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Abstract 
The topic of this article is one-sided hypothesis testing for disparity, i.e., the 
mean of one group is larger than that of another when there is uncertainty as 
to which group a datum is drawn. For each datum, the uncertainty is cap-
tured with a given discrete probability distribution over the groups. Such sit-
uations arise, for example, in the use of Bayesian imputation methods to as-
sess race and ethnicity disparities with certain insurance, health, and financial 
data. A widely used method to implement this assessment is the Bayesian Im-
proved Surname Geocoding (BISG) method which assigns a discrete probability 
over six race/ethnicity groups to an individual given the individual’s surname 
and address location. Using a Bayesian framework and Markov Chain Monte 
Carlo sampling from the joint posterior distribution of the group means, the 
probability of a disparity hypothesis is estimated. Four methods are devel-
oped and compared with an illustrative data set. Three of these methods are 
implemented in an R-code and one method in WinBUGS. These methods are 
programed for any number of groups between two and six inclusive. All the 
codes are provided in the appendices. 
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1. Introduction 

This article deals with the issue of disparity testing, i.e., testing the hypothesis 
that the mean of one group is larger than that of a second group when the 
groups from which samples are drawn are uncertain and given with a probability 
distribution. McDonald [1] presented relevant approaches and calculations for 

How to cite this paper: McDonald, G.C. 
(2024) A Bayesian Mixture Model Approach 
to Disparity Testing. Applied Mathematics, 
15, 214-234. 
https://doi.org/10.4236/am.2024.153012 
 
Received: February 21, 2024 
Accepted: March 26, 2024 
Published: March 29, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/am
https://doi.org/10.4236/am.2024.153012
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/am.2024.153012
http://creativecommons.org/licenses/by/4.0/


G. C. McDonald 
 

 

DOI: 10.4236/am.2024.153012 215 Applied Mathematics 
 

such testing, for both frequentist and Bayesian formulations, with two groups. In 
both formulations, use is made of all possible data configurations along with their 
corresponding probabilities for small sample sizes (≤6). Elkadry and McDonald [2] 
provide extensive discussion of the background giving rise to such disparity 
testing problems, and give an R-code to analyze sample sizes up to 22 using all 
possible data configurations. McDonald and Oakley [3] use a Bayesian frame-
work and Markov Chain Monte Carlo sampling from the joint posterior distri-
bution of the group means to estimate the probability of a disparity hypothesis. 
They provide the applicable R-codes and a WinBUGS code, and greatly extend 
sample size limitations of previous methods given in the literature. McDonald 
and Willard [4], using a frequentist approach, employ a bootstrap methodology 
to generate summary statistics for the population of p-values arising from all 
possible configurations of the data to assess the credibility of the disparity hypo-
thesis. Using their provided R-code, previous limitations on sample sizes are 
substantially eliminated. The p-value calculations for statistical hypotheses test-
ing are presented in numerous texts (e.g., see Navidi [5]). 

The primary motivation for this work is the use of imputation of race/ethnicity 
of an individual based on available information such as surname and address. 
For example, in testing for disparity among race/ethnicity loan applicants where 
such information is not directly available, imputation methods are being used to 
assign one of six race/ethnicity groups to an application. There has been consi-
derable research in developing such imputation methodology following the work 
of Fiscella and Fremont [6]. See, for example, the articles by Adjaye-Gbewonyo, 
et al. [7], Brown, et al. [8], Consumer Financial Protection Bureau [9] [10], El-
liott, et al. [11], McDonald and Rojc [12] [13] [14], Zhang [15], and Zavez, et al. 
[16] for a wide variety of applications of such imputation methods in healthcare 
and finance using geocoding and surname analysis. Voicu, et al. [17] include the 
first name information, along with surname and geocoding, to improve the ac-
curacy of race/ethnicity classification. To assess disparity of, say, auto loan rates 
extended to two race/ethnicity groups, a one-sided statistical hypothesis test 
could be used to assess the plausibility of the mean rate of one group being larger 
than that of another. This article addresses the issue of such statistical testing 
with imputed data as noted above.  

This article expands the models used in references given above from two 
groups based on a binomial model to one using c groups (2 ≤ c ≤ 6) based on a 
mixture model within a Bayesian context. The methodologies developed in McDo-
nald and Oakley [3] are applied with the more encompassing mixture likelihood 
function. Thus, this work is directly applicable to the output of proxy methods 
such as that from the Bayesian Improved Surname Geocoding (BISG) (see, e.g., 
Elliott, et al. [11]) used extensively by the Consumer Financial Protection Bureau 
(CFPB) and others. Using BISG, the CFPB [9] ordered Ally Financial Inc. and 
Ally Bank to pay $80 million in damages to African-American, Hispanic, and 
Asian and Pacific Islander consumers harmed by Ally’s alleged discriminatory 
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auto loan pricing, and $18 million in civil money penalties. The Wall Street 
Journal provides a website (published in 2015),  
http://graphics.wsj.com/ally-settlement-race-calculator/, implementing BISG for 
six race/ethnicity groups.  

A Bayesian approach to the statistical hypothesis testing problem is utilized 
here. With this approach, the group means of the variable of interest (e.g., auto 
loan interest rates) are modeled with a probability distribution from which the 
probability of the disparity hypothesis can be calculated. Prior knowledge on the 
group means is combined with the likelihood function of the sample data to 
yield a so-called posterior probability distribution of the group means. Several 
approaches to these calculations are herein described and illustrated using com-
putational codes given in the appendices. The illustrative calculations utilize one 
set of assumptions on the model and data (“noninformative” prior knowledge 
on the group means, and normal likelihood function for the sample data). How-
ever, the approach and computational tools given in the appendices are easily 
adapted to other assumptions. Hence the robustness of conclusions can be as-
sessed with several other specifications of model assumptions. Some robustness 
considerations are explicitly considered in Sections 4 and 5.  

Section 2 of this article describes the data set to be used subsequently to illu-
strate the computations of the various methodologies herein presented. It also 
applies a method labeled Laplace (Albert [18]) to develop a multivariate normal 
distribution approximation to the posterior distribution of the group means. 
Section 3 details the use of “BayesMix”, an R-code, integrating several Metropo-
lis-Hastings algorithms so as to generate draws from the posterior distribution of 
the group means. Using these draws, the mean values of the group means are 
calculated to assess the probabilities of linear contrasts of these mean values. The 
probability of a disparity hypothesis is calculated. Section 4 uses the publicly 
available software package WinBUGS to calculate quantities similar to those of 
Section 3. Gill [19] and Christensen, et al. [20] provide excellent introductions to 
Bayesian modeling emphasizing the use of both R and WinBUGS to analyze real 
data. Section 5 provides a summary and the concluding remarks. 

2. Normal Approximation to the Posterior Distribution 
2.1. The Data 

To illustrate the following methodologies a simulated data set consisting of n = 
18 observations, given in Appendix A, will be used. The data can be entered into 
the programs given in the Appendices B-D in several different manners, e.g., 
excel spreadsheet, list format, etc. The excel spreadsheet format will be used here 
with the R-code BayesMix given in Appendix B. The excel spreadsheet with the 
example data for this article is labeled “TestData.xlsx”. Two R packages are re-
quired for using this data format with the BayesMix: “readxl” and “LearnBayes”. 
The data of Appendix A were randomly drawn from a normal distribution in c 
= 6 groups of three—with means of 2, 4, 6, 8, 10, and 12, and with standard dev-
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iations of 1. The probabilities for the six categories of each datum are given as q 
= (q1, ···, q6). For each datum the category from which it was drawn is assigned 
the max probability. The objective of the analysis is to assess stochastic proper-
ties of the group means based on the data and group probabilities. These analys-
es will utilize algorithms given in Albert [18] and utilized in McDonald and 
Oakley [3] for c = 2. The user input required to execute BayesMix is given in 
Table 1. The specific values of the variables given in Appendix B used in this 
article are noted. The vector A, as given here, is used to formulate the disparity 
hypothesis “mu[2] is greater than mu[1]” for which its probability is estimated. 
Similarly, the contrast vector A1 is used for the hypothesis “mu[3] is greater 
than the average of mu[4] and mu[5]”. The quantities mu[i] refer to the group[i] 
means. 

The output of BayesMix contains many data summaries and diagnostics use-
ful in checking the analyses structures and calculations. The user can suppress 
one or more of these if so wished. However, the primary output is Table 2 (less 
the column WinBUGS). 

2.2. Laplace 

As described in the above references, the R-code Laplace computes the posterior 
mode of the vector mu = (mu[1], ···, mu[c]), the associated variance-covariance 
matrix, and an estimate of the logarithm of the normalizing constant for a gen-
eral posterior density, and an indication of algorithm convergence (true or false). 
Three inputs are required: logpost, a function that defines the logarithm of the 
posterior density (denoted by loglike in Appendix B); mode, an initial guess at 
the posterior mode; par, a list of parameters associated with the function logpost. 

The probability (posterior) density for the data is a mixture distribution given 
by 

( ) ( )1, , dnorm , ,ii
c

if x q xqµ σ µ σ
=

= ⋅∑                (1) 

where 0 ≤ qi ≤ 1, ∑qi = 1, |x| < ∞, 0 < σ < ∞, and ( )dnorm , ,ix µ σ  is the normal 
probability density with mean and sigma equal to ( ),iµ σ  evaluated at datum x.  
 
Table 1. User required input for BayesMix (Appendix B). 

Variable Description Values used in this article 

sig Std dev of mixture normal densities 1 

mcn Sample size of MCMC chains 52,000 

sca 
Scale parameter for MCMC  

random walk 
1.2 

dis Burn-in for MCMC draws 2000 

A Vector to compare two group means (−1, 1, 0, 0, 0, 0) 

A1 
Vector specifying linear transform of 

group means 
(0, 0, 1, −0.5, −0.5, 0) 
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Table 2. Output (to four dp) of BayesMix (Appendix B) and of WinBUGS (Appendix C) 
with Appendix A data. 

 Lap Ran Ind RanRed IndRed WinBUGS 

Draws NA 52,000 52,000 50,000 50,000 50,000 

est1 2.7351 2.7107 2.7327 2.7117 2.7320 2.728 

sd1 0.5977 0.6289 0.6190 0.6312 0.6184 0.6154 

est2 4.8257 4.8337 4.8220 4.8307 4.8211 4.833 

sd2 0.6052 0.6328 0.6214 0.6320 0.6212 0.6515 

est3 7.0174 7.1319 7.1520 7.1305 7.1504 7.146 

sd3 0.7207 0.8304 0.8338 0.8294 0.8321 0.8727 

est4 7.7113 7.6265 7.6050 7.6289 7.6036 7.605 

sd4 0.6837 0.8464 0.7738 0.8466 0.7733 0.8089 

est5 10.1977 10.3075 10.3140 10.3063 10.3149 10.27 

sd5 0.7285 0.8609 0.8218 0.8634 0.8207 0.9251 

est6 11.8836 11.8867 11.8753 11.8856 11.8753 11.87 

sd6 0.5824 0.6040 0.5982 0.6016 0.5985 0.603 

P(mu[2] > mu[1]) 0.9934 0.9904 0.9901 0.9904 0.9902 0.9905 

P(Y > 0) 0.0146 NA NA 0.0491 0.0485 0.0533 

Accept. Rate NA 0.2191 0.8091 NA NA NA 

 
The initial guess mode, a vector of length c, is denoted by mu in BayesMix. 

This initial guess can affect the convergence of the Laplace algorithm indicated 
by “true” or “false” in the output. One method for specifying this guess is to put 
each of the mu values equal to the average of the data. This has worked well for 
many of the calculations made in preparing this manuscript, but not all. There 
have been instances when the output of Laplace indicated “false” for conver-
gence. In these cases, a good strategy is to rerun the Laplace function with the 
initial guess restated with the mode values output for the false convergence out-
put. Another strategy that has worked very well, and is included in BayesMix, is 
to form the initial guess of mu[i] by taking the average of the data for which the 
category[i] has the maximum value over the c groups. 

Laplace estimates of the mode values of the mu variables along with their 
standard deviations are given in Table 2 in the column denoted Lap. The esti-
mates and standard deviations for mu[i] are denoted by esti and sdi, respective-
ly. Since A is specified as (−1, 1, 0, 0, 0, 0), the vector (Ahi, Alo) = (2, 1) and the 
probability of mu[2] being greater than mu[1] is approximated with the normal 
distribution and the Laplace variance-covariance output as 0.9934. Also, A1 is 
specified by (0, 0, 1, −0.5, −0.5, 0), so Y = mu[3] − 0.5(mu[4] + mu[5]). Thus, 
Y > 0 is equivalent to mu[3] greater than the average of mu[4] and mu[5], the 
estimated probability of which is given in Table 2 as 0.0146. The entries in the 
other columns of Table 2, and the row “Accept Rate”, are explained in subse-
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quent sections of this article.  
While the Laplace algorithm with the normal approximation may not be most 

appropriate for the posterior distribution, the Laplace output provides very use-
ful input to the algorithms to be utilized subsequently. The output of Laplace is 
explicitly used in the “proposal” and “start” inputs for the two Markov Chain 
Monte Carlo (MCMC) algorithms to be described in Section 3. BayesMix, which 
generated Table 2, ran in about 6.5 minutes on a laptop computer with Win-
dows 10. 

3. Exploring the Posterior Distribution with  
Metropolis-Hastings Algorithms 

In this Section, random draws from the posterior distribution of the mean vector 
mu are used to estimate the probability of disparity as well as the cumulative 
probability distribution of any contrast of the category means. As was developed 
by McDonald and Oakley [3], these draws are obtained using the popular 
MCMC methods in the Bayesian literature. As stated in Section 3 of the McDo-
nald and Oakley reference, these methods consist of specifying an initial value 
for the parameter vector of interest and then generating a chain of values each of 
which depends only on the previous value in the chain. A rule for generating the 
sequence is a function of a proposal density and an acceptance probability. Not 
all generated values in the sequence are accepted as they must pass a probability 
criterion to be retained in the final sample. These components, the proposal 
density and acceptance probability criterion, are constructed so that the accepted 
simulated draws converge to draws from a random variable having the target 
posterior distribution. Different choices of the proposal density may result in 
slightly different distribution summaries.  

Two such proposal density implementations described in detail by Albert [18], 
and executed in the R package LearnBayes, are incorporated here in BayesMix 
given in Appendix B. The R functions “rwmetrop” and “indepmetrop” imple-
ment the so-called random walk and independence Metropolis-Hastings algo-
rithms for special choices of the proposal densities. The methodology descrip-
tions given in the following two subsections follow closely that of Section 3 of 
McDonald and Oakley [3] where the application is developed for c = 2 with a 
binomial likelihood. Here the applications are built for 2 ≤ c ≤ 6 with the like-
lihood function consisting of a mixture of normal densities given in Equation 
(1). The R-code BayesMix can be extended in a straightforward manner for c > 
6, i.e., for more than six groups. However, the use of WinBUGS, described in 
Section 4, can be easily applied to cases of c > 6 by suitably stating the number of 
groups and appropriately entering the data in Appendix C and Appendix D. 

Since the MCMC algorithms converge to sampling from the posterior distri-
bution, initial draws may not be from the stationary distribution of the Markov 
chain, i.e., not drawn from the target posterior distribution. Thus, it is common 
practice to discard an initial portion of the draws and utilize the remainder. This 
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practice is frequently referred to as “burn-in.” There are several diagnostics that 
can be viewed to help decide when the chain has progressed sufficiently far to 
stabilize on the posterior distribution (e.g., see Section 9.6 of Albert and Hu [21]; 
Section 4.4.2 of Lunn et al. [22]). Table 2 provides results based on 52,000 ran-
dom draws using MCMC algorithms described in the following two subsections. 
Results are also provided following a burn-in of 2000 draws, i.e., results based on 
the last 50,000 random draws. As noted, the burn-in deletions result in very mi-
nor changes in the posted estimates for this illustrative data set. The two chains 
utilized in subsections 3.1 and 3.2 are described fully in Albert [18].  

3.1. Random Walk Metropolis Chain 

Within LearnBayes, the function rwmetrop (logpost, proposal, start, m, par) re-
quires five inputs: logpost, function defining the log posterior density; proposal, 
a list containing var, an estimated variance-covariance matrix, and scale, the 
Metropolis scale factor; start, a vector giving the starting value of the parameter; 
m, the number of iterations of the chain; par, the data used in the function log-
post. The output is par, a matrix of the simulated values where each row corres-
ponds to a value of the vector parameter; accept, the acceptance rate of the algo-
rithm. A summary of the outputs of rwmetrop run with the specification of the 
data described in Section 2.1 with 52,000 draws from the posterior distribution is 
given in Table 2 in the column designated Ran. 

As noted in the output, the acceptance rate here is 0.2191. The input “scale” 
should be chosen so that the acceptance rate is around 25%. Acceptance rates are 
discussed on page 121 of Albert [18] and on page 253 of Rizzo [23]. The accep-
tance rate is a decreasing function of scale. 

The results following a burn-in of 2000 are given in Table 2 column RanRed. 
The results in this column are thus based on 50,000 draws and differ very little 
than those in column Ran. 

3.2. Independence Metropolis Chain 

The function indepmetrop (logpost, proposal, start, m, data) also requires five 
inputs: logpost, as above; proposal, a list containing mu, an estimated mean, and 
var, an estimated variance-covariance matrix for the normal proposal density; 
start, array with a single row that gives the starting value for the parameter vec-
tor; m, the number of iterations of the chain; data, data used in the function 
logpost. A summary of the outputs of indepmetrop run with the illustrative data 
set with 52,000 draws is given in Table 2 in the column designated Ind. Column 
IndRed provides analogous results for the 50,000 draws following the burn-in of 
2000. As is the case with rwmetrop algorithm, there is negligible difference in the 
results with and without burn-in deletion.  

4. Applying WinBUGS for Bayesian Simulation 

Another approach to generating draws from the posterior distribution is to use a 
MCMC software package, WinBUGS, designed specifically for Bayesian compu-
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tation. WinBUGS is the MS Windows operating system version of BUGS, Baye-
sian Analysis Using Gibbs Sampling. There is a free download of this Bayesian 
software package available at the site  
(http://www.mrc-bsu.cam.ac.uk/bugs/overview/contents.shtml). Clear discus-
sions of the applicability, limitations, and use of WinBUGS are given in Hahn 
[24], Woodworth [25], Lunn et al. [22], and in many other references. The setup 
of this approach for the illustrative example considered here, where c = 6 and n = 
18, is given in Appendix C. Note that in WinBUGS the normal distribution 
density is specified by dnorm(µ, τ), where µ is the mean and τ is the precision (= 
1/variance). This differs from the specification in R, as given in Equation (1), 
where the normal distribution density at x is denoted by dnorm(x, µ, σ) with µ as 
the mean and σ as the standard deviation. 

Output from WinBugs is given in Table 2 based on a sample of 50,000 draws 
from the posterior distribution following a burn-in of an initial 2000 draws 
(similar to that done for the RanRed and IndRed entries). A “count1” node is in-
cluded to estimate P(mu[2] > mu[1]) as shown in Table 2. A similar “count2” 
node is included to estimate P(Y > 0) for a user specified transformation of the 
group means, A1 = (0, 0, 1, −0.5, −0.5, 0), in this example. To execute WinBugs, 
initial values are required for mu, group, and sigma. For mu, a reasonable choice 
for mu inits are the mode values given by Laplace. For group, a reasonable 
choice is to assign that group which has the largest probability for the datum. In 
case several groups share the largest value, choose one of those at random. For 
sigma, simply use a reasonable guess (e.g., use sigma = 1 as done here). The ro-
bustness of the results can easily be checked by running WinBUGS with other 
choices. The run time for WinBUGS as given in Appendix C is about forty 
seconds. 

Appendix D provides a modification of the Appendix C WinBUGS program 
by treating sigma as an unknown value, common to all six groups, and to be es-
timated along with the other nodes. With this program, the mean of the 50,000 
sigma draws is 0.9886 with a standard deviation of 0.3024. The output for the 
other nodes is very close to those given in Table 2 for WinBUGS with sigma 
fixed at one (i.e., the output using the Appendix C program). The P(m[2] > 
mu[1]) is estimated to be 0.9811, and P(Y > 0) to be 0.0689. A further extension 
of Appendix D can be made easily to accommodate the case where the group 
sigma values are not assumed known or to be equal. 

5. Summary and Concluding Remarks 

Table 2 shows a great deal of consistency with the entries, especially among the 
last five columns of the table. The results for the Laplace column also are in close 
agreement with those of the other columns, with perhaps the row entries cor-
responding to the standard deviations (i.e., sdi’s) where the Laplace values are 
uniformly a bit smaller than the others. The last five columns are based on sta-
tistics calculated from the random draws from the posterior distribution, whe-
reas the Laplace column is based on a numerical fit to the data. These observa-
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tions are based on the one data set given in Appendix A and may not generalize 
to other data sets. All the results given in this article apply to a mixture likelih-
ood function of normal densities. Other densities could be substituted with ap-
propriate changes in Equation (1) and appropriate modifications to the comput-
er codes given in the Appendices. 

An important question to be addressed with the methodologies used in this 
article is simply one of sample size. What is the tradeoff between the sample size 
(n) and the computing time? To partially address this issue, a sample of size n = 
72 was constructed by pooling together four copies of the data given in Appen-
dix A. The R-code in Appendix B and the WinBUGS code in Appendix C were 
run with exactly the same inputs used in Sections 3 and 4, with the expanded 
data set, generating an analogous Table 2. The laptop computer time for BayesMix 
was approximately forty-five minutes and for WinBUGS approximately forty 
seconds. The corresponding computer times with n = 18 (Appendix A) were 
approximately nine minutes for BayesMix and forty seconds for WinBUGS. 
There was no meaningful difference in computing times for WinBUGS between 
the two data sets. The output for the larger sample size closely matched that for 
the smaller sample size with the exception of the standard deviations (sdi’s) 
whose values with the larger data set were approximately half of the values with 
those obtained with the smaller set. For BayesMix, the computer time was ap-
proximately five times longer for n = 72 vs. n = 18. For much larger sample sizes, 
the bootstrap approach developed by McDonald and Willard [4] could be 
adapted to limit the required computing time.  

As with all analyses, especially Bayesian, the robustness of the conclusions 
with respect to choices of model and prior specifications should be explored. 
With WinBUGS, a feature called “chains” facilitates running multiple MCMCs 
with different prior initializations given in the inits list. The priors used in this 
article were chosen to be so-called “noninformative” (e.g., distributions with 
very large variances). Other graphical diagnostics provided by WinBUGS are 
given in Appendix E for mu[1] and are very helpful in addressing the issue of 
stability of MCMC draws from a stationary posterior distribution. These diag-
nostics, along with similar ones for the other nodes, support the assessment that 
the MCMC draws are from a stable stationary posterior distribution. Chapter 6 
of Hahn [24] and Chapter 14 of Gill [19] provide extensive discussion of assess-
ing MCMC performance in WinBUGS along with some interfaces to R packages. 

In conclusion, the Bayesian methods herein presented with appropriate com-
puter codes provide a statistically sound basis for drawing conclusions about 
group disparity using race and ethnicity uncertainty data such as that arising 
with BISG and similarly based methodologies. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

https://doi.org/10.4236/am.2024.153012


G. C. McDonald 
 

 

DOI: 10.4236/am.2024.153012 223 Applied Mathematics 
 

References 
[1] McDonald, G.C. (2018) Statistical Testing When the Populations from Which Sam-

ples Are Drawn Are Uncertain. Health Services and Outcomes Research Methodol-
ogy, 18, 155-174. https://doi.org/10.1007/s10742-018-0182-7 

[2] Elkadry, A. and McDonald, G.C. (2020) Hypothesis Testing When Data Sources 
Are Uncertain. Journal of Statistical Theory and Practice, 14, Article No. 66.  
https://doi.org/10.1007/s42519-020-00132-5 

[3] McDonald, G.C. and Oakley, R.H. (2023) Extending Computations for Disparity 
Testing When Data Sources Are Uncertain. Health Services and Outcomes Research 
Methodology, 23, 207-226. https://doi.org/10.1007/s10742-022-00286-8 

[4] McDonald, G.C. and Willard, J.F. (2023) Bootstrap Approach to Disparity Testing 
with Source Uncertainty in the Data. Health Services and Outcomes Research Me-
thodology. https://doi.org/10.1007/s10742-023-00318-x 

[5] Navidi, W. (2024) Statistics for Engineers and Scientists. 6th Edition, McGraw Hill, 
New York. 

[6] Fiscella, K. and Fremont, A.M. (2006) Use of Geocoding and Surname Analysis to 
Estimate Race and Ethnicity. Health Services Research, 41, 1482-1500.  
https://doi.org/10.1111/j.1475-6773.2006.00551.x 

[7] Adjaye-Gbewonyo, D., Bednarczyk, R.A., Davis, R.L. and Omer, S.B. (2014) Using 
the Bayesian Improved Surname Geocoding Method (BISG) to Create a Working 
Classification of Race and Ethnicity in a Diverse Managed Care Population: A Vali-
dation Study. Health Services Research, 49, 268-283.  
https://doi.org/10.1111/1475-6773.12089 

[8] Brown, D.P., Knapp, C., Baker, K. and Kaufmann, M. (2016) Using Bayesian Impu-
tation to Assess Racial and Ethnic Disparities in Pediatric Performance Measures. 
Health Services Research, 51, 1095-1108. https://doi.org/10.1111/1475-6773.12405 

[9] Consumer Financial Protection Bureau (2013, December 20) CFPB and DOJ Order 
Ally to Pay $80 Million to Consumers Harmed by Discriminatory Auto Loan Pric-
ing.  
https://www.consumerfinance.gov/enforcement/actions/ally-financial-ally-bank/  

[10] Consumer Financial Protection Bureau (2014) Using Publicly Available Informa-
tion to Proxy for Unidentified Race and Ethnicity.  
https://www.consumerfinance.gov/data-research/research-reports/using-publicly-av
ailable-information-to-proxy-for-unidentified-race-and-ethnicity/  

[11] Elliott, M.N., Morrison, P.A., Fremont, A., McCaffrey, D.F., Pantoja, P. and Lurie, 
N. (2009) Using the Census Bureau’s Surname List to Improve Estimates of 
Race/Ethnicity and Associated Disparities. Health Services and Outcomes Research 
Methodology, 9, 69-83. https://doi.org/10.1007/s10742-009-0047-1 

[12] McDonald, K.M. and Rojc, K.J. (2015) Automotive Finance Regulation: Warning 
Lights Flashing. The Business Lawyer, 70, 617-624. 

[13] McDonald, K.M. and Rojc, K.J. (2017) Accelerating Regulation of Automotive 
Finance. The Business Lawyer, 72, 559-566. 

[14] McDonald, K.M. and Rojc, K.J. (2022) Ladies and Gentlemen: Rev Your Regulatory 
Engines! The Business Lawyer, 77, 581-590. 

[15] Zhang, Y. (2018) Assessing Fair Lending Risks Using Race/Ethnicity Proxies. Man-
agement Science, 64, 178-197. https://doi.org/10.1287/mnsc.2016.2579 

[16] Zavez, K., Harel, O. and Aseltine, R.H. (2022) Imputing Race and Ethnicity in 
Healthcare Claims Databases. Health Services and Outcomes Research Methodolo-

https://doi.org/10.4236/am.2024.153012
https://doi.org/10.1007/s10742-018-0182-7
https://doi.org/10.1007/s42519-020-00132-5
https://doi.org/10.1007/s10742-022-00286-8
https://doi.org/10.1007/s10742-023-00318-x
https://doi.org/10.1111/j.1475-6773.2006.00551.x
https://doi.org/10.1111/1475-6773.12089
https://doi.org/10.1111/1475-6773.12405
https://www.consumerfinance.gov/enforcement/actions/ally-financial-ally-bank/
https://www.consumerfinance.gov/data-research/research-reports/using-publicly-available-information-to-proxy-for-unidentified-race-and-ethnicity/
https://www.consumerfinance.gov/data-research/research-reports/using-publicly-available-information-to-proxy-for-unidentified-race-and-ethnicity/
https://doi.org/10.1007/s10742-009-0047-1
https://doi.org/10.1287/mnsc.2016.2579


G. C. McDonald 
 

 

DOI: 10.4236/am.2024.153012 224 Applied Mathematics 
 

gy, 22, 493-507. https://doi.org/10.1007/s10742-022-00273-z 

[17] Voicu, I. (2018) Using First Name Information to Improve Race and Ethnicity Clas-
sification. Statistics and Public Policy, 5, 1-13.  
https://doi.org/10.1080/2330443X.2018.1427012 

[18] Albert, J. (2009) Bayesian Computation with R. 2nd Edition, Springer, New York.  
https://doi.org/10.1007/978-0-387-92298-0 

[19] Gill, J. (2015) Bayesian Methods: A Social and Behavioral Sciences Approach. 3rd 
Edition, CRC Press, Boca Raton. 

[20] Christensen, R., Johnson, W., Branscum, A. and Hanson, T.E. (2011) Bayesian Ideas 
and Data Analysis. CRC Press, Boca Raton. https://doi.org/10.1201/9781439894798 

[21] Albert, J. and Hu, J. (2020) Probability and Bayesian Modeling. CRC Press, Boca 
Raton. https://doi.org/10.1201/9781351030144 

[22] Lunn, D., Jackson, C., Best, N., Thomas, A. and Spiegelhalter, D. (2013) The BUGS 
Book: A Practical Introduction to Bayesian Analysis. CRC Press, Boca Raton.  
https://doi.org/10.1201/b13613 

[23] Rizzo, M.L. (2008) Statistical Computing with R. Chapman & Hall/CRC, Boca Ra-
ton.  

[24] Hahn, E.D. (2014) Bayesian Methods for Management and Business: Pragmatic So-
lutions for Real Problems. Wiley, Hoboken. 

[25] Woodworth, G.G. (2004): Biostatistics: A Bayesian Introduction. Wiley, Hoboken.  
 
 

https://doi.org/10.4236/am.2024.153012
https://doi.org/10.1007/s10742-022-00273-z
https://doi.org/10.1080/2330443X.2018.1427012
https://doi.org/10.1007/978-0-387-92298-0
https://doi.org/10.1201/9781439894798
https://doi.org/10.1201/9781351030144
https://doi.org/10.1201/b13613


G. C. McDonald 
 

 

DOI: 10.4236/am.2024.153012 225 Applied Mathematics 
 

Appendix A. Excel Spreadsheet Data, TestData.xlsx 

z q1 q2 q3 q4 q5 q6 

2.701 0.7 0.1 0.05 0.05 0.05 0.05 

1.915 0.8 0.025 0.1 0.025 0.025 0.025 

3.569 0.6 0.05 0.05 0.2 0.05 0.05 

4.817 0.1 0.7 0.05 0.05 0.05 0.05 

4.395 0.025 0.8 0.1 0.025 0.025 0.025 

5.213 0.05 0.6 0.05 0.2 0.05 0.05 

6.355 0.1 0.05 0.7 0.05 0.05 0.05 

8.216 0.025 0.1 0.8 0.025 0.025 0.025 

5.909 0.05 0.05 0.6 0.2 0.05 0.05 

6.683 0.1 0.05 0.05 0.7 0.05 0.05 

8.067 0.025 0.1 0.025 0.8 0.025 0.025 

8.512 0.05 0.05 0.2 0.6 0.05 0.05 

10.05 0.1 0.05 0.05 0.05 0.7 0.05 

11.467 0.025 0.1 0.025 0.025 0.8 0.025 

8.71 0.05 0.05 0.2 0.05 0.6 0.05 

11.742 0.1 0.05 0.05 0.05 0.05 0.7 

12.293 0.025 0.1 0.025 0.025 0.025 0.8 

11.663 0.05 0.05 0.2 0.05 0.05 0.6 

Appendix B. BayesMix Implementing Laplace, Metropolis-Hastings Algorithms 
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Appendix C. WinBUGS, Assuming σ = 1 for the c = 6 Groups 

 

https://doi.org/10.4236/am.2024.153012


G. C. McDonald 
 

 

DOI: 10.4236/am.2024.153012 232 Applied Mathematics 
 

 

Appendix D. WinBUGS, Assuming a Common Unknown σ for the c = 6 Groups 

 

https://doi.org/10.4236/am.2024.153012


G. C. McDonald 
 

 

DOI: 10.4236/am.2024.153012 233 Applied Mathematics 
 

 

https://doi.org/10.4236/am.2024.153012


G. C. McDonald 
 

 

DOI: 10.4236/am.2024.153012 234 Applied Mathematics 
 

Appendix E. WinBUGS Node Statistics Output and Graphical Diagnostics for mu[1] for  
Appendix 3 Run-From Top Left to Lower Right: Dynamic Trace, Running Quantiles,  
Time Series History, Kernel Density, and Autocorrelation Function 
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