iJ M ′′×  matrices with rows equal to 

T
,i j′′x  for ( )j J i∈ . As for the means and the variances, nonlinearity in terms of 

primary predictors ,i ju′′  can be addressed using model predictors equal to pow-
er transforms of ,i ju′′ , that is, 

, , ,
p

i j m i jx u ′′
′′′′ ′′=  

for powers p′′  and for some m′′ . Let γ  denote a 1M ′′×  vector of random 
coefficients mγ ′′ . Assume that 

i i i i′′ ′= + ⋅ +y X eµ γ  

so that 

.i i i′′ ′= ⋅ +e X eγ  

When , ,1 1i jx′′ =  for all i and j, 1γ  is a random intercept. 
Assume that γ  and i′e  are independent of each other so that the covariance 

matrices iΣ  for the outcome vectors iy  satisfy 
T

i i i i′′′′ ′′⋅ ′= ⋅ +X XΣ Σ Σ  

where i′Σ  is the i iJ J×  covariance matrix for the error vectors i′e  and ′′Σ  is 
the M M′′ ′′×  covariance matrix for the random coefficients vector γ . Assume 
as well that i′Σ  is a diagonal matrix with diagonal entries , jii′Σ  so that the en-
tries ,i je′  of i′e  are independent of each other and that ′′Σ  is a diagonal ma-
trix with diagonal entries m′′′′Σ  so that the entries mγ ′′  of γ  are independent 
of each other. Note that the matrices i′Σ  and ′′Σ  can have more complex, 
non-diagonal structures, but such more general cases are not considered to limit 
model complexity. 

As for dispersions in Section 2.4, the variances ,i j′Σ  can be modeled as 
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T
, ,log .i j i j′′ =Σ ⋅ ′x β  

To model the random coefficients, let ′′β  be a 1M ′′×  vector of parameters 

mβ ′′′′  for 1 m M′′ ′′≤ ≤  and define the variances m′′′′Σ  of mγ ′′  as satisfying 

log .m mβ′′ ′′′′ ′′Σ =  
As in Section 2.3, let , ,i j j′Σ  denote the entries of iΣ  for ( ),j j J i′∈ . The 

variances , ,i j jΣ  satisfy 

( )2
, , , , ,1

M
i j j i j m m i jm x′′

′′ ′′′′=
′′ ′′ ′Σ = ⋅Σ + Σ∑  

while the covariances , ,i j j′Σ  for j j′≠  satisfy 

( ), , , , , ,1 .M
i j j i j m m i j mm x x′′

′ ′′ ′′ ′ ′′′′=
′′ ′′ ′′Σ = ⋅Σ ⋅∑  

Also as in Section 2.3, the covariance matrix iΣ  can be expressed as 

i i i i= ⋅ ⋅D R DΣ  

where iD  are the i iJ J×  diagonal matrices with diagonal entries the standard 
deviations 1 2

, .i j jΣ  for ( )j J i∈  and the correlation matrices iR  are i iJ J×  
matrices with entries 

, ,
, , 1 2 1 2

, . , .

i j j
i j j

i j j i j j

ρ ′
′

′ ′

Σ
=
Σ ⋅Σ  

for ( ),j j J i′∈  so that the diagonal values satisfy , , 1i j jρ = . 
The special case of a constant random coefficients model with , ,1 1i jx′′ =  for 

all i and j as well as 1M ′′ =  combined with a constant variances model with 

, ,1 1i jx′ =  for all i and j as well as 1M ′ =  has constant variances 

( ), , 1 1expi j j β′′ ′Σ = Σ +  

for ( )j J i∈  and constant covariances 

, , 1i j j′ ′′Σ = Σ  
for ( ),j j J i′∈ , j j′≠ . Consequently, it also has constant correlations with 
value 

( )
1

, ,
1 1expi j jρ ρ

β′

′′Σ
= =

′′ ′Σ +  
for ( ),j j J i′∈ , j j′≠ . This is the same model as the model based on the di-
rectly specified EXCH correlation structure restricted to have constant va-
riances. 

For the Poisson regression case with offsets , ,logi j i jo t=  included to convert 
the model for the counts ,i jy  to one for rates , , ,i j i j i jr y t= , offsets can be 
added to the covariances as well as to the means. Specifically, let iT  denote the 

i iJ J×  diagonal matrices with diagonal entries ( ), ,expi j i jt o=  and redefine the 
covariance matrices for the counts ,i jy  as 

( )T
i i i i i i′′ ′′ ′′ ′= ⋅ ⋅ ⋅ + ⋅T X X TΣ Σ Σ  

so that the covariance matrices for the 1iJ ×  rate vectors ir  with entries ,i jr  
satisfy 
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( ) TCOV .i i i i′′ ′′ ′′ ′= ⋅ ⋅ +r X XΣ Σ  

2.6. Extended Linear Mixed Modeling (ELMM) 

Let { }:1S i i I= ≤ ≤  denote the set of indexes for the full set of outcome vec-
tors iy . Also, let 

 
 =  
 


′

′′

β
θ β

β  
denote the ( ) 1M M M′ ′′+ + ×  vector of model parameters with entries denoted 
as vθ  for 1 v M M M′ ′′≤ ≤ + + . Define the likelihood function ( );L S θ  as the 
product over i S∈  of the terms ( )iL θ  satisfying 

( ) ( ) ( )T 11 1 1log log log 2
2 2 2i i i i i i iL J−= = − ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅ πe e θ θ Σ Σ

 

where iΣ  denotes the determinant of the matrix iΣ  and π  is the usual con-
stant, that is, using the multivariate normal density. Note that in general this is 
an extended likelihood and only a true likelihood when the outcomes are nor-
mally distributed. However, it is maximized like a likelihood to estimate para-
meters. 

Denote the ( ) 1M M M′ ′′+ + ×  gradient vector as 

( ) ( )i
i S∈

∂
=

∂∑g
 θ

θ
θ  

and the ( ) ( )M M M M M M′ ′′ ′ ′′+ + × + +  Hessian matrix as 

( ) ( ) .
∂

=
∂
g

H
θ

θ
θ  

The gradient vector and Hessian matrix can be computed using standard for-
mulas. Derivatives of the residuals ie  are straightforward. Derivatives of the 
quantities 1

i
−Σ  and log iΣ  satisfy 

1
1 1,i i

i i
v vθ θ

−
− −∂ ∂

= − ⋅ ⋅
∂ ∂
Σ Σ

Σ Σ  

1log
trace ,i i

i
v vθ θ

−∂  ∂
= ⋅ ∂ ∂ 

Σ Σ
Σ  

2 1 2
1 1 1 1 12 ,i i i i

i i i i i
v v v v v vθ θ θ θ θ θ

−
− − − − −

′ ′ ′

∂ ∂ ∂ ∂
= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅

∂ ∂ ∂ ∂ ∂ ∂
Σ Σ Σ Σ

Σ Σ Σ Σ Σ  

2 2
1 1 1log

trace trace .i i i i
i i i

v v v v v vθ θ θ θ θ θ
− − −

′ ′ ′

∂    ∂ ∂ ∂
= − ⋅ ⋅ ⋅ + ⋅   ∂ ∂ ∂ ∂ ∂ ∂   

Σ Σ Σ Σ
Σ Σ Σ  

for 1 ,v v M M M′ ′ ′′≤ ≤ + +  [11] [12]. Let ( )Sθ  denote the solution to the 
estimating equations ( ) =g θ 0  computed from the measurements with in-
dexes in the set S using an adjustment of Newton’s method (e.g., as provided in 
[7]). 

Inverses 1
i
−Σ  for covariance matrices based on random coefficients can be ill 
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conditioned. This can be addressed with two adjustments to the estimation process. 
First, compute inverses 1

i
−Σ  from inverses 1

i
−D  and 1

i
−R  using 

1 1 1 1
i i i i
− − − −= ⋅ ⋅D R DΣ  

with the diagonal entries of 1
i
−D  bounded if necessary to avoid overflow. 

Second, restrict the amount of change w∆θ  in the estimated parameter vector 
from wθ  at iteration w to 1w w w+ = + ∆θ θ θ  at iteration 1w+ . For example, let 

,w vθ  denote the entries of wθ  and ,w vθ∆  the entries of w∆θ  and define 

{ }
,

,

max :1 ,
max ,1

w v
w

w v

b v M M M
θ

θ

 ∆ ′ ′′= ≤ ≤ + + 
    

that is, the maximum ratio of absolute values of changes in parameter estimates 

,w vθ∆  relative to absolute values of those parameter estimates ,w vθ  (with 
small absolute parameter estimates increased to the value 1). If 1wb < , use 

w∆θ . Otherwise, replace it by ( )2w wb∆ ⋅θ , that is, adjust the change in the pa-
rameter estimates proportionally. 

ELMM provides for the incorporation of covariance in parameter estimation 
for general correlated outcomes. Models generated using ELMM can be used to 
compute LCV scores as addressed in Section 2.7, which can then be used to con-
trol the adaptive modeling process as addressed in Section 2.8 to identify nonli-
near relationships in predictors for means, variances/dispersions, and random 
coefficients. 

2.7. Likelihood Cross-Validation 

Randomly partition the full set S of matched set indexes into K disjoint subsets 
( )S k , called folds [13], for 1 k K≤ ≤ . Define the K-fold likelihood-cross vali-

dation (LCV) score as 

( ) ( )( )( )1
1LCV ; \ .K n

k L S k S S k
=

=∏ θ
 

Informally, the LCV score equals the geometric average of likelihoods for the 
folds evaluated with parameter estimates computed using outcome measure-
ments with indexes in the complement of those folds. Larger scores indicate im-
proved models. However, models with smaller LCV scores can be preferable if 
the decrease in the LCV score is not substantial, especially if they are also simp-
ler. This issue is addressed using LCV ratio tests, computed using the 2χ  dis-
tribution and expressed in terms of a cutoff for a substantial percent decrease 
(PD) in the LCV score. The cutoff changes with the sample size n. Specifically, if 
the PD in the LCV score is larger than the cutoff, the model with the larger LCV 
score provides a substantial improvement over the model with the smaller LCV 
score or, equivalently, the model with the smaller LCV score is substantially in-
ferior. Otherwise, the model with the smaller LCV score is a competitive alterna-
tive to the model with the larger LCV score. A more complete assessment of 
LCV is provided in [7]. 
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2.8. Adaptive Regression Modeling 

The adaptive regression modeling process for means and variances in the con-
text of directly specified correlation structures of Section 2.3 is covered in detail 
in [7] and [8]. A brief overview of that process and its extension to handle ran-
dom coefficients models of Section 2.5 is addressed here. A base model is first 
expanded by systematically adding in power transforms of primary predictors to 
either the mean, variance/dispersion, or random coefficient component of the 
model, whichever generates an expanded model with the best LCV score. Then 
the final expanded model is contracted by systematically removing extraneous 
transforms from either the mean, variance/dispersion, or random coefficient 
component, whichever generates a contracted model with the best LCV score 
after adjusting the powers of the remaining transforms to improve the LCV 
score. The expansion process can also consider the addition of geometric com-
binations, that is, products of power transforms of primary predictors, and pow-
er transforms of these products. Geometric combinations generalize standard 
interactions and so provide for the nonlinear generalization of the concept of 
moderation [14]. More details on the adaptive modeling process are provided in 
[7] and [8]. While those references only consider adaptive models for means and 
variances/dispersions, the modeling process is readily adjusted to also handle 
random coefficients. Adaptive modeling also applies to hazard regression ana-
lyses [15] [16] and to interrupted time series analyses [17]. 

3. Example Analyses 

Analyses reported in this section are computed using SAS version 9.4 (SAS In-
stitute, Inc., Cary, NC) with a SAS macro available upon request from the au-
thor. LCV scores are computed using 10 folds. 

The purpose of these analyses is to compare results for adaptive modeling of 
correlated outcomes using random coefficients to adaptive modeling using di-
rectly specified covariance structures. Generated models for these two cases are 
evaluated using LCV scores and tested for substantial differences using LCV ra-
tio tests. 

3.1. Analyses of the Dental Measurement Data 

The analyses of this section use data provided by Potthoff and Roy [18] on 108 
dental measurements in mm for 11 girls and 17 boys at ages 8, 10, 12, and 14 
years old. The cutoff for a substantial percent decrease (PD) for these data is 
1.76%. The more general spatial AR1 correlation structure is considered, but this 
has no effect since the dental measurements are equally spaced. Analyses of these 
data using directly specified correlation structures are also provided in [7] and 
[8]. 

3.1.1. Adaptive Models Based on Child Age 
Table 1 contains a comparison of adaptive models in child age for the IND, 
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EXCH, AR1, and UN directly specified correlation structures and the associated 
random coefficients model. The random coefficients model generates the best 
overall 10-fold LCV score but the EXCH correlation structure generates a com-
petitive LCV score with insubstantial PD 0.84%. The estimated constant EXCH 
correlation is 0.67. In contrast, estimated correlations for the random coeffi-
cients model given in Table 2 vary from 0.64 and 0.72. Interestingly, these cor-
relations are stronger the further apart outcome measurements are in time ra-
ther than weaker as for AR1 correlations. These analyses require a total of 19.8 
minutes. 

3.1.2. Adaptive Additive Models Based on Child Age and Child Gender 
Table 3 contains a comparison of adaptive additive models in child age and 
child gender (i.e., without interactions or geometric combinations in child age 
and child gender) for the EXCH directly specified correlation structure and the 
associated random coefficients model. The IND, AR1, and UN directly specified 
correlation structures have not been considered since they generate worse LCV 
scores than EXCH in Table 1. The random coefficients model generates the bet-
ter 10-fold LCV score while the EXCH correlation structure generates an LCV 
score with substantial PD 5.28%. The estimated constant EXCH correlation is 
0.77. In contrast, estimated correlations for the random coefficients model given  

 
Table 1. Adaptive models for dental measurements in terms of child age controlling for outcome covariance. 

Covariance structure 
Transformsa 10-fold LCV  

score 
Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
IND age0.3 age0.3 -- 0.09209 24.18% 0.1 

 
EXCH age0.32 age0.2 -- 0.12044 0.84% 0.6 

 
AR1 1, age2 age0.5 -- 0.10587 12.84% 1.2 

 
UN age0.369 age0.3 -- 0.08876 26.92% 8.5 

Random coefficients age0.322 1 age0.5 0.12146 0.00% 9.4 

AR1 - autoregressive of order 1; EXCH - exchangeable; IND - independent; LCV - likelihood cross-validation; UN - unstructured. 
a. The transform 1 corresponds to an intercept. 
 

Table 2. Estimated means, standard deviations, and correlations for the adaptive random 
coefficients model of dental measurements in terms of child age. 

Child age Mean 
Standard  
deviation 

Correlation 

8 10 12 14 

8 21.8 2.3 
 

0.64 0.66 0.67 

10 23.4 2.4 
  

0.68 0.70 

12 24.9 2.6 
   

0.72 

14 26.1 2.7 
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Table 3. Adaptive additive models for dental measurements in terms of child age and child gender controlling for outcome cova-
riance. 

Covariance structure Transformsa 
10-fold LCV score 

Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 EXCH age0.27 male, age0.6 -- 0.12798 5.28% 1.9 

Random coefficients 1, age0.7 1, male 1, age1.5, male 0.13511 0.00% 16.1 

EXCH - exchangeable; LCV - likelihood cross-validation. a. The transform 1 corresponds to an intercept; the transform male is 
the indicator for the child being a boy. 
 

Table 4. Estimated means, standard deviations, and correlations for the adaptive additive 
random coefficients model of dental measurements in terms of child age and child gender. 

Child 
gender 

Child age Mean 
Standard  
deviation 

Correlation 

8 10 12 14 

Girls 8 22.1 1.9 
 

0.88 0.86 0.84 

 
10 23.4 2.1 

  
0.90 0.89 

 
12 24.6 2.3 

   
0.92 

 
14 25.7 2.6 

    
Boys 8 22.1 2.5 

 
0.56 0.57 0.57 

 
10 23.4 2.6 

  
0.61 0.62 

 
12 24.6 2.8 

   
0.66 

 
14 25.7 3.0 

    
 
in Table 4 are different for girls and boys and vary from 0.84 and 0.92 for girls 
and from 0.56 and 0.66 for boys. These analyses require a total of 18.0 minutes. 

3.1.3. Adaptive Moderation Models Based on Child Age and Child Gender 
Table 5 contains a comparison of adaptive moderation models in child age and 
child gender for the EXCH directly specified correlation structure and the asso-
ciated random coefficients model. The random coefficients model generates the 
better 10-fold LCV score while the EXCH correlation structure generates an 
LCV score with substantial PD 5.01%. For both the EXCH and random coeffi-
cients cases, the additive models of Table 3 generate substantial PDs 4.11% and 
3.84%, respectively, compared to associated moderation models of Table 5, and 
so both approaches support the conclusion of a substantial moderation effect. 
The estimated constant EXCH correlation is 0.72. In contrast, estimated correla-
tions for the random coefficients model given in Table 6 are different for girls 
and boys with constant value 0.76 for girls and values varying from 0.48 and 0.59 
for boys. Means for girls increase from 22.1 mm to 24.0 mm while means are 
larger for boys and increasing faster from 22.5 mm to 27.4 mm. These analyses 
require a total of 101.6 minutes. All the analyses of Sections 3.1.1-3.1.3 require a  
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Table 5. Adaptive moderation models for dental measurements in terms of child age and child gender controlling for outcome 
covariance correlation. 

Covariance structure 
Transformsa 10-fold  

LCV score 
Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
EXCH age0.23, (male∙age5)0.37 1, male -- 0.13346 5.01% 10.7 

Random coefficients age0.23, (male∙age6)0.27 (age6∙male)−0.19 1 0.14050 0.00% 90.9 

EXCH - exchangeable; LCV - likelihood cross-validation. a. The transform 1 corresponds to an intercept; the transform male is 
the indicator for the child being a boy. 
 

Table 6. Estimated means, standard deviations, and correlations for the adaptive mod-
eration random coefficients model of dental measurements in terms of child age and 
child gender. 

Child 
gender 

Child age Mean 
Standard  
deviation 

Correlation 

8 10 12 14 

Girls 8 21.1 2.0 
 

0.76 0.76 0.76 

 
10 22.3 2.0 

  
0.76 0.76 

 
12 23.3 2.0 

   
0.76 

 
14 24.0 2.0 

    
Boys 8 22.5 2.6 

 
0.48 0.51 0.52 

 
10 24.2 2.4 

  
0.55 0.56 

 
12 25.8 2.3 

   
0.59 

 
14 27.4 2.3 

    
 

total of 139.4 minutes or about 2.3 hours. 

3.2. Analyses of the Epilepsy Seizure Data 

The analyses of this section use data provided by Thall and Vail [19] on 295 sei-
zure counts for 59 patients, 31 in an intervention group receiving the drug pro-
gabide and 28 in a control group receiving a placebo at baseline visit 0 and sub-
sequent visits 1 - 4. The epilepsy counts are converted to epilepsy seizure rates 
per week using lengths of time in weeks for periods prior to visits (8 weeks 
prior to visit 0 and 2 weeks prior to visits 1 - 4). The cutoff for a substantial 
percent decrease (PD) for these data is 0.65%. The more general spatial AR1 
correlation structure is considered, but this has no effect since the seizure 
counts measurements are equally spaced. Estimated variances for models 
based on directly specified correlation structures are computed using the com-
bination of adaptively generated dispersions and the variance function 
( ), ,i j i jV µ µ= . Analyses of these data using directly specified correlation struc-

tures are also provided in [7] and [8]. Analyses of other correlated count/rate 
outcomes are provided in [20]. 
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3.2.1. Adaptive Models Based on Clinic Visit 
Table 7 contains a comparison of adaptive models in clinic visit for the IND, 
EXCH, AR1, and UN directly specified correlation structures and the associated 
random coefficients model. The EXCH correlation structure generates the best 
overall 10-fold LCV score. The random coefficients model is substantially infe-
rior with PD 7.11% in the LCV score. The estimated constant EXCH correlation 
is 0.87. These analyses require a total of 83.2 minutes. 

3.2.2. Adaptive Additive Models Based on Clinic Visit and Treatment 
Group 

Table 8 contains a comparison of adaptive additive models in clinic visit and 
treatment group for the EXCH directly specified correlation structure and the 
associated random coefficients model. The IND, AR1, and UN directly specified 
correlation structures have not been considered since they generate worse LCV 
scores than EXCH in Table 7. The same models are generated as in Section 3.2.1 
indicating that treatment group does not have an additive effect on seizure rates. 
These analyses require a total of 25.5 minutes. 

3.2.3. Adaptive Moderation Models Based on Clinic Visit and Treatment 
Group 

Table 9 contains a comparison of adaptive moderation models in clinic visit and  
 
Table 7. Adaptive models for epilepsy seizure rates in terms of clinic visit controlling for outcome covariance. 

Covariance structure 
Transformsa 10-fold  

LCV score 
Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
IND 1 1, visit−0.24 -- 0.013798 42.11% 0.5 

 
EXCH 1 visit0.07, visit13 -- 0.023835 0.00% 6.1 

 
AR1 1 visit0.1, visit4.4 -- 0.020933 12.18% 8.0 

 
UN visit20, visit−0.1014 1, visit−0.12 -- 0.022761 4.51% 51.3 

Random coefficients 1 1, visit−0.4, visit14 1 0.022141 7.11% 17.3 

AR1 - autoregressive of order 1; EXCH - exchangeable; IND - independent; LCV - likelihood cross-validation; UN - unstructured. 
a. The transform 1 corresponds to an intercept. 
 
Table 8. Adaptive additive models for epilepsy seizure rates in terms of clinic visit and treatment group controlling for outcome 
covariance. 

Covariance structure 
Transformsa 10-fold 

LCV score 
Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
EXCH 1 visit0.07, visit13 -- 0.023835 0.00% 6.3 

Random coefficients 1 1, visit−0.4, visit14 1 0.022141 7.11% 19.2 

EXCH - exchangeable; LCV - likelihood cross-validation. a. The transform 1 corresponds to an intercept; the transform int is the 
indicator for being in the intervention group (but it is not included in the models). 
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Table 9. Adaptive moderation models for epilepsy seizure rates in terms of clinic visit and treatment group controlling for out-
come covariance. 

Covariance structure 
Transformsa 10-fold  

LCV score 
Percent  
decrease 

Clock time 
(minutes) Means Variances Random coefficients 

Directly specified 
correlation       

 
EXCH 1 visit0.07, visit13 -- 0.023835 0.00% 8.9 

Random coefficients 1 1, (int∙visit)1.002, visit4.96 1 0.023141 2.91% 47.5 

EXCH - exchangeable; LCV - likelihood cross-validation. a. The transform 1 corresponds to an intercept; the transform int is the 
indicator for being in the intervention group. 
 

treatment group for the EXCH directly specified correlation structure and the 
associated random coefficients model. The same EXCH model is generated as in 
Sections 3.2.1-3.2.2, but an improved random coefficients model is generated. 
However, this revised model is substantially inferior to the EXCH model with 
PD 2.91%. These results indicate that treatment group does not have a substan-
tial moderation effect on seizure rates. These analyses require a total of 56.4 mi-
nutes. Under the selected EXCH model, the mean seizure rates are constant with 
estimated value 2.6 while the standard deviations have estimated values 4.6, 7.6, 
8.1, 8.3, and 5.5 at visits 0 - 4, respectively. All the analyses of Sections 3.2.1-3.2.3 
require a total of 165.1 minutes or about 2.8 hours. 

3.3. Analyses of the Dichotomous Respiratory Status Data 

The analyses of this section use data provided by Koch et al. [21] on 555 di-
chotomous respiratory status levels classified as 0 for poor and 1 for good for 
54 patients on active treatment and 57 on a placebo at baseline visit 0 and 
subsequent visits 1 - 4. The cutoff for a substantial percent decrease (PD) for 
these data is 0.35%. The more general spatial AR1 correlation structure is 
considered, but this has no effect since the dichotomous respiratory levels 
are equally spaced. Estimated variances for models based on directly speci-
fied correlation structures are computed using the combination of adaptively 
generated dispersions and the variance function ( ) ( ), , ,1i j i j i jV µ µ µ= ⋅ − . 
Analyses of these data using directly specified correlation structures are also 
provided in [7] and [8]. 

3.3.1. Adaptive Models Based on Clinic Visit 
Table 10 contains a comparison of adaptive models in clinic visit for the IND, 
EXCH, AR1, and UN directly specified correlation structures and the associated 
random coefficients model. The EXCH correlation structure generates the best 
overall 10-fold LCV score. The random coefficients model is about the same 
model. The estimated constant EXCH correlation is 0.48. These analyses require 
a total of 35.2 minutes. 
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Table 10. Adaptive models for dichotomous respiratory status levels in terms of clinic visit controlling for outcome covariance. 

Covariance structure 
Transformsa 10-fold  

LCV score 
Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
IND visit−1.2 1 -- 0.48527 14.15% 0.5 

 
EXCH visit−0.2 1 -- 0.56524 0.00% 1.9 

 
AR1 visit−0.3 visit−0.6 -- 0.55544 1.73% 3.5 

 
UN visit−0.4 1 -- 0.55716 1.43% 11.4 

Random coefficients visit−0.2 1 1 0.56519 0.01% 17.9 

AR1 - autoregressive of order 1; EXCH - exchangeable; IND - independent; LCV - likelihood cross-validation; UN - unstructured. 
a. The transform 1 corresponds to an intercept. 
 
Table 11. Adaptive additive models for dichotomous respiratory status levels in terms of clinic visit and treatment group control-
ling for outcome covariance. 

Covariance structure 
Transformsa 10-fold 

LCV score 
Percent 
decrease 

Clock time 
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
EXCH visit−0.2 visit−0.5 -- 0.56519 0.36% 3.7 

Random coefficients visit−.02, int 1 1 0.56721 0.00% 109.2 

EXCH - exchangeable; LCV - likelihood cross-validation. a. The transform 1 corresponds to an intercept; the transform int is the 
indicator for being in the intervention group. 

3.3.2. Adaptive Additive Models Based on Clinic Visit and Treatment 
Group 

Table 11 contains a comparison of adaptive additive models in clinic visit and 
treatment group for the EXCH directly specified correlation structure and the 
associated random coefficients model. The IND, AR1, and UN directly specified 
correlation structures have not been considered since they generate worse LCV 
scores than EXCH in Table 10. The random coefficients model has a better LCV 
score while the EXCH model generates a substantial PD 0.36, just a little over the 
cutoff of 0.35%. The estimated constant EXCH correlation is 0.47 while the es-
timated random coefficients model is also constant with almost the same value 
0.46. This raises the question of whether there actually is a substantial additive 
effect to treatment group as indicated by the random coefficients model. Note 
that the dependence of the means on visit is the same for both models. Adding 
the indicator for treatment group to the means for the EXCH model generates a 
better LCV score 0.56748. An adaptive contraction of this EXCH model first 
removes the intercept from the means generating an LCV score 0.56570, and 
then removes the indicator for treatment group generating a LCV score 0.56524 
as well as means depending of only visit−0.2, dispersions depending on only an 
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intercept, estimated correlation 0.48, and requiring 0.4 minutes. These results 
indicate that the random coefficients model of Table 11 can be reduced to a 
model based only on visit since it is a special case of an EXCH model. These 
analyses require a total of 113.3 minutes with almost all of it accounted for by 
the random coefficients model. 

3.3.3. Adaptive Moderation Models Based on Clinic Visit and Treatment 
Group 

Table 12 contains a comparison of adaptive moderation models in clinic visit 
and treatment group for the EXCH directly specified correlation structure and 
the associated random coefficients model. Essentially equivalent models are 
generated and both models provide substantial improvements over correspond-
ing additive models of Table 11 with PDs 1.43% and 1.01%, respectively. Con-
sequently, active treatment moderates the effect of visit on dichotomous respi-
ratory status. These analyses require 220.8 minutes. The EXCH model generates 
the better LCV score in much less time, and so is preferable. Under this EXCH 
model, the estimated correlation is 0.47. For participants in the control group on 
a placebo, the probability is constant with estimated value 0.5 over all clinic vis-
its. In contrast, for participants in the intervention group on active treatment, 
the probability has estimated value starting at 0.50 at baseline visit 0, increases to 
0.71 by visit 1, and decreases a little to 0.69 by visit 4. All the analyses of Sections 
3.3.1-3.3.3 require a total of 369.3 minutes or about 6.2 hours. 

3.4. Analyses of the Blood Lead Level Data 

The analyses of this section use data from the Treatment of Lead-exposed 
Children (TLC) study [22] on 400 blood lead levels in µg/dL for 50 children on 
treatment with the chelating agent succimer and 50 on a placebo at baseline 
week 0 and subsequent weeks 1, 4, and 6. The cutoff for a substantial percent 
decrease (PD) for these data is 0.48%. The more general spatial AR1 correlation 
structure is important to use since the blood lead levels are not equally spaced. 
Estimated variances for models based on directly specified correlation structures 
are computed using the combination of adaptively generated dispersions and the 
variance function ( ) 2

, ,i j i jV µ µ= . Analyses of these data using directly specified  
 
Table 12. Adaptive moderation models for dichotomous respiratory status levels in terms of clinic visit and treatment group con-
trolling for outcome covariance. 

Covariance structure 
Transformsa 10-fold 

LCV score 
Percent 
decrease 

Clock time 
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
EXCH (int∙visit−1)0.1 visit7.5 -- 0.57334 0.00% 18.9 

Random coefficients (int∙visit)−0.1 1 1 0.57302 0.06% 201.9 

EXCH - exchangeable; LCV - likelihood cross-validation. a. The transform 1 corresponds to an intercept; the transform int is the 
indicator for being in the intervention group. 

https://doi.org/10.4236/ojs.2024.142009


G. J. Knafl 
 

 

DOI: 10.4236/ojs.2024.142009 197 Open Journal of Statistics 
 

correlation structures are also provided in [7]. 

3.4.1. Adaptive Models Based on Time in Weeks 
Table 13 contains a comparison of adaptive models in week for the IND, EXCH, 
AR1, and UN directly specified correlation structures and the associated random 
coefficients model. The random coefficients model generates the best overall 
10-fold LCV score. The UN correlation structure generates the next best LCV 
score but with substantial PD 1.55%. Estimated correlations for the random 
coefficients model given in Table 14 vary from 0.52 and 0.84. These analyses 
require a total of 262.0 minutes. 

3.4.2. Adaptive Additive Models Based on Time in Weeks and Treatment 
Group 

Table 15 contains a comparison of adaptive additive models in week and treat-
ment group for the UN directly specified correlation structure and the associated 
random coefficients model. The IND, EC, and AR1 directly specified correlation 
structures have not been considered since they generate worse LCV scores than 
UN in Table 13. The random coefficients model generates the better 10-fold 
LCV score while the UN model is substantially inferior with PD 2.35% in the  

 
Table 13. Adaptive models for blood lead levels in terms of time in week controlling for outcome covariance. 

Covariance structure 
Transformsa 10-fold 

LCV score 
Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified correlation 
      

 
IND 1, week−0.3 1, week−0.18 -- 0.033153 19.73% 1.0 

 
EXCH 1, week−0.28 1, week−0.16 -- 0.039633 4.04% 4.3 

 
AR1 1, week−0.23 1, week−0.3 -- 0.036576 11.44% 12.7 

 
UN 1, week−0.17 1, week−0.1 -- 0.040662 1.55% 64.3 

Random coefficients 
1, week−0.09, 

week12 
week−4, 
week−3 

1, week−0.17, week5 0.041303 0.00% 179.7 

AR1 - autoregressive of order 1; EXCH - exchangeable; IND - independent; LCV - likelihood cross-validation; UN - unstructured. 
a. The transform 1 corresponds to an intercept. 
 

Table 14. Estimated means, standard deviations, and correlations for the adaptive ran-
dom coefficients model of blood lead levels in terms of time in weeks. 

Week Mean 
Standard 
deviation 

Correlation 

0 1 4 6 

0 26.4 5.0 
 

0.52 0.56 0.44 

1 19.1 9.1 
  

0.84 0.63 

4 19.8 8.5 
   

0.68 

6 22.2 10.7 
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Table 15. Adaptive additive models for blood lead levels in terms of time in week and treatment group controlling for outcome 
covariance. 

Covariance structure 
Transformsa 10-fold  

LCV score 
Percent  
decrease 

Clock time  
(minutes) Means Variances Random coefficients 

Directly specified 
correlation       

 
UN 1, week0.01 1, int, week−0.03 -- 0.044000 2.35% 46.6 

Random coefficients 1, week0.12, int 1, int, week−0.03 1, week1.5 0.045061 0.00% 269.1 

LCV - likelihood cross-validation; UN - unstructured. a. The transform 1 corresponds to an intercept; the transform int corres-
ponds to the indicator for being in the intervention group. 
 

Table 16. Estimated means, standard deviations, and correlations for the adaptive addi-
tive random coefficients model of blood lead levels in terms of time in weeks and treat-
ment group. 

Treatment 
group 

Week Mean 
Standard 
deviation 

Correlation 

0 1 4 6 

Placebo 0 26.4 5.1 
 

0.84 0.82 0.76 

 
1 24.1 5.1 

  
0.82 0.78 

 
4 23.7 5.3 

   
0.84 

 
6 23.6 5.7 

    
Active 0 21.0 4.7 

 
0.29 0.29 0.28 

 
1 19.2 4.7 

  
0.29 0.29 

 
4 18.9 5.0 

   
0.32 

 
6 18.8 9.1 

    
 

LCV score. Estimated correlations for the random coefficients model given in 
Table 16 differ by treatment group with values varying from 0.76 to 0.84 for 
participants on a placebo and values varying from 0.28 and 0.32 for participants 
under succimer treatment. These analyses require a total of 315.7 minutes. 

3.4.3. Adaptive Moderation Models Based on Time in Weeks and  
Treatment Group 

Table 17 contains a comparison of adaptive moderation models in week and 
treatment group for the UN directly specified correlation structure and the asso-
ciated random coefficients model. The random coefficients model generates the 
better 10-fold LCV score while the UN model is substantially inferior with PD 
2.29% in the LCV score. For both the UN and random coefficients cases, the ad-
ditive models of Table 15 generate substantial PDs 11.29% and 11.23%, respec-
tively, compared to associated moderation models of Table 17, and so both ap-
proaches support the conclusion of a substantial moderation effect. Estimated 
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correlations for the random coefficients model given in Table 18 differ by 
treatment group with values varying from 0.75 to 0.83 for participants on a pla-
cebo and values varying from 0.33 and 0.55 for participants under succimer 
treatment. For participants in the control group on a placebo, the estimated 
mean starts at 26.1 µg/dL at baseline week 0 and decreases a little to 24.0 µg/dL 
by week 6. In contrast, for participants in the intervention group on succimer 
treatment, the estimated mean also starts at 26.1 µg/dL at baseline week 0, de-
creases to 13.5 µg/dL by week 1, and increases to 20.7 µg/dL by week 6. These 
analyses require a total of 522.6 minutes. All the analyses of Sections 3.4.1-3.4.3 
require a total of 1100.3 minutes or about 18.3 hours. 

3.5. Analyses of the Trichotomous Respiratory Status Data 

The analyses of this section use data provided by Koch et al. [21] on 555  
 
Table 17. Adaptive moderation models for blood lead levels in terms of time in week and treatment group controlling for out-
come covariance. 

Covariance structure 

Transformsa 
10-fold 

LCV score 
Percent 
decrease 

Clock 
time 

(minutes) Means Variances 
Random 

coefficients 

Directly specified correlation 
      

 
UN 

1, (week0.06∙int)−3.3, 
week0.22, (week8∙int)2 

1, (week8∙int)0.6, 
int, week0.01 

-- 0.049601 2.29% 146.3 

Random coefficients 
1, (int∙week−0.4)0.5, 

week0.2, (int∙week8)1.9 
1, 

(week−0.4∙int)−0.1 
1, week2 0.050761 0.00% 376.3 

LCV - likelihood cross-validation; UN - unstructured. a. The transform 1 corresponds to an intercept; the transform int corres-
ponds to the indicator for being in the intervention group. 
 

Table 18. Estimated means, standard deviations, and correlations for the adaptive mod-
eration random coefficients model of blood lead levels in terms of time in weeks and 
treatment group. 

Treatment 
group 

Week Mean 
Standard 
deviation 

Correlation 

0 1 4 6 

Placebo 0 26.1 5.1 
 

0.83 0.81 0.75 

 
1 24.7 5.1 

  
0.82 0.75 

 
4 24.1 5.2 

   
0.82 

 
6 24.0 5.7 

    
Active 0 26.1 5.1 

 
0.55 0.52 0.50 

 
1 13.5 7.8 

  
0.34 0.33 

 
4 15.3 8.2 

   
0.35 

 
6 20.7 8.6 
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trichotomous respiratory status levels classified as 0 for poor, 1 for good, and 2 
for excellent for 54 patients on active treatment and 57 on a placebo at baseline 
visit 0 and subsequent visits 1-4. The dichotomous respiratory status outcome of 
Section 3.3 is related; it has the good and excellent categories combined into a 
good category. The cutoff for a substantial percent decrease (PD) for these data 
is 0.35%. The more general spatial AR1 correlation structure is considered, but 
this has no effect since the trichotomous respiratory levels are equally spaced. 
Estimated variances for models based on directly specified correlation structures 
are computed using the combination of adaptively generated dispersions and the 
standard variance terms ,i jV . Analyses of these data using directly specified 
correlation structures are also provided in [7]. Analyses of other correlated dis-
crete outcomes are provided in [10]. 

3.5.1. Adaptive Models Based on Clinic Visit 
Table 19 contains a comparison of adaptive models in clinic visit for the IND, 
EXCH, AR1, and UN directly specified correlation structures and the associated 
random coefficients model. The random coefficients model generates the best 
overall 10-fold LCV score. The UN directly specified correlation structure gene-
rates the next best LCV score, but with a substantial PD 0.59%. Estimated corre-
lations for the random coefficients model given in Table 20 vary from 0.35 and 
0.67. These analyses require a total of 43.9 minutes. 

3.5.2. Adaptive Additive Models Based on Clinic Visit and Treatment 
Group 

Table 21 contains a comparison of adaptive additive models in clinic visit and 
treatment group for the UN directly specified correlation structure and the asso-
ciated random coefficients model. The IND, EC, and AR1 directly specified cor-
relation structures have not been considered since they generate worse LCV 
scores than UN in Table 19. The same models are generated as in Table 19. 
These analyses require a total of 110.3 minutes. 

 
Table 19. Adaptive models for trichotomous respiratory status levels in terms of clinic visit controlling for outcome covariance. 

Covariance structure 
Transformsa 10-fold 

LCV score 
Percent 
decrease 

Clock time 
(minutes) Probabilities Variances Random coefficients 

Directly specified correlation 
      

 
IND visit−0.1 1, visit1.1 -- 0.35234 17.96% 0.9 

 
EXCH visit−0.1 1 -- 0.41594 3.15% 2.8 

 
AR1 visit−0.1 1 -- 0.42113 1.94% 5.3 

 
UN visit−0.1 1, visit1.1 -- 0.42691 0.59% 19.6 

Random coefficients visit−0.1 1 1, visit0.6 0.42946 0.00% 15.3 

AR1 - autoregressive of order 1; EXCH - exchangeable; IND - independent; LCV - likelihood cross-validation; UN - unstructured. 
a. The transform 1 corresponds to an intercept. 
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3.5.3. Adaptive Moderation Models Based on Clinic Visit and Treatment 
Group 

Table 22 contains a comparison of adaptive moderation models in clinic visit 
and treatment group for the UN directly specified correlation structure and the 
associated random coefficients model. The random coefficients model generates 
the better 10-fold LCV score. The UN model is substantially inferior with PD 
0.66% in the LCV score. For both the UN and random coefficients cases, the  

 
Table 20. Estimated means, standard deviations, and correlations for the adaptive ran-
dom coefficients model of trichotomous respiratory status in terms of clinic visit. 

Visit Mean 
Standard 
deviation 

Correlation 

0 1 2 3 4 

0 0.90 0.59 
 

0.43 0.40 0.37 0.35 

1 1.15 0.64 
  

0.55 0.56 0.56 

2 1.14 0.69 
   

0.62 0.63 

3 1.13 0.74 
    

0.67 

4 1.12 0.79 
     

 
Table 21. Adaptive additive models for trichotomous respiratory status levels in terms of clinic visit and treatment group control-
ling for outcome covariance. 

Covariance structure 
Transformsa 10-fold 

LCV score 
Percent 
decrease 

Clock time 
(minutes) Probabilities Variances Random coefficients 

Directly specified correlation 
      

 
UN visit−0.1 1, visit1.1 -- 0.42691 0.59% 35.7 

Random coefficients visit−0.1 1 1, visit0.6 0.42946 0.00% 74.6 

LCV - likelihood cross-validation; UN - unstructured. a. The transform 1 corresponds to an intercept; the transform int corres-
ponds to the indicator for being in the intervention group (but it is not included in the models) 
 
Table 22. Adaptive moderation models for trichotomous respiratory status levels in terms of clinic visit and treatment group con-
trolling for outcome covariance. 

Covariance structure 
Transformsa 10-fold 

LCV score 
Percent 
decrease 

Clock time 
(minutes) Probabilities Variances Random coefficients 

Directly specified 
correlation       

 
UN 

(int∙visit−0.1)5, 
visit−8, (int∙visit)−8 

1, visit1.5 -- 0.43213 0.66% 301.0 

Random coefficients 
(visit−0.1∙int)8, 

(visit∙int)−2.1, visit−8, 
1 1, visit0.9 0.43502 0.00% 1357.8 

LCV - likelihood cross-validation; UN - unstructured. a. The transform 1 corresponds to an intercept; the transform int corres-
ponds to the indicator for being in the intervention group. 
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additive models of Table 21 generate substantial PDs 1.21% and 1.28%, respec-
tively, compared to associated moderation models of Table 22, and so both ap-
proaches support the conclusion of a substantial moderation effect. Estimated 
correlations for the random coefficients model given in Table 23 are the same 
for both treatment groups with values varying from 0.36 to 0.66. For participants 
in the control group on a placebo, the estimated mean starts at 0.90 at baseline 
visit 0, increases to 1.15 by visit 1 and then decreases a little to 1.12 by visit 4. In 
contrast, for participants in the intervention group on active treatment, the es-
timated mean also starts at 0.90 at baseline visit 0, increases more to 1.39 by 
week 2, and decreases somewhat to 1.27 by visit 4, and so participants on active 
treatment are more likely to have post-baseline excellent status with value 2. 
These analyses require a total of 1658.8 minutes. All analyses of Sections 
3.5.1-3.5.3 require a total of 1813.0 minutes or about 30.2 hours. 

4. Discussion 

Methods are formulated for conducting adaptive analyses of general correlated 
outcomes using heuristic search controlled by likelihood cross-validation (LCV) 
scores using fractional polynomial models for means, variances/dispersions, and 
correlations for those outcomes. Means and variances/dispersions are modeled 
using generalized linear models based on fixed coefficients (or effects). Correla-
tions are modeled using either directly specified correlations or random coeffi-
cients (or effects). Parameters are estimated using extended linear mixed mod-
eling based on maximizing the multivariate normal density evaluated using re-
siduals and covariances for general correlated outcomes, not just normally  

 
Table 23. Estimated means, standard deviations, and correlations for the adaptive mod-
eration random coefficients model of trichotomous respiratory status in terms of clinic 
visit and treatment group. 

Treatment 
group 

Visit Mean 
Standard 
deviation 

Correlation 

0 1 2 3 4 

Placebo 0 0.90 0.59 
 

0.46 0.43 0.40 0.36 

 
1 1.15 0.61 

  
0.52 0.52 0.51 

 
2 1.14 0.65 

   
0.59 0.60 

 
3 1.13 0.71 

    
0.66 

 
4 1.12 0.78 

     
Active 0 0.90 0.59 

 
0.46 0.43 0.40 0.36 

 
1 1.22 0.61 

  
0.52 0.52 0.51 

 
2 1.39 0.65 

   
0.59 0.60 

 
3 1.33 0.71 

    
0.66 

 
4 1.27 0.78 
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distributed outcomes. Associated estimating equations are solved using an ad-
justed version of Newton’s method. Cases considered include linear, Poisson, lo-
gistic, exponential, and discrete regression for modeling continuous, count/rate, 
dichotomous, positive continuous, and discrete numeric outcomes treated as 
normally, Poisson, Bernoulli, exponentially, and discrete numerically distri-
buted, respectively. These methods extend to any type of correlated outcomes 
for which variances can be specified, for example, the inverse Gaussian case [5]. 
However, the case of multiple event times needs to account for censoring, and so 
correlation in this case is more readily addressed using conditional modeling 
[16]. 

Example analyses are provided for each of these five outcome cases comparing 
results for the directly specified independent (IND), exchangeable (EXCH), au-
toregressive of order 1 (AR1), and unstructured (UN) correlation structures to 
results for random coefficients. LCV ratio tests are used to identify substantial 
differences in LCV scores for models. Each set of example analyses considers a 
correlated outcome observed over a continuous time variable for two groups of 
individuals. Analyses are first conducted using the continuous time variable for 
all four directly specified correlation structures and for random coefficients. 
Only the directly specified correlation structure generating the best LCV score 
for this first analysis is considered in subsequent analyses. Results for this di-
rectly specified correlation structure are compared to those for random coeffi-
cients in terms of both the continuous time variable and an indicator for being 
in one of the two groups. These latter analyses allow for additive effects of time 
and group as well as for moderation of time effects by group considering geo-
metric combinations generalizing standard interactions. 

Random coefficients models considered so far assume independent random 
coefficients combined with independent errors. Further work is needed to inves-
tigate more complex situations with more general covariance structures for both 
random coefficients and errors. 

4.1. Summary of Example Analysis Results 

In analyses of dental measurements for girls and boys at ages 8, 10, 12, and 14 
years old, the EXCH correlation structure is the best directly specified correla-
tion structure. Random coefficients outperform this directly specified correla-
tion structure in all three analyses. The improvement is not substantial for the 
model in age only, but is substantial for both the additive and moderation mod-
els. Child gender substantially moderates the effect of age on dental measure-
ments. 

In analyses of epilepsy seizure rates per week for individuals taking a placebo 
and the drug progabide at baseline visit 0 and subsequent visits 1 - 4, the EXCH 
correlation structure is the best directly specified correlation structure. It sub-
stantially outperforms random coefficients in all three analyses. Epilepsy seizure 
rates depend on visit, but treatment group does not have either an additive or 
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moderation effect on epilepsy seizure rates. 
In analyses of dichotomous respiratory status coded as 0 for poor and 1 for 

good for individuals taking a placebo and on active treatment at baseline visit 0 
and subsequent visits 1 - 4, the EXCH correlation structure is the best directly 
specified correlation structure. It generates comparable results to random coeffi-
cients in all three analyses although the additive analysis results are not 
straightforward. Being on active treatment substantially moderates the effect of 
visit on dichotomous respiratory status. 

In analyses of blood lead levels for children taking a placebo and the chelating 
agent succimer at baseline week 0 and subsequent weeks 1, 4, and 6, the UN 
correlation structure is the best directly specified correlation structure. Random 
coefficients substantially outperform this directly specified correlation structure 
in all three analyses. Being on succimer substantially moderates the effect of 
week on blood lead levels. 

In analyses of trichotomous respiratory status coded as 0 for poor, 1 for good, 
and 2 for excellent for individuals taking a placebo and on active treatment at 
baseline visit 0 and subsequent visits 1 - 4, the UN correlation structure is the 
best directly specified correlation structure. Random coefficients substantially 
outperform this directly specified correlation structure in all three analyses. Be-
ing on active treatment substantially moderates the effect of visit on trichotom-
ous respiratory status. 

Clock times are reported for all these example analyses. Not surprisingly, ana-
lyses considering random coefficients can require more time and sometime 
much more time than analyses considering directly specified correlation since 
they involve heuristic search through three sets of fractional polynomials rather 
than just two. 

4.2. Conclusions 

Random coefficients models for correlation are important to consider since they 
can provide substantial improvements for modeling of correlated outcomes. 
However, directly specified correlation structures are also important to consider 
since they can provide competitive or even substantially better results than ran-
dom coefficients and usually require less time and sometimes much less time. 

The results of the example analyses indicate that adaptive random coefficients 
modeling can generate effective models and so can provide substantive benefits 
for statistical practice in the context of correlated outcomes. Researchers often 
have to analyze correlated outcomes. This is typically addressed by arbitrarily 
choosing one of exchangeable correlations as used in standard repeated meas-
ures, autoregressive correlations as used in time series modeling, or unstructured 
correlations as used in multivariate analysis of variance and multivariate regres-
sion. ELMM combined with LCV can be used to identify which of these directly 
specified correlation structures is most appropriate for the data under analysis. 
However, it is highly important to consider random coefficients as well. Such 
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evaluations can be conducted using specific models for the means based on 
theoretical considerations as well as more general adaptive models. 
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