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Abstract 
We investigate the dynamical behavior of quantum steering (QS), Bell nonlo-
cality, and entanglement in open quantum systems. We focus on a two-qubit 
system evolving within the framework of Kossakowski-type quantum dy-
namical semigroups. Our findings reveal that the measures of quantumness 
for the asymptotic states rely on the primary parameter of the quantum mod-
el. Furthermore, control over these measures can be achieved through a care-
ful selection of these parameters. Our analysis encompasses various cases, in-
cluding Bell states, Werner states, and Horodecki states, demonstrating that 
the asymptotic states can exhibit steering, entanglement, and Bell nonlocality. 
Additionally, we find that these three quantum measures of correlations can 
withstand the influence of the environment, maintaining their properties 
even over extended periods. 
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1. Introduction 

Quantum entanglement (QE) has emerged as a fascinating subject and a funda-
mental aspect of quantum mechanics since the pioneering efforts of Einstein and 
colleagues [1]. This phenomenon represents a type of non-local correlation ma-
nifesting in the inseparability of states, and it has played a significant role in ad-
vancing key tasks in quantum information processing and transmission [2]-[8]. 
Notably, correlations derived from local measurements on entangled systems 
can exhibit nonlocal properties [9]. The theory of local hidden variables imposes 
constraints on the measurement statistics for a broad set of quantum systems 
[10]. Nonlocality, an essential feature of QE, was highlighted through the “EPR 
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paradox,” central to understanding nonlocality [1]. This paradox questions 
quantum theory’s ability to explain what has been termed “spooky action at a 
distance.” Schrödinger further elucidated this by introducing the concept of 
quantum steering (or EPR steering), which allows local measurements to control 
a distant quantum subsystem without direct interference [11]. Quantum steering 
(QS) is widely applied as a quantifier of the quantum correlation that exhibits 
the Einstein-Podolsky-Rosen (EPR) paradox. In the field of modern quantum 
information theory, it is considered a form of quantum correlation between 
quantum entanglement (QE) and Bell’s nonlocality. Entangled states are re-
garded as a superclass of steerable states [12]. Recently, QS has attracted signifi-
cant attention in both experimental and theoretical research [13]-[19]. Steerable 
states can be applied in channel discrimination [20], cryptography [21], and te-
leportation [22]. Additionally, Quantum Steering (QS) is attributed to opera-
tional descriptions [23]. Both discrete and continuous quantum systems exhibit 
some QS inequalities, which are derived using the uncertainty relation in terms 
of entropy [24] [25] [26]. There have been significant experimental and theoret-
ical developments aimed at explaining this form of nonlocality [25] [26] [27] 
[28]. Among these developments, significant standards for QS have been estab-
lished by demonstrating QS in various aspects [29] [30]. The study of the Bell 
plan facilitates the expression of Bell-like inequalities for QS. Furthermore, the 
criteria for QS utilize the relationship between Quantum Entanglement (QE) 
and the uncertainty relation [29] [30]. 

In addition to characterizing and quantifying correlations, understanding the 
behavior of these correlations under the influence of decoherence is another sig-
nificant issue. Practical quantum systems inevitably interact with their sur-
roundings, which during their dynamical evolution leads to decoherence [31]. In 
recent decades, studies have primarily focused on relaxation and dephasing in 
Markovian and non-Markovian open quantum systems. Consequently, dynamic 
evolution is an important property of quantum systems, which renders the 
quantum of finite time intriguing [32]. In nearly all models used to depict open 
quantum systems, the coherence of a state asymptotically descends to zero. Ad-
ditionally, the entanglement dynamics often exhibit sudden death in a decohe-
rent environment [33]. Thus, the asymptotic dynamics of various physical quan-
tities offer ideal systems for examining the quantum properties crucial to infor-
mation and quantum optics. Various systems, including quantum dot systems 
[34] [35] [36] [37] [38], impurity systems [39] [40] [41] [42] [43], and trapped 
ions [44] [45] [46], implement these architectures. The performance of quantum 
properties is often characterized by environmental noise present in quantum 
systems. Therefore, developing a method for estimating noise levels is critical to 
mitigate the phenomenon of decay under decoherence. Controlling the environ-
mental conditions of a quantum system is essential for managing its degradation 
effects. In this manuscript, we investigate the dynamical behavior of quantum 
systems (QS), Bell nonlocality, and quantum entanglement (QE) in open quan-
tum systems. We examine the development of a two-qubit system within the 
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framework of Kossakowski-type quantum dynamical semigroups. This study 
highlights how the fundamental criteria of the quantum model impact the 
quantumness measures of the asymptotic states. We present various scenarios 
where the asymptotic states exhibit steerability, entanglement, and Bell nonlo-
cality. Additionally, we demonstrate the resilience of quantum measures of cor-
relations against environmental influences, maintaining their integrity over ex-
tended periods. 

The manuscript is organized as follows: Section 2 discusses the measures of 
quantumness, which describe the quantum correlations. Section 3 introduces the 
quantum model for the open quantum system and presents the numerical re-
sults. A summary is provided in the final section. 

2. Quantum Steering, Quantum Nonlocality and Nonlocal  
Correlation 

The local hidden state model for discrete observables has been developed [25] 
[26] [30]. Through the consideration of the positivity of the relative entropy, it is 
possible to evaluate the local hidden state constraints in the scenario involving 
discrete variables: ( ) ( ) ( )| | ‍b a b

qH R R P H Rλ λ λ≥∑ , here ˆ a
iR  ( ˆa

iS ) and ˆ b
iR  

( ˆb
iS ) represent, respectively, discrete observables with outcomes { }a

iR  ({ }a
iS ) 

and { }b
iR  ( { }b

iS ). ( )|b
qH R λ  describes the discrete Shannon entropy of 

( )|b
qP R λ  with ( ) ( ) ( )lni iiH R P R P R= −∑ . The steering inequality for the 

discrete variables is acquired by [30]: 

( ) ( ) ( ) ( )2

,| | log , min 1b a b a b b
i j i jH S S H R R R S+ ≥ Ω Ω ≡ .    (1) 

For quantum systems defined in two dimensional space, the inequality of the 
entropy uncertainty relation (EUR) steering is given by [30]  

( ) ( ) ( )| | | 2,b a b a b a
z z y y x xH H Hσ σ σ σ σ σ+ + ≥             (2) 

where QS occurs when the inequality is violated. Consider a bipartite system of 
qubits in the X-state  

11 14

22 23

23 33

14 44

0 0
0 0

,
0 0

0 0

X

R R
R R

R
R R

R R

 
 
 =
 
 
 

                  (3) 

where ijR  are real. By performing a convenable local unitary transformation, 
the state XR  defined in equation (3) according to the Bloch decomposition can 
be written as  

( )3
1

1 ‍ .
4

a b a b a b a b
X j j jjR r s cσ σ σ σ

=
= ⊗ + ⋅ ⊗ + ⊗ ⋅ + ⊗∑� � � �1 1 1 1       (4) 

where s�  and r�  are the vectors of Bloch and ,a b
jσ  representing the Pauli ma-

trices. Then, based on the definition of the QS inequality in equation (2) and us-
ing the matrix state xR  in equation (3), the QS inequality in the context of Pauli 
measurements is given by [47]  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2
1,2

2 3 2 3

3 2 3 3 2 3

3 2 3

1 log 1 1 log 1 1 log 1

11 log 1 1 log 1
2

1 11 log 1 1 log 1
2 2
12 1 log 1 2,

j j j j
j

r r

r r r s r s

r s r s r s r s

r s r s

β β β β

β β

β β β β

β β

=

 + + + − − − + + 

− − − + + + + + + +

+ + − − + − − + − − + − − +

+ − + − − + − ≤

∑

 (5) 

where 

( )1 23 142 R Rβ = +  

( )2 23 142 R Rβ = −  

3 11 44 22 33R R R Rβ = + − −  

11 22 33 44r R R R R= + − −  

11 22 33 44s R R R R= − + −  

with ijR  are the diagonal ( i j= ) and anti-diagonal ( i j≠ ) elements of the state 

xR . Additionally, an inequality has been developed to assess whether a bipartite 
quantum state is steerable [29]. Recently, Cavalcanti et al. proposed other para-
meters for the quantification of Quantum Steering (QS) [48]. Subsequently, a 
measure of steering was introduced, taking into account the maximal violation 
of the steering inequalities [49]. 

We introduce the Bell Clauser-Horen-Shimony-Holt (CHSH) to test the 
quantum nonlocality. As stated by the Horodecki criterion [10],  

( )2 maxi j i jBe µ µ<= +  with , 1,2,3i j = . The elements iµ  design the eigen-
values of tU =    with   is obtained from the coefficients [10] [50]  

( )Trij i jt Rσ σ= ⊗ .                      (6) 

Their eigenvalues are given by 

( ) ( ) ( )2 2 2
1 14 23 2 14 23 3 11 22 33 444 , 4 , .R R R R R R R Rµ µ µ= + = − = − − +  

It is obvious to note that 1µ  is greater than 2µ , and then the Bell inequality 
maximum violation is introduced by the formula [47]  

{ }1 2 1 1 2 2 1 32max , , , .Be Be Be Be Beµ µ µ µ= = + = +        (7) 

We utilize the entanglement of formation (EOF) developed by the Wootters 
[51] [52] to exhibit the entanglement in the qubits state  

( )
( )21

1 ,
2

R
R

 −
 = +
 
 


                     (8) 

where the function   is stated by 

( ) ( ) ( )2 2log 1 log 1 ,a a a a a= − − − −                 (9) 

and the concurrence by  

( ) { }1 2 3 4max 0, ,R α α α α= − − −              (10) 

where iα  define the eigenvalues of RR�  in decreasing order and R�  is given by 

https://doi.org/10.4236/jmp.2024.154021


A. Sabik 
 

 

DOI: 10.4236/jmp.2024.154021 466 Journal of Modern Physics 
 

( ) ( )*
y y y yR Rσ σ σ σ= ⊗ ⊗�                  (11) 

where *R  is the complex conjugate of R. The degree of QE varies from 0=  
for the case of separables states to 1=  for the case of Bell states.  

3. Asymptotic States and Numerical Results 

In this section, we present the physical model of asymptotic quantum states, 
considering a system that evolves according to Kossakowski-type quantum dy-
namical semigroups. Furthermore, we provide results describing the evolution of 
the quantifiers. 

Consider two qubits placed in an environment, analyzed using standard 
weak-coupling limit techniques [53]. The reduced irreversible quantum dynam-
ics of this system is characterized by a single parameter known as quantum dy-
namical semigroups, represented by ( ) ( )expt tLδ = . The behavior of this sys-
tem is described by the master equation: ( ) ( )t t L tρ ρ∂ =     where the genera-
tor L accounts for the influences of the external environment through the ele-
ments of the Kossakowski matrix [53] [54] [55]. Officially, we have 

( ) ( ) ( ) ( ) ( ){ }3
3 , 1

1, ‍ , ,
2 2ij i j j ii j

R t
L R t i R t M R t R t

t
ω

=

∂  = = − Σ + Σ Σ − Σ Σ        ∂  
∑ (12) 

where the parameter ω  designs the system frequency, :i i iσ σΣ = ⊗ + ⊗  ,   
is the 2 × 2 identity matrix, iσ  represent the Pauli matrices and the M matrix is 
given by 

2

1 0
1 0 , 1.

0 0 1
ij

i
M M i

γ
γ γ γ

 
 = = − ∈ ≤ 
 





                 (13) 

This illustrates that the semigroup obtained by using the main equation in-
cludes purely positive maps ( )tδ  for all 0t ≥ . Using ( )1

i iσ σ= ⊗   and 
( )2
i iσ σ= ⊗ , the fully dissipative contribution to the quantum state is 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, 1 , 1
3 2 1 , .

2
a b b a

ij i j j ii j a bD R t M R t R tσ σ σ σ
= =

 = −      
∑ ∑    (14) 

In this manner, there exist six Kraus operators ( )a
iσ  ( 1,2a = ; 1,2,3i = ) and 

6 × 6 Kossakowski matrix is written  

.
M M

K
M M
 

=  
 

                        (15) 

From open systems theory [53] [56], the coefficients ( )
ijM αβ  related to the ith 

Pauli matrix of the αth qubit and, respectively, the jth Pauli matrix of the βth qubit, 
, 1,2α β = ; 1,2,3j = , are defined through the use of Fourier transorms of the 

time-correlation functions with regard to the equilibrium state of the environ-
ment. 

Now, we are going to examine the temporal evolution of the two qubits de-
fined initially in the state  
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( )0 1 1 2 2 3 3 4 4 1 2 2 1 .R A D B C E F= + + + + +      (16) 

Here the parameters A, B, C and D are considered to be real constants with the 
normalization condition 1A B C D+ + + = , and that elements { }1 , 2 , 3 , 4  
form an orthonormal basis related to the basis { }00 , 01 , 10 , 11  by  

1 00 , 2 11 , 3 1 2 01 1 2 10 , 4 1 2 01 10 1 2 .= = = + = −   (17) 

Here 3  and 4  define the Bell states. 
The density matrix (16) can be represented as  

( )

0 0
0 2 2 2 2 0

0 .
0 2 2 2 2 0

0 0

A E
B C B C

R
B C B C

F D

 
 + − =
 − +
 
 

           (18) 

Equation (18) is entangled when ( )2 24A B E+ <  or ( )2 4AD B C< − . The 
both conditions cannot be met at the same time. The density operator (18) cov-
ers a large family of states for the system of qubits, including Bell states [57] [58], 
Werner states [59], Horodecki states [59], and so on.  

The temporal evolution of ( )R t  can be obtained as  

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 2 2 3 3 4 4

1 2 2 1 .

R t A t D t B t C t

E t F t

= + + +

+ +
    (19) 

where the time-dependent coefficients are given by 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )( ) ( )

2 22 2

2 22 2

2 2 22 2

22 2

1 3 2 1 1 3

1 1 2 1 1 1 3

1 3 1 2 1 1 3

1 2 1 1 1 3

A t K A B D H t

A D B H t

D t K A D B H t

A B D H t

γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ

+

−

+

−

= − + + + − − + +

+ − + − − + + + +

= + + − + − + + + +

− − + − − + − +

 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )
( )
( ) ( )
( ) ( )

2 2 2 2 2

3 32 2 2 2

1 3 2 1 1 3

1 1 1 2 1 1 3

exp 12

exp 12

B t K B A D H t

A D B H t

C t C

E t R t

F t F t

γ γ γ γ γ

γ γ γ γ γ γ

+

−

= − + + + − − + +

+ − + + − − − − +

=

= −

= −

 (20) 

with  

( )
( )

8 2

8 2

, e cosh 4 1 ,

e sinh 4 1 .

t

t

K A B D H t t

H t t

γ

γ

−
+

−
−

= + + = −

= −
          (21) 

It is acknowledged that, in certain situations, the coupling of the environment 
does not necessarily destroy coherence but can instead generate it. This pheno-
menon may also be observed in the current model due to the reduced dynamics 
described in equation (12). 

We now examine three classes of correlations in the asymptotic dynamics for 
different families of initial states. Based on equations (6), (8), and (9), we demon-
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strate the performance of Quantum Steerability (QS), Quantum Nonlocality, and 
Quantum Entanglement (QE) in qubit states with respect to the parameters of the 
model. The quantum correlations for diverse sets of initial states, assuming various 
values of the parameter γ, are depicted in Figures 1-3. Generally, it is observed that 
changes in the parameter γ significantly affect the quantum dynamics and the 
measures of quantum correlations for different states.The measures of the Bell 
nonlocality and Quantum Steering (QS) can exhibit similar behavior during their 
time evolution.It is interesting to note that by carefully selecting the parameter γ  
and the initial state of the two qubits, we can control and manipulate these quan-
tum measures in the asymptotic dynamics. When starting with an initial separable 
state of two qubits, we observe that the state of the qubits is unsteerable and does 
not demonstrate quantum nonlocality, despite the generation of entanglement, as 
illustrated in Figure 1. This indicates that both steering and Bell nonlocalities, 
starting from the initial separable state, are satisfied and accompanied by an entan-
gled state in the asymptotic dynamics, for different values of γ. In the case of an ini-
tial Horodecki state, the quantum measures firstly decrease from their maximal 
value, where the two qubits’ state is maximally steerable (for the case of 1a = ), 
quantum nonlocality with the Tsirelson bound and maximally entangled state, and 
thereafter the measures decrease with the time exhibiting the sudden death pheno-
menon of entanglement with the absence of QS and Bell nonlocality. We obtain 
that QS and Bell nonlocality disappear before the entanglement. Moreover, we ob-
serve that the change in the parameter γ does not largely affect the behaviour of the 
quantum measures during the dynamics, as seen in Figure 2. In the third example, 
specifically for an initial Werner state, we observe that the qubits’ state exhibits 
steerability and Bell nonlocality, indicating the presence of entanglement during the 
asymptotic dynamics. This observation is depicted in Figure 3 for the case of 

0.8a = , where both CHSH and steering inequalities are violated, confirming the 
entanglement of the qubits’ state. Conversely, for the case of 0.5a =  as presented 
in Figure 3, the qubits’ state remains entangled without violating steering and 
CHSH inequalities. Additionally, variations in the values of γ can enhance the cor-
relations throughout the dynamics. 
 

 

Figure 1. Asymptotic dynamics of the correlations for the initial state, ( ) ( )0 3 3 4 4 2R = + , is plotted as a function of the time t 
for 0.3γ =  and 0.8γ = . The axis 2y =  represents the case for which the QS inequality defined in equation (5) holds the value 2. 
The blue dash-dotted curve displays the variety of the QS inequality, red dashed curve represents the variation of the Bell inequality and 
green solid line shows the variety of the QE. The panel (a) is for 0.3γ =  and panel (b) is for 0.8γ = .      
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Figure 2. Asymptotic dynamics of the correlations for the initial Horodecki state, ( ) ( )0 3 3 1 1 1R a a= + − , is plotted as a 

function of the time t for the case of 0.8a =  (entangled state) and  1a =  (bell state). The blue dash-dotted curve displays the 
variation of the QS inequality, red dashed curve represents the variation of the Bell inequality and green solid line shows the va-
riety of the QE. The panels (a) and (b) are respectively for 0.3γ =  and 0.8γ =  with 1a =  (bell state). The panels (c) and (d) 
are respectively for 0.3γ =  and 0.8γ =  with 0.8a =  (entangled mixed state). The axis 2y =  represents the case for which 
the QS inequality defined in equation (5) holds the value 2. 
 

 

 
Figure 3. Asymptotic dynamics of the correlations for the initial Werner state, ( ) ( )0 3 3 1 1 1R a a= + − , is plotted as a function 

of the time t for the case of 0.8a =  and 0.5a = . The blue dash-dotted curve displays the variation of the QS inequality, red dashed 
curve represents the variation of the Bell inequality and green solid line shows the variety of the QE. The panels (a) and (b) are respec-
tively for 0.3γ =  and 0.8γ =  with 0.8a = . The panels (c) and (d) are respectively for 0.3γ =  and 0.8γ =  with 0.5a = . The 
axis 2y =  represents the case for which the QS inequality defined in equation (5) holds the value 2. 
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4. Conclusion 

We have investigated the dynamic behavior of quantum steering (QS), Bell non-
locality, and entanglement of formation in open quantum systems. Our study 
introduced a system comprising two qubits within the Kossakowski quantum 
dynamical semigroup framework. It was demonstrated that the quantum cha-
racteristics of the asymptotic states are influenced by the primary parameter of 
the model under consideration, and that manipulation of these characteristics can 
be achieved through careful selection of these parameters. Our analysis spanned 
various scenarios, encompassing Werner states, Bell states, and Horodecki states, 
wherein the asymptotic states exhibit steerability and entanglement, coupled 
with Bell nonlocality. Additionally, we demonstrated that the three measures of 
quantum correlations are capable of withstanding the effects of external envi-
ronments, thereby preserving their integrity over extended durations. 
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