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Abstract 
This work presents the “nth-Order Feature Adjoint Sensitivity Analysis Me-
thodology for Nonlinear Systems” (abbreviated as “nth-FASAM-N”), which 
will be shown to be the most efficient methodology for computing exact ex-
pressions of sensitivities, of any order, of model responses with respect to 
features of model parameters and, subsequently, with respect to the model’s 
uncertain parameters, boundaries, and internal interfaces. The unparalleled 
efficiency and accuracy of the nth-FASAM-N methodology stems from the 
maximal reduction of the number of adjoint computations (which are consi-
dered to be “large-scale” computations) for computing high-order sensitivi-
ties. When applying the nth-FASAM-N methodology to compute the second- 
and higher-order sensitivities, the number of large-scale computations is 
proportional to the number of “model features” as opposed to being propor-
tional to the number of model parameters (which are considerably more than 
the number of features).When a model has no “feature” functions of parame-
ters, but only comprises primary parameters, the nth-FASAM-N methodology 
becomes identical to the extant nth CASAM-N (“nth-Order Comprehensive 
Adjoint Sensitivity Analysis Methodology for Nonlinear Systems”) metho-
dology. Both the nth-FASAM-N and the nth-CASAM-N methodologies are 
formulated in linearly increasing higher-dimensional Hilbert spaces as op-
posed to exponentially increasing parameter-dimensional spaces thus over-
coming the curse of dimensionality in sensitivity analysis of nonlinear sys-
tems. Both the nth-FASAM-N and the nth-CASAM-N are incomparably more 
efficient and more accurate than any other methods (statistical, finite differ-
ences, etc.) for computing exact expressions of response sensitivities of any 
order with respect to the model’s features and/or primary uncertain parame-
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1. Introduction 

The computational model of a physical system comprises the following funda-
mental conceptual components: (a) a well-posed system of equations that relate 
the system’s independent variables and parameters to the system’s state (i.e., de-
pendent) variables; (b) nominal or mean values for the system parameters, along 
with information regarding the probability distributions, moments thereof, in-
equality and/or equality constraints that define the range of variations of the 
system’s parameters; (c) one or several quantities, customarily referred to as sys-
tem responses (or objective functions, or indices of performance), which are 
computed using the mathematical model. Since the physical processes them-
selves are seldom known precisely and since most of the model’s parameters 
stem from experimental procedures that are also subject to imprecisions and/or 
uncertainties, the results predicted by these models are also imprecise, being af-
fected by the uncertainties underlying the respective model. The analysis of the 
accuracy of responses computed by models relies fundamentally on the func-
tional derivatives (also called “sensitivities”) of the respective responses with re-
spect to the imprecisely known parameters underlying the computational model. 
Such sensitivities are needed for many purposes, including: (i) understanding 
the model by ranking the importance of the various parameters; (ii) performing 
“reduced-order modeling” by eliminating unimportant parameters and/or 
processes; (iii) quantifying the uncertainties induced in a model response due to 
model parameter uncertainties; (iv) performing “model validation,” by compar-
ing computations to experiments to address the question “does the model 
represent reality?” (v) prioritizing improvements in the model; (vi) performing 
data assimilation and model calibration as part of forward “predictive modeling” 
to obtain best-estimate predicted results with reduced predicted uncertainties; 
(vii) performing inverse “predictive modeling”; (viii) designing and optimizing 
the system. 

Response sensitivities are computed by using either deterministic or statistical 
methods. The “statistical methods” construct an approximate response distribu-
tion (often called “response surface”) in the parameters space by performing 
many “forward” computations using the model with altered parameter values, 
and subsequently use scatter plots, regression, rank transformation, correlations, 
and/or so-called “partial correlation analysis,” in order to identify approximate 
expectation values, variances and covariances for the responses. These statistical 
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quantities are subsequently used to construct quantities that play the role of 
(approximate) first-order response sensitivities. Thus, statistical methods com-
mence with “uncertainty analysis” and subsequently attempt an approximate 
“sensitivity analysis” of the approximately computed model response (called a 
“response surface”) in the phase-space of the parameters under consideration. 
The currently popular statistical methods for uncertainty and sensitivity analysis 
are broadly categorized as variance-based methods (see, e.g., [1] [2] [3]), sam-
pling-based methods (see, e.g., [4] [5]), or Bayesian methods (see, e.g., [6]). 
Various variants of the statistical methods for uncertainty and sensitivity analy-
sis are reviewed in the book edited by Saltarelli et al. [7]. The conclusions that 
emerge from examining these statistical methods are as follows: 

1) The main advantage of using statistical methods for uncertainty and sensi-
tivity analysis is that they are conceptually easy to implement.  

2) Even first-order sensitivities cannot be computed exactly.  
3) Statistical methods are subject to the curse of dimensionality and have not 

been developed for producing higher-order sensitivities.  
4) Since the response sensitivities and parameter uncertainties are amalga-

mated, inherently and inseparably, within the results produced by statistical 
methods, improvements in parameter uncertainties cannot be directly propa-
gated to improve response uncertainties; rather, the entire set of simulations and 
statistical post-processing must be repeated anew.  

5) A “fool-proof” statistical method for analyzing correctly models involving 
highly correlated parameters does not seem to exist currently so particular care 
must be used when interpreting regression results obtained using such models. 

The simplest deterministic method for computing response sensitivities is to 
use finite-difference schemes in conjunction with re-computations using the 
model with “judiciously chosen” altered parameter values. Evidently, such 
methods can at best compute approximate values of a very limited number of 
sensitivities. The earliest deterministic methods that could compute more ex-
actly the values of first-order sensitivities include the “Green’s function me-
thod” [8], the “forward sensitivity analysis methodology” [9], and the “direct 
method” [10], which rely on analytical or numerical differentiation of the 
computational model under investigation to compute local response sensitivi-
ties exactly. However, for a computational model comprising many parame-
ters, the conventional deterministic methods become impractical for compu-
ting sensitivities higher than first-order because they are subject to the “curse 
of dimensionality,” a term coined by Belmann [11] to describe phenomena in 
which the number of computations increases exponentially in the respective 
phase-space. In the particular case of sensitivity analysis using conventional 
deterministic methods, the number of large-scale computations increases ex-
ponentially in the phase-space of the model parameter as the order of sensitiv-
ities increases. 

It is known that the “adjoint method of sensitivity analysis” has been the most 
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efficient method for computing exactly first-order sensitivities, since it requires a 
single large-scale (adjoint) computation for computing all of the first-order sen-
sitivities, regardless of the number of model parameters. The idea underlying the 
computation of response sensitivities with respect to model parameters using 
adjoint operators was first used by Wigner [12] to analyze first-order perturba-
tions in nuclear reactor physics and shielding models based on the linear neu-
tron transport (or diffusion) equation, as subsequently described in textbooks on 
these subjects (see, e.g., [13] [14] [15] [16] [17]). Cacuci [18] is given credit (see, 
e.g., [19] [20]) for having conceived the rigorous mathematical framework of the 
“1st-order adjoint sensitivity analysis methodology” for generic large-scale non-
linear (as opposed to linearized) systems involving generic operator responses, 
and for having introduced these principles to the earth, atmospheric and other 
sciences.  

Cacuci [21] [22] has extended his 1st-order adjoint sensitivity analysis me-
thodology to enable the comprehensive computation of 2nd-order sensitivities 
of model responses to model parameters (including imprecisely known domain 
boundaries and interfaces) for large-scale linear and nonlinear systems. The un-
paralleled efficiency of the 2nd-order adjoint sensitivity analysis methodology 
for linear systems [21] was demonstrated by Cacuci and Fang [23] by applying 
this methodology to compute exactly the 21,976 first-order sensitivities and 
482,944,576 second-order sensitivities (of which 241,483,276 are distinct from 
each other) for an OECD/NEA reactor physics benchmark [24]. This benchmark 
is modeled by the neutron transport equation involving 21,976 uncertain para-
meters, the solving of which is representative of “large-scale computations.” The 
neutron transport equation was solved using the software package PARTISN 
[25] in conjunction with the MENDF71X cross section library [26], which com-
prises 618-group cross sections based on ENDF/B-VII.1 nuclear data [27]. The 
spontaneous fission source has been computed using the code SOURCES4C 
[28]. 

Contrary to the widely held belief that second- and higher-order sensitivities 
are negligible for reactor physics systems, Cacuci and Fang [23] found that many 
2nd-order sensitivities of the OECD benchmark’s response to the benchmark’s 
uncertain parameters were much larger than the largest 1st-order ones, which 
motivated the investigation of the largest 3rd-order sensitivities, many of which 
were found to be even larger than the 2nd-order ones. This finding has moti-
vated the development of the mathematical framework for determining and 
computing the 4th-order sensitivities, many of which were found to be larger 
than the 3rd-order ones. This sequence of findings has motivated the develop-
ment by Cacuci [29] of the “nth-Order Comprehensive Adjoint Sensitivity 
Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems” 
(which is abbreviated as “nth-CASAM-L”). The “nth-CASAM-L” mathematical 
framework was developed specifically for linear systems because important 
model responses produced by such systems are various Lagrangian functionals 
such as eigenvalues or “CONTRIBUTONS” [30], which depend simultaneously 
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on both the forward and adjoint state functions governing the respective linear 
system. Such responses can occur only for linear systems because responses in 
nonlinear systems can only depend on the system’s forward state functions, 
since nonlinear operators do not admit adjoint operators. The nth-CASAM-L 
overcomes the curse of dimensionality in sensitivity analysis of linear systems, 
enabling the efficient computation of exactly-determined expressions of arbitra-
rily high-order sensitivities of a generic system response (that can depend on 
both the forward and adjoint state functions) with respect to all of the parame-
ters that characterize the physical system.  

In parallel with developing the nth-CASAM-L, Cacuci [31] has also developed 
the nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Non-
linear Systems (nth-CASAM-N). Just like the nth-CASAM-L, the nth-CASAM-N 
is also formulated in linearly increasing higher-dimensional Hilbert spaces (as 
opposed to exponentially increasing parameter-dimensional spaces), thus over-
coming the curse of dimensionality in sensitivity analysis of nonlinear systems, 
enabling the most efficient computation of exactly-determined expressions of ar-
bitrarily high-order sensitivities of generic nonlinear system responses with re-
spect to model parameters, uncertain boundaries and internal interfaces in the 
model’s phase-space. 

Recently, Cacuci [32] has introduced the “Second-Order Function/Feature 
Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (2nd-FASAM- 
N), which enables a considerable reduction (by comparison to the 2nd-CASAM-N) 
of the number of large-scale computations needed to compute the second-order 
sensitivities of a model response with respect to the model parameters. The con-
struction of the 2nd-FASAM-N is based on the same principles as those under-
lying the construction of the 2nd-CASAM-N. This fact indicates that the prin-
ciples which enabled the construction of the nth-CASAM-N methodology [31] 
could also be used to generalize the 2nd-FASAM-N to enable the most efficient 
computation of the exact expressions of arbitrarily-high (“nth”) order sensitivi-
ties of model responses with respect to features/functions of model parameters. 
This is indeed the case, as will be shown in Section 2 of this work, which presents 
the construction of the general mathematical framework underlying the 
nth-FASAM-N. This construction uses “mathematical induction” mirroring the 
construction of the nth-CASAM-N methodology [31]. Section 3 concludes this 
work by discussing the significance of the nth-CASAM-N and preparing the 
groundwork for a paradigm illustrative application to the Nordheim-Fuchs 
reactor dynamics/safety model [33] [34] to be presented in the accompanying 
“Part 2” [35]. 

2. The nth-Order Feature/Functions Adjoint Sensitivity  
Analysis Methodology for Nonlinear Systems  
(nth-FASAM-N) Methodology 

The generic mathematical model of a nonlinear system which comprises uncer-
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tain (i.e., imprecisely known) model parameters, domain boundaries and inter-
faces, is the same as was introduced by Cacuci [31] and is reproduced in Appen-
dix A, for convenient referencing. 

The validity of the mathematical methodology underlying the nth-FASAM-N 
methodology will be established in this Section by using the “proof by mathe-
matical induction” comprising the usual steps, as follows: 

1) Surmise the general pattern underlying the nth-FASAM-N methodology 
for an arbitrarily high-order denoted as “n.” It is expected that the general pat-
tern underlying the nth-FASAM-N can be surmised based on the expected simi-
larities with the general pattern underlying the nth-CASAM-N [31]. 

2) Prove that the general pattern underlying the nth-FASAM-N is valid for the 
lowest values of n, i.e., n = 1, which should reduce to the mathematical frame-
work underlying the 1st-FASAM-N, which is reproduced from Cacuci [32] in 
Appendix B. 

3) Assuming that the pattern underlying the nth-FASAM-N is valid for an ar-
bitrarily high-order, n, prove that this pattern is also valid for n+1, i.e., for the 
(n+1)th-FASAM-N. 

2.1. Establishing the Mathematical Framework of the  
nth-Order Feature Adjoint Sensitivity Analysis  
Methodology for Nonlinear Systems  
(nth-FASAM-N) 

Comparing the mathematical framework of the 1st-FASAM-N [32] to the 
framework of the 1st-CASAM-N [31] suggests that the component “features” 
( ) , 1, ,if i TF=α � , of the vector-valued “feature function”  
( ) ( ) ( ) †

1 , , TFf f  f α α α� � , where TF denotes the total number of the compo-
nents, play within the 1st-FASAM-N the same role as played by the components 

, 1, ,j j TPα = � , of the “vector of primary model parameters” ( )†
1, , TPα αα � �  

within the framework of the 1st-CASAM-N. It is important to underscore at the 
outset that the total number of model parameters is by definition much larger 
than the total number of components of the feature function ( )f α , i.e., 
TP TF� ; TF coincides with TP if the mathematical/computational model un-
der consideration possesses no “features.” 

An examination of the pattern underlying the nth-CASAM-N methodology [31] 
indicates that the nth-order sensitivity of the model’s response ( ) ( );R   u x f α  
with respect to the components 

1
, ,

nj jf f�  of the “feature” function  
( ) ( ) ( )

1

†
, ,

nj jf f  f α α α� � , for each 1, , 1, ,nj j TF=� �  is expected to have 
the functional form  

( ) ( ) ( ) ( ) ( ) ( )
11; ; ; ; ; ;

n

n n n n
n j jR j j R f f  ∂ ∂ ∂   U A f α u x f α� � � . It can also be 

surmised that the nth-order sensitivity ( ) ( ) ( )( )
1; ; ; ; ;n n n

nR j j 
 U A f α�  stems 

from the total first-order G-differential of each of the (n-1)th-order sensitivities, 
each of which is expected to have the following expression for  

1 1, , 1, ,nj j TF− =� � : 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

( )

( )

1 1

1

1

1 1 1 1
1 1

1 1 1
1 1 1

; ; ; ; ; ;

; ; ; ; ; d d .

n

TI

TI

n n n n
n j j

n n n
n TI

R j j R

S j j x x
ω ω

λ λ

α α
−

− − − −
−

− − −
−

  ≡ ∂ ∂ ∂   

 
 ∫ ∫

α α

α α

U A f α u x f α

U A f α

� �

� � � �
  (1) 

Analogous with the pattern underlying the nth-CASAM-Nmethodology [31], it 
is surmised that the total first-order G-differential of the (n-1)th-order sensitivity 

( ) ( ) ( ) ( )1 1 1
1 1; ; ; ; ;n n n

nR j j− − −
−

 
 U A f α�  with respect to the feature-function 

( )f α  is expected to have the following expression: 
( ) ( ){ }

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }

0

0

1 1 ( 1)
1 1

1 1 1 1 1
1 1

0

1 1 1
1 1

1

1 1 1 1 1
1 1

; ; ; ; ;

d ; ; ; ; ;
d

; ; ; ; ;

; ; ; ; ; ; ; ,

n
n n

n n n
n

n n n n n
n

n n n
TF n

j
j j

n n n n n
n

ind

R j j

R j j

R j j
f

f

R j j

ε

δ

δ ε εδ εδ
ε

δ

δ δ

− − −
−

− − − − −
−

=

− − −
−

=

− − − − −
−

 
 

  + + +   

  ∂  =  ∂  

 +  

∑

α

α

U A f

U V A A f f

U A f

U A f V A

�

� �

�

�

  (2) 

where the quantity ( ) ( ) ( ) ( ) ( ){ }1 1 1 1 1
1 1; ; ; ; ; ; ;n n n n n

n
ind

R j jδ δ− − − − −
−

 
 U A f V A�  denotes  

the so-called “indirect-effect term” which is defined as follows:  
( ) ( ) ( ) ( ) ( ){ }

( )

( ) ( )
( ) ( )

( )

( )
( ) ( )

( )

( )

( )

( )1

01

1 1 1 1 1
1 1

1 1
1 12 2

1( 1)1

; ; ; ; ; ; ;

2 ; 2 ; d d .
TI

TI

n n n n n
n

ind

n n
n nn n

TInn

R j j

S S x x
ω ω

λ λ

δ δ

δ

− − − − −
−

− −
− −− −

−−

 
 

 ∂ ∂ + 
∂∂  

∫ ∫
α α

α α α

U A f V A

V x A x
A xU x

�

� � �

 
(3) 

The vectors ( ) ( ) ( ) ( )1 12 2
3 1 3 12 ; ; ; ; 2 ; ; ; ;n nn n

n nj j j jδ− −− −
− −V x U x� � �  and  

( ) ( )1 2
2 12 ; ; ; ;n n

nj jδ − −
−A x�  are the solution of the following nth-Level Variation-

al Sensitivity System (nth-LVSS), which is obtained by concatenating the 
(n-1)th-LVSS together with the G-differentiated (n-1)th-Level Adjoint Sensitivity 
System, for 1 1, , 1, ,nj j TF− =� � : 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

0

0

1 1 1 1
2 1 2 1

1 1
2 1

2 2 ; 2 ; ; ; ; ; 2 ; ; ; ;

2 ; 2 ; ; ; ; ; ; , ,

n n nn n n n
n n

n nn n
V n x

j j j j

j j δ

− − − −
− −

− −
−

 × 

 = ∈Ω 

α

α

VM U x f V x

Q U x f f x

� �

�
  (4) 

( ) ( ) ( ) ( ) ( ){ } ( )0

1 1 1 1 02 ; 2 ; ; 2 ; ; ; 2 ; ,n n nn n n n
V xδ− − − −   = ∈∂Ω   α

B U x V x f f x α0   (5) 

The various matrices and vectors appearing in Equations (4) and (5) are de-
fined as follows: 

1) The variational matrix ( ) ( ) ( )1 1 1
2 12 2 ; 2 ; ; ; ; ;n nn n n

nj j− − −
−

 × VM U x f�  com-
prises ( )1 12 2n n− −×  block-matrices, each comprising TD2 components/elements, 
defined as follows: 

( )
( )

( ) ( ) ( ) ( )

1 2 2 2 2

1 1

2 2 2 2
21 22

2 2 ; 2 2
2 2 ; ; .

2 2 ; 2 2 ;

n n n n n
n n n

n nn n n n

− − − − −

− −

− − − −

    × ×     ×   × × 

VM x
VM x f

VM x VM x
�

0
 (6) 
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The matrix ( ) ( ) ( )1 1 1
2 12 2 ; 2 ; ; ; ; ;n nn n n

nj j− − −
−

 × VM U x f�  comprises a total 
of ( )1 1 22 2n n TD− −×  components/elements, as indicated by its first argument. 
The submatrix ( )1 2 22 2 ;n n n− − − × VM x  is defined recursively, while the re-
maining submatrices are defined as follows: 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ){ }

( ) ( )

2 2
21 2 1

1 22 2
2 1 3 1

1 2
3 1

1 12 2 2 ( 1) 2
2 1

1 2
3 1

2 2 ; ; ; ;

2 ; ; ; ; 2 ; ; ; ; ;

2 ; ; ; ;

2 2 ; 2 ; ; 2 ; ; ; ;
;

2 ; ; ; ;

n n n
n

n nn n
A n n

n n
n

n nn n n n n
n

n n
n

j j

j j j j

j j

j j

j j

− −
−

− −− −
− −

− −
−

− −− − − − −
−

− −
−

×

 ∂  −
∂

 ∂ × +
∂

�

� �
�

�

�

�

VM x

Q U x f

U x

AM U x f A x

U x

  (7) 

( ) ( ) ( ) ( ) ( )1 12 2 2 2 2
22 3 12 2 ; 2 2 ; 2 ; ; ; ; ;n n nn n n n n

nj j− −− − − − −
−

 × × VM x AM U x f� �   (8) 

2) The vector ( ) ( )1
2 12 ; ; ; ;n n

nj j−
−V x�  is defined recursively, below, and 

comprises 12n−  blocks of TD-dimensional vectors [thus comprising a total of 

( )12n TD− ×  components/elements]; this fact is indicated by the first argument 
of each of these quantities. 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
2 1

1 2
3 11

2 1 1 2
2 1

1 1 2 2
1 1

†1 1 2
2 1 2 1

2 ; ; ; ;

2 ; ; ; ;
2 ; ; ; ;

2 ; ; ; ;

, , 1; ; , 2; ; , ,

1; ; ; ; , , 2 ; ; ; ; ;

n n
n

n n
nn n

n n n
n

n n n
n n

j j

j j
j j

j j

j j

j j j j

δ
δ

δ δ δ

δ δ

−
−

− −
−−

− − −
−

− − −
− −

 
 =
 
 

= 




V x

V x
U x

A x

v x a x a x a x

a x a x

�

�
� �

�

�

� � �

        (9) 

3) The vector ( ) ( )1
2 12 ; ; ; ;n n

nj j−
−U x�  has the same structure as the vector 

( ) ( )1
2 12 ; ; ; ;n n

nj j−
−V x� , comprising 12n−  blocks of TD-dimensional vectors, as 

defined below.2 

( ) ( )
( ) ( )
( ) ( )

1 2
3 11

2 1 1 2
2 1

2 ; ; ; ;
2 ; ; ; ; ;

2 ; ; ; ;

n n
nn n

n n n
n

j j
j j

j j

− −
−−

− − −
−

 
 
 
 

U x
U x

A x

�
� �

�
        (10) 

4) The vector ( ) ( ) ( )1 1
2 12 ; 2 ; ; ; ; ; ;n nn n

V nj j δ− −
−

 
 Q U x f f�  also comprises 12n−  

blocks of TD-dimensional vectors, as defined recursively below.  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

2 12 2

1 1
1 2 1 2 1

2

†
1 1 1

2 1 2 1

2 ; 2 ; ; ;
2 ; ; 2 ; ; ; ; ; ;

2 ; 2 ; ; ;

1; 2 ; ; ; ; ; ; , , 2 ; 2 ; ; ; ; ; ; ;

n nn n
Vn nn n

V n n nn n

n n n nn n n
V n V n

j j j

j j j j

δ
δ

δ

δ δ

− −− −

− −
−

− −

− − −
− −

  
   

       

   
   

Q U x f f
Q U x f f

Q U x f f

q U x f f q U x f f

� �

� � � �

 

(11) 

( ) ( ) ( ) ( ) ( ) ( )2 1
1

1

; ; ; ; ; ; ; ; ;

1, ;2 ;

n
n

TP
n n n n

V V n j
j

n

i i j j f

i

δ δ−
=

−

   ≡   

=

∑ �

�

q U x f f s U x f
       (12) 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }

2 1
2 2 1

1 12
1

1 1 12 2 2 2

2 ; 2 ; ; ; ; ; ;

2 ; ; ;

2 2 ; 2 ; ; 2 ;
;

n nn n
n

n nn
A

n n nn n n n

j j

j

δ− −
−

− −−

− − −− − − −

 
 

 ∂   ∂
∂

 ∂ × − ∂
∂

�

�

Q U x f f

Q U x f
f

f

AM U x f A x
f

f

      (13) 

5) The vector block-vector 12n−  0  comprises 12n−  components, each com-
ponent being a TD-dimensional vector having identically zero components. 

6) The boundary terms are represented by the block-vector  
( ) ( ) ( ) ( ) ( )1 1 1

2 1 2 12 ; 2 ; ; ; ; ; 2 ; ; ; ; ; ;n n nn n n
V n nj j j j δ− − −

− −
 
 B U x V x f f� � , which is de-

fined recursively as shown below. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1
2 1 2 1

1 1 12 2 2
3 1 3 1

1 2 1 1
2 1 2 1

2 ; 2 ; ; ; ; ; 2 ; ; ; ; ; ;

2 ; 2 ; ; ; ; ; 2 ; ; ; ; ; ;
.

2 ; 2 ; ; ; ; ; 2 ; ; ; ; ; ;

n n nn n n
V n n

n n nn n n
V n n

n n nn n n
A n n

j j j j

j j j j

j j j j

δ

δ

δ δ

− − −
− −

− − −− − −
− −

− − − −
− −

 
 

  
  

     

� �

� �
�

� �

B U x V x f f

B U x V x f f

B U x V x f f

 (14) 

The need for solving the following nth-Level Variational Sensitivity System 
(nth-LVSS) defined by Equations (4) and (5) is circumvented by deriving an al-
ternative expression for the indirect-effect term defined in Equation (3), in 
which the function ( ) ( )1

2 12 ; ; ; ;n n
nj j−
−V x�  is replaced by a nth-level adjoint 

function which will be independent of parameter variations, and which will be 
denoted as  

( ) ( ) ( ) ( ) ( ) ( ) ( )
†1 1

1 1 1 1 1 12 ; ; ; ; 1; ; ; ; , , 2 ; ; ; ;n n nn n
n n n n xj j j j j j− −
− − −

  ∈ Ω A x a x a x� � � � � H . 
The elements of the Hilbert space ( )n xΩH  are surmised to be block-vectors of 
the form  

( ) ( ) ( ) ( ) ( ) †1 ( ) 1
1 1 1 1 1 12 ; ; ; ; 1; ; ; ; , , 2 ; ; ; ;n nn n n

n n nj j j j j j− −
− − −

 
 x ψ x ψ x� � � � �Ψ , com-

prising as elements 12n−  TD-dimensional vectors of the form  
( ) ( ) ( ) ( ) ( ) ( ) ( )

†

1 1; ; , , ;n n n
TD xi i iψ ψ  ∈ Ω ψ x x x� � H , 1, ,2ni = � . The inner product  

of two vectors ( ) ( )1
1 12 ; ; ; ;n n

nj j−
− x�Ψ  and ( ) ( )1

1 12 ; ; ; ;n n
nj j−
− x�Φ  in the  

Hilbert space ( )n xΩH  is denoted as ( ) ( ) ( ) ( )1 12 ; , 2 ;n nn n

n

− −x xΨ Φ  and de-
fined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
12

1 1

11
2 ; , 2 ; ; , ;

n
n n n nn n

n i
i i

−

− −

=
∑x x ψ x φ x�Ψ Φ .        (15) 

The nth-Level Adjoint Sensitivity System (nth-LASS) for the nth-level adjoint 
function ( ) ( )1

1 12 ; ; ; ;n n
nj j−
−A x�  is obtained by using the inner product defined 

in Equation (15), as follows: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

0 0

0

1 1

2

1 1 1 1 1

2 ; , 2 ; ; ; ;

2 ; , 2 2 ; 2 ; ; 2 ; ,

x

n n n n n nn n

n n n nn n n n n

n

P− −

∂Ω

− − − − −

  =    

 + × 

α α

α

A x VM x U A V α

V x AM U x α A x

  (16) 
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where the quantity ( ) ( ) ( ) ( )( )
0

; ; ;
x

n n n nP
∂Ω

     α
U A V α  denotes the corresponding  

bilinear concomitant on the domain’s boundary, evaluated at the nominal values 
for the parameters and respective state functions. 

In terms of the nth-Level adjoint function ( ) ( )1
1 12 ; ; ; ;n n

nj j−
−A x� , the indi-

rect-effect term defined by Equation (3) will have the following expression:  
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ){ }

0

0

1 1 1 1 1
1 1

1 1 1
1 1 2 1

; ; ; ; ; ; ;

ˆ ; ;

2 ; ; ; ; , 2 ; 2 ; ; ; ; ; ; .

x

n n n n n
n

ind

n n n

n n nn n n
n V n

n

R j j

P

j j j j

δ δ

δ

δ

− − − − −
−

∂Ω

− − −
− −

 
 

  = −   

 +  

α

α

U A α V A

U A α

A x Q U x α α

�

� �

(17) 

where ( ) ( )1
1 12 ; ; ; ;n n

nj j−
−A x�  is the solution of the following nth-Level Adjoint 

Sensitivity System (nth-LASS): 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 1
1 1

1 1
1 1 2 1

2 2 ; 2 ; ; 2 ; ; ; ;

2 ; ; ; ; 2 ; ; ; ; ; ,

n n nn n n n
n

n nn n
A n n

j j

j j j j

− − − −
−

− −
− −

 × 
 =  

AM U x α A x

Q U x α

�

� �
       (18) 

subject to boundary conditions represented in operator form as follows:  
( ) ( ) ( ) ( ) ( ){ }

( )
0

1 1 1 1
2 1 1 1

0
1 2 1 1 2

2 ; 2 ; ; ; ; ; 2 ; ; ; ; ; 2 ,

; 1, , ; 1, , ; ; 1, , .

n n nn n n n
A n n

x n n

j j j j

j TP j j j j

− − − −
− −

− −

   =   

∈∂Ω = = =
α

B U x A x α

x α

� �

� � � �

0
(19) 

In Equation (17), the quantity ( ) ( ) ( )( )
0

ˆ ; ;
x

n n nP δ
∂Ω

     α
U A f  denotes residual  

boundary terms which may have not vanished automatically after having used 
the boundary conditions provided in Equations (5) and (19) to eliminate from 
Equation (17) all unknown values of the nth-level variational function  

( ) ( )1
2 12 ; ; ; ;n n

nj j−
−V x� .  

The quantities which appear in the definition of the nth-LASS represented by 
Equations (18) and (19), are defined as follows:  

( ) ( ) ( )
( ) ( )( )

( ) ( ){ } ( ) ( ){ }
( ) ( ){ }

1 1 1
2 1

*
1 1

† †* *1 2 2 2 2
21

†*2 2 2 2
22

2 2 ; 2 ; ; ; ; ;

2 2 ; ;

2 2 2 2
,

2 2 2 2

n nn n n
n

n nn n

n nn n n n

nn n n n

j j− − −
−

− −

− − − − −

− − − −

 × 

 × 
    × ×     =
 

  × ×     

AM U x f

VM U f

VM VM

VM

�

�

0

       (20) 

( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) }

1 1 1
1 1 1 1

†
1 1

1 1 1 1 2

2 ; ; ; ; 2 ; ; 1; ;...; ; 2 ; ; ,

, 2 ; ; ; ; 2 ; ; , 1, , ; ; 1, , ;

n n n nn n n
A n A n

n nn n
A n n n

j j j j

j j j TF j j

− − −
− −

− −
− − −

   
   

  = = 

Q U x f q U x f

q U x f

� �

� � � � �
(21) 

( ) ( ) ( ) ( ) ( ) ( )1
1 1 1 11; ; ; ; ; ; ; ; ; ;n n n n

A n nj j S j j−
− −

   ∂ ∂   q U x f U f u x� � �    (22) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 1 12; ; ; ; ; ; ; ; ; ;n n n n

A n nj j S j j−
− −

   ∂ ∂   q U x f U f a x� � �   (23) 
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( ) ( ) ( )
( ) ( )

( ) ( )

1 1

1
1 1

1
1

for 3: 2 ; ; ; ; ;

; ; ; ;
; 1, , 2; 1, ,2 .

; ; ; ;

n nk
A n

n n
n k

k
k

n i j j

S j j
k n i

i j j

−

−
−

+

 ≥ + 
 ∂   = − =

∂

q U x f

U f

a x

�

�
� � �

�

       (24) 

The final expression of the total differential expressed by Equation (17) is ob-
tained by inserting in Equation (2) the expression for the indirect-effect term 
obtained in Equation (17), which yields the following expression for the 
nth-Order sensitivities ( ) ( ) ( )

1

( )
1; ; ; ; ; ;

n

n n n n
n j jR j j R f f  ≡ ∂ ∂ ∂   U A f u x f� �  

of the response ( );R   u x α  with respect to the parameters 
1
, ,

nj jα α� , for 

1 1 21, , ; ; 1, ,n nj TF j j− −= =� � � : 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

( )
1

1 1 1
1 1

2

1 1 1
11

1 1
1 1

; ; ; ; ; ;

ˆ ; ;; ; ; ; ;

; ; ; ; , ; ; ; ; ; .

... ; ; ; 2 ; ; 2 ; ; d d

n

x

n n

n

n n n n
n j j

n n nn n n
n

j j

n n n
n V n

i

n n nn n
n TI

R j j R f f

PR j j

f f

i j j i j j

S j j x x
λ

δ

−

− − −
− ∂Ω

−
=

− −

  ≡ ∂ ∂ ∂   
 ∂ ∂   = −

∂ ∂

 +  

 
 

∑

U A f u x f

U A fU x A x f

a x s U x f

U x A x f

� �

�

� �

� � �
( )

( )

( )

( )1

1

.
TI

TI

ω ω

λ
∫ ∫
α α

α α

 (25) 

2.2. The Particular Form of the nth-FASAM-N Framework for n = 1 

Setting n = 1 into the mathematical framework of the nth-FASAM-N conjectured 
in Section 2.1 above yields the following expressions for the particular case n = 1:  

i) Expression of the model response: 
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

( )

( )1

1

0 0

1

; ;

; ; ; d d .
TI

TI

TI

R R

S x x
ω ω

λ λ

  ≡    

  ∫ ∫� � �
α α

α α

U f u x f α

u x g α h α x
              (26) 

ii) Expression of the 1st-order response sensitivities to the components of the 
feature function of model parameters, for 1 1, ,j TF= � : 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

1

1

1 1 10 0
1

1 1 1

1 1 1

1

;
; 2 ; ; 2 ; ;

ˆ ; ;
, ; .x

j

V
j

R
R j

f

P

f

δ
∂Ω

∂     =  ∂

 ∂   = − +  ∂

u x f α
U x A x f α

U A f
a x s U x α

       (27) 

The various quantities which appear in Equation (27) take on the following 
particular forms for n = 1: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1

1 1 1 10 0
12 ; ; 2 ; ; ; ;

;

V

j

j

f

≡

∂ −  
∂

�

�

U x u x A x a x s u α

Q α N u α           (28) 

The 1st-level adjoint sensitivity function ( ) ( ) ( ) ( )1 102 ; ≡A x a x  is the solution 
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of the following 1st-LASS obtained by setting n=1 in Equations (18) and (19):  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

0

0

1 1 10 0 0 0

1 10 0

2 2 ; 2 ; ; 2 ;

2 ; 2 ; ; ; , ,A xδ

 × 

 = ∈Ω 

α

α

AM U x f A x

Q U x α f x
              (29) 

( ) ( ) ( ) ( ) ( ){ }
( )

0

1 1 10 0 0

0

2 ; 2 ; ; 2 ; ; ; ,

.

A

x

δ  = 

∈∂Ω

0
α

B U x V x α f

x α
          (30) 

where: 

( ) ( ) ( ) ( ) ( )
*1 1 10 0 02 2 ; 2 ; ; ; ;   × ≡   AM U x f N u f            (31) 

( ) ( ) ( ) ( ) ( ) ( ){ } 0
1 1 10 02 ; 2 ; ; ; ; ; ;A A Sδ  ≡ ∂ ∂    α

Q U x α f q u x f u f u�       (32) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 10 0 02 ; 2 ; ; 2 ; ; ; ; ; .V Aδ  ≡ B U x V x f f b u a f          (33) 

Comparing the expressions obtained above in Equations (26)-(33) with the 
expressions obtained independently, from first principles, in Appendix B reveals 
that the corresponding expressions are identical to each other, which proves the 
correctness of the conjectured general expressions obtained within the 
nth-FASAM-N methodology for the particular case n = 1. 

2.3. Derivation of the Mathematical Framework of the  
(n+1)th-FASAM-N  

It will be assumed that, for each 1, , 1, ,nj j TF=� � , the 1st-order total 
G-differential of the nth-order sensitivities ( ) ( ) ( )

1; ; ; ; ;n n n
nR j j 

 U A f�  will ex-
ist and will be linear in the variations  

( ) ( ) ( ) ( )11 1
2 1 2 12 ; ; ; ; 2 ; ; ; ;n nn n

n nj j j jδ −− −
− −V x U x� � �  and  

( ) ( )1
1 12 ; ; ; ;n n

nj jδ −
−A x�  in a neighborhood around the nominal values of the 

“feature functions,” the parameters, and the respective state functions. By defi-
nition, the 1st-order total G-differential of ( ) ( ) ( )

1; ; ; ; ;n n n
nR j j 

 U A f�  is given 
by the following expression: 

( ) ( ) ( ){ }
( ){ ( ) ( ) ( ) ( ) }

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

0

1
1 1 0

1

1
0

1

1

; ; ; ; ;

d ; ; ; ; ;
d

; ; ;

; ; ; ; ; ; ; ,

n
n n

n n n
n

n n n n n
n

n n n
TP

j
j j

n n n n n
n

ind

R j j

R j j

R
f

f

R j j

ε

δ

ε εδ εδ
ε

δ

δ δ

+
+ +

=

=

 
 

 + + + 

  ∂  
 ∂  

 +  

∑

�

� �

�
�

�

α

α

U A f

U V A A f f

U A f

U A f V x A x

      (34) 

where the quantity ( ) ( ) ( ) ( ) ( ){ }1; ; ; ; ; ; ;n n n n n
n

ind
R j jδ δ 

 U A f V A�  denotes the 
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“indirect-effect term” which is defined as follows:  

( ) ( ) ( ) ( ) ( ){ }
( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

( )

( )

( )

( )1

01

1

1 1
1

; ; ; ; ; ; ;

2 ; 2 ; d d
TI

TI

n n n n n
n

ind

n n
n nn n

TIn n

R j j

S S x x
ω ω

λ λ

δ δ

δ− −

 
 

 ∂ ∂ + 
∂ ∂  

∫ ∫
α α

α α α

U A f V A

V x A x
U x A x

�

� � �
(35) 

The vectors ( ) ( ) ( ) ( )1 1
2 1 2 12 ; ; ; ; 2 ; ; ; ;n nn n

n nj j j jδ− −
− −V x U x� � �  and 

( ) ( )1
1 12 ; ; ; ;n n

nj jδ −
−A x� , which are needed in order to evaluate the indirect-   

effect term ( ) ( ) ( ) ( ) ( ){ }1; ; ; ; ; ; ;n n n n n
n

ind
R j jδ δ 

 U A f V A� , are the solutions of the  

following (n+1)th-Level Variational Sensitivity System, which is obtained by 
concatenating the nth-LVSS defined by Equations (4) and (5) together with the 
G-differentiated nth-LASS, for 1, , 1, ,nj j TP=� � : 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

0

0

1 1 1
2 1 2 1

1
2 1

2 2 ; 2 ; ; ; ; ; 2 ; ; ; ;

2 ; 2 ; ; ; ; ; ; , ,

n n nn n n n
n n

n nn n
V n x

j j j j

j j δ

+ + +
− −

+
−

 × 

 = ∈Ω 

α

α

VM U x f V x

Q U x f f x

� �

�
 (36) 

( ) ( ) ( ) ( ) ( ){ } ( )0

1 1 1 02 ; 2 ; ; 2 ; ; ; 2 ;n n nn n n n
V xδ+ + +   = ∈∂Ω   α

B U x V x f f x α0  (37) 

where: 

( ) ( )
( ) ( )
( )

1
2 11

1 1 ( ) 1
1 1

2 ; ; ; ;
2 ; ; ; ; ;

2 ; ; ; ;

n n
nn n

n n n
n

j j
j j

j j

−
−+

− −
−

 
 
 
 

U x
U x

A x

�
� �

�
         (38) 

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1
1 1

1
2 11

1 1 ( ) 1
1 1

1 1 2 2
1 1

†( ) 1
1 1 1 1

2 ; ; ; ;

2 ; ; ; ;
2 ; ; ; ;

2 ; ; ; ;

, , 1; ; , 2; ; , ,

1; ; ; ; , , 2 ; ; ; ; ;

n n
n

n n
nn n

n n n
n

n n n
n n

j j

j j
j j

j j

j j

j j j j

δ
δ

δ δ δ

δ δ

+
−

−
−+

− −
−

−
− −

 
 =
 
 

= 




V x

V x
U x

A x

v x a x a x a x

a x a x

�

�
� �

�

�

� � �

        (39) 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

1 1
1 1

1 1 1 1

1 11 1 1 1
21 22

2 2 ; 2 ; ; ; ; ;

2 2 ; ; 2 2
;

2 2 ; ; 2 2 ; ;

n nn n n
n

n n n n n

n nn n n n

j j+ +
−

− − − −

+ +− − − −

 × 
    × ×    
 × × 

VM U x f

VM x f

VM x f VM x f

�

�
0        (40) 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ){ }

( ) ( )

1 1 1
21 1 1

1 1
1 1 2 1

1
2 1

1 1 1 1
1 1

1
2 1

2 2 ; ;...; ; ;

2 ; ; ; ; 2 ; ; ; ; ;

2 ; ; ; ;

2 2 ; 2 ; ; 2 ; ; ; ;
;

2 ; ; ; ;

n n n
n

n nn n
A n n

n n
n

n n nn n n n
n

n n
n

j j

j j j j

j j

j j

j j

+ − −
−

− −
− −

−
−

− − − −
−

−
−

×

 ∂  −
∂

 ∂ × +
∂

VM x f

Q U x f

U x

AM U x f A x

U x

� �
�

�

�

�

    (41) 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
22 2 12 2 ; ; 2 2 ; 2 ; ; ; ; ; ;n n nn n n n n

nj j+ − − − − −
−

 × × VM x f AM U x f� �   (42) 
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( ) ( ) ( )
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( ) ( ) ( )
( ) ( ) ( ){

( ) ( ) ( ) }
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1 11
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δ

δ

δ

δ
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−
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−

 
 

  
  

     

 
 
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 

Q U x f f

Q U x f f

Q U x f f

q U x f f

q U x f f

�

�

� �

� �

         (43) 

( ) ( ) ( ) ( ) ( ) ( )2 1
1

1

; ; ; ; ; ; ; ; ;

1, ;2 ;

n
n

TP
n n n n

V V n j
j

n

i i j j f

i

δ δ−
=

−

   ≡   

=

∑ �

�

q U x α f s U x f
     (44) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ){ }

1 11
2 1 1

1 1
1 1 2 1

1 1 1 ( ) 1
1 1

2 ; 2 ; ; ; ; ; ;
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2 2 ; 2 ; ; 2 ; ; ; ;
;

n nn n
n

n nn n
A n n

n nn n n n n
n

j j

j j j j

j j

δ+ +−
−

− −
− −

− − − −
−

 
 
 ∂   ∂

∂

 ∂ × − ∂
∂

Q U x f f

Q U x f
f

f
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f

f

�

� �
�

�

   (45) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1
1 1 1 1

1 1 1
2 1 2 1

1 1 ( ) 1
2 1 1 1

2 ; 2 ; ; ; ; 2 ; ; ; ; ; ;
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.
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n n nn n n
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n n nn n n
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n nn n n n
A n n

j j j j

j j j j

j j j j

δ

δ

δ

+ + +
− −
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− −

− − −
− −

 
 

  
  

     

B U x V x f f

B U x V x f f

B U x A x f

�

� �
�

� �

  (46) 

Solving the (n+1)th-LVSS would require ( )1nO TP +  large-scale computations, 
which is unrealistic for large-scale systems comprising many parameters. The 
(n+1)th-FASAM-N circumvents the need for solving the (n+1)th-LVSS by de-
riving an alternative expression for the indirect-effect term defined in Equa-
tion (35), in which the function ( ) ( )1

1 12 ; ; ; ;n n
nj j+
−V x�  is replaced by a 

(n+1)th-level adjoint function, denoted as  
( ) ( ) ( ) ( ) ( ) ( ) ( )

†1 1 1
1 1 1 12 ; ; ; ; 1; ;...; ; , , 2 ; ; ; ;n n nn n

n n n n xj j j j j j+ + +
+

  ∈ Ω A x a x a x� � � � H , 
which is independent of parameter variations. The elements of the Hilbert space 

( )1n x+ ΩH  are block-vectors of the form  
( ) ( ) ( ) ( ) ( ) ( ) †1 1 1

1 1 12 ; ; ; ; 1; ; ; ; , , 2 ; ; ; ;n n nn n
n n nj j j j j j+ + + 

 x ψ x ψ x� � � � �Ψ , com-
prising 2n  TD-dimensional block-vectors of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 1; ; , , ;n n n
TD xi i iψ ψ+ + +  ∈ Ω ψ x x x� � H , 11, ,2ni += � . The inner  

product of two vectors ( ) ( )1
12 ; ; ; ;n n

nj j+ x�Ψ  and ( ) ( )1
12 ; ; ; ;n n

nj j+ x�Φ  in 

the Hilbert space ( )1n x+ ΩH  is denoted as ( ) ( ) ( ) ( )1 1

1
2 ; , 2 ;n nn n

n

+ +

+
x xΨ Φ   

and defined as follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1 1

1 11
2 ; , 2 ; ; , ;

n
n n n nn n

n i
i i+ + + +

+ =
∑x x ψ x φ x�Ψ Φ        (47) 

The (n+1)th-Level Adjoint Sensitivity System [abbreviated as: (n+1)th-LASS ] 
for the (n+1)th-level adjoint function ( ) ( )1

12 ; ; ; ;n n
nj j+A x�  is obtained by us-
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ing the inner product defined in Equation (47), as follows: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

0 0

0

1 1 1 1 1 1

2

1 1 1 1

2 ; , 2 ; ; ; ;

2 ; , 2 2 ; 2 ; ; 2 ; ,

x

n n n n n nn n

n n n nn n n n n

n

P+ + + + + +

∂Ω

+ + + +

  =    

 + × 

α α

α

A x VM x U A V f

V x AM U x f A x
(48) 

where the quantity ( ) ( ) ( ) ( )( )
0

1 1 1 1; ; ;
x

n n n nP + + + +

∂Ω

     α
U A V f  denotes the corres- 

ponding bilinear concomitant on the domain’s boundary, evaluated at the no-
minal values for the parameters and respective state functions. 

In terms of the (n+1)th-level adjoint function ( ) ( )1
12 ; ; ; ;n n

nj j+A x� , the indi-
rect-effect term defined by Equation (35) will have the following expression:  

( ) ( ) ( ){ }
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ){ }

0

0

( ) ( )
1

1 1 1

1 1 1
1 1 1

; ; ; ; ; ; ;

ˆ ; ;

2 ; ; ; ; , 2 ; 2 ; ; ; ; ; ; .

x

n n nn n
n

ind

n n n

n n nn n n
n V n

n

R j j

P

j j j j

δ δ

δ

δ

+ + +

∂Ω

+ + +
−

 
 

  = −   

 +  

α

α

U A α V A

U A f

A x Q U x f f

�

� �

(49) 

where ( ) ( )1
12 ; ; ; ;n n

nj j+A x�  is the solution of the following (n+1)th-LASS: 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1
1

1 1
1 1 1

2 2 ; 2 ; ; 2 ; ; ; ;

2 ; ; ; ; 2 ; ; ; ; ; ,

n n nn n n n
n

n nn n
A n n

j j

j j j j

+ + +

+ +
−

 × 

 =  

�

� �

AM U x f A x

Q U x f
        (50) 

subject to boundary conditions represented in operator form as follows: 

( ) ( ) ( ) ( ) ( ){ }
( )

0

1
1 1 1

0
1 2 1 1

2 ; 2 ; ; ; ; ; 2 ; ; ; ; ; 2 ,

; 1, , ; 1, , ; ; 1, , .

n n nn n n n
A n n

x n n

j j j j

j TF j j j j

+
−

−

   =   

∈∂Ω = = =
α

B U x A x f

x α

� �

� � � �

0
  (51) 

In Equation (49), the quantity ( ) ( ) ( )( )
0

1 1 1ˆ ; ;
x

n n nP δ+ + +

∂Ω

     α
U A f  denotes  

residual boundary terms which may have not vanished automatically after hav-
ing used the boundary conditions provided in Equations (37) and (51) to elimi-
nate from Equation (48) all unknown values of the (n+1)th-level variational func-
tion ( ) ( )1

1 12 ; ; ; ;n n
nj j+
−V x� . 

The quantities that appear in the definition of the (n+1)th-LASS represented 
by Equations (50) and (51), are defined as follows:  

( ) ( ) ( )
( ) ( )( )

( ) ( ){ } ( ) ( ){ }
( ) ( ){ }

1 1
1 1

*
1 1

† †* *11 1 1 1
21

†*11 1 1 1
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2 2 2 2
,
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n nn n n
n

n nn n

n nn n n n

nn n n n

j j+ +
−

+ +
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+− − − −

 × 

 × 

    × ×     =  
   × ×     

0
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�

AM U x f
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       (52) 
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( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) }

1 1 1 1
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†
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n n n nn n n
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A n n n

j j j j

j j j TF j j
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−

   
   

  = = 

Q U x f q U x f

q U x f

� � �

� � � � �
(53) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 11; ; ; ; ; ; ; ; ; ;n n n n

A n nj j S j j+ + +   ∂ ∂   q U x f U f u x� � �     (54) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
1 12; ; ; ; ; ; ; ; ; ;n n n n

A n nj j S j j+ + +   ∂ ∂   q U x α U α a x� � �    (55) 
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1
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1
1
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k
k
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+

+
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∂
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�

�
� � �

�

        (56) 

The final expression of the total differential expressed by Equation (17) is ob-
tained by inserting in Equation (34) the expression for the indirect-effect term 
obtained in Equation (49), which yields the following expression for the 
nth-order sensitivities  

( ) ( ) ( ) ( ) ( )
1 1

1 1 1 1
1 1; ; ; ; ; ;

n

n n n n
n j jR j j R f f

+

+ + + +
+

  ≡ ∂ ∂ ∂   U A f u x f α� �  of the re-
sponse ( ) ( );R   u x f α  with respect to the components 

1 1
, ,

nj jf f
+

�  of the 
“features function” ( )f α , for 1 11, , ; ; 1, ,n nj TF j j −= =� � � : 
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a x s U x f
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TIx x
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x f �

(57) 

The expression obtained in Equation (57) is identical with the expression that 
would be obtained by replacing the index n with (n+1) in the expression ob-
tained in Equation (25), thus completing the proof, by mathematical induction, 
of the validity/correctness of the conjectured general expressions underlying the 
nth-FASAM-N. 

3. Conclusions 

This work has presented the “nth-Order Feature Adjoint Sensitivity Analysis 
Methodology for Nonlinear Systems” (abbreviated as “nth-FASAM-N”), which is 
the most efficient methodology for computing exact expressions of sensitivities 
of model responses with respect to features of model parameters and, subse-
quently, with respect to the model parameters themselves. This efficiency stems 
from the reduction of the number of adjoint computations (which are consi-
dered to be “large-scale” computations), by comparison to the extant [31] 
high-order adjoint sensitivity analysis methodology nth-CASAM-N (the “nth- 
Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear 
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Systems”), as follows: 
1) Comparing the mathematical framework of the nth-FASAM-N methodolo-

gy presented in this work to the framework of the nth-CASAM-N methodology 
[31] indicates that the components ( ) , 1, ,if i TF=α � , of the “feature function” 
( ) ( ) ( ) †

1 , , TFf f  f α α α� �  play within the nth-FASAM-N the same role as 
played by the components , 1, ,j j TPα = � , of the “vector of primary model pa-
rameters” ( )†

1, , TPα αα � �  within the framework of the nth-CASAM-N [31]. It 
is paramount to underscore, at the outset, that the total number of model para-
meters is always larger (usually by a wide margin) than the total number of 
components of the feature function ( )f α , i.e., TP TF� .  

2) The 1st-FASAM-N and the 1st-CASAM-N methodologies require a single 
large-scale “adjoint” computations for solving the 1st-LASS (1st-Level Adjoint 
Sensitivity System), so they are equally efficient for computing the exact expres-
sions of the first-order sensitivities of a model response to the model’s uncertain 
parameters, boundaries, and internal interfaces. 

3) For computing the exact expressions of the second-order response sensitiv-
ities with respect to the primary model’s parameters, the 2nd-FASAM-N metho-
dology [32] requires as many large-scale “adjoint” computations as there are 
“feature functions of parameters” ( ) , 1, ,if i TF=α �  (where TF denotes the 
total number of feature functions) for solving the left-side of the 2nd-LASS with 
TF distinct sources on its right-side. By comparison, the 2nd-CASAM-N metho-
dology [31] requires TP (where TP denotes the total number of model parame-
ters) large-scale computations for solving the same left-side of the 2nd-LASS but 
with TP distinct sources. Since TF TP� , the 2nd-FASAM-N methodology is 
considerably more efficient than the 2nd-CASAM-N methodology for computing 
the exact expressions of the second-order sensitivities of a model response to the 
model’s uncertain parameters, boundaries, and internal interfaces. 

4) For computing the exact expressions of the third-order response sensitivi-
ties with respect to the primary model’s parameters, it can be deduced from the 
general theory underlying the 3rd-FASAM-N presented in this work that, for 

3n = , the 3rd-FASAM-N requires at most ( )1 2TF TF +  large-scale “adjoint” 
computations while the 3rd-CASAM-N methodology [31] requires at most. The 
same computational-count of ”large-scale computations” caries over when 
computing the higher-order sensitivities, i.e., the formula for calculating the 
“number of large-scale adjoint computations” is formally the same for both the 
nth-FASAM-N and the nth-CASAM-N methodologies, but the “variable” in the 
formula for determining the number of adjoint computations for the 
nth-FASAM-N methodology is TF (i.e., the total number of feature functions) 
while the counterpart for the formula for determining the number of adjoint 
computations for the nth-CASAM-N is methodology is TP (i.e., the total number 
of model parameters). Since TF TP� , it follows that the higher the order of 
computed sensitivities, the more efficient the nth-FASAM-N methodology be-
comes by comparison to the nth-CASAM-N methodology. 
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5) When a model has no “feature” functions of parameters, but only compris-
es primary parameters, the nth-FASAM-N methodology becomes identical to the 
nth-CASAM-N methodology [31]. 

Both the nth-FASAM-N and the nth-CASAM-N methodologies are formu-
lated in linearly increasing higher-dimensional Hilbert spaces as opposed to 
exponentially increasing parameter-dimensional spaces thus overcoming the 
curse of dimensionality in sensitivity analysis of nonlinear systems. Both the 
nth-FASAM-N and the nth-CASAM-N methodologies are incomparably more ef-
ficient and more accurate than any other methods (statistical, finite differences, 
etc.) for computing exact expressions of response sensitivities (of any order) 
with respect to the model’s uncertain parameters, boundaries, and internal in-
terfaces. 

The question of “when to stop computing progressively higher-order sensitiv-
ities?” has been addressed by Cacuci [29] [31] in conjunction with the question 
of convergence of the Taylor-series expansion of the response in terms of the 
uncertain model parameters [see Equations (65)‒(67) in Appendix A]. This 
Taylor-series expansion is the fundamental premise for obtaining meaningful 
(convergent) expressions provided by the “propagation of errors” methodology, 
as originally proposed heuristically by Tukey [36], for the cumulants of the 
model response distribution in the phase-space of model parameters. The con-
vergence of this Taylor-series, which depends on both the response sensitivities 
to parameters and the uncertainties associated with the parameter distribution, 
must be ensured. This can be done by ensuring that the combination of parame-
ter uncertainties and response sensitivities are sufficiently small to fall inside the 
radius of convergence of this Taylor-series expansion. 

The companion work “Part 2” [35] will present an illustrative paradigm ap-
plication of the nth-FASAM-N methodology to the Nordheim-Fuchs reactor 
dynamics/safety model [33] [34]. 
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Appendix A: Mathematical Modeling of a Generic Nonlinear 
System Comprising Functions (“Features”) of Uncertain  
Parameters and Boundaries 

The mathematical model that underlies the numerical evaluation of a process 
and/or state of a physical system comprises equations that relate the system’s 
independent variables and parameters to the system’s state/dependent variables. 
These coupled equations, which are in general nonlinear, can be represented ge-
nerically in operator form as follows: 

( ) ( ) ( ) ( ); ; ; , x= ∈Ω      N u x x g α Q x g α x x ;             (58) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

; ; ; ; ; ,

;x

=      
∈∂Ω   

B u x g α λ α ω α C g α λ α ω α

x λ α ω α
.          (59) 

The results computed using a mathematical model are customarily called 
“model responses” (or “system responses” or “objective functions” or “indices of 
performance”). As has been discussed by Cacuci (2022, 2023a, 2023b), all res-
ponses can be fundamentally analyzed in terms of the following generic integral 
representation:  

( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )1

1

1; ; ; ; d d
TI

TI

TIR S x x
ω ω

λ λ

      ∫ ∫
α α

α α

u x f α u x g α h α x� � � ,   (60) 

where ( ) ( ) ( ); ; ;S   u x g α h α x  is a suitably differentiable nonlinear function 
of ( )u x  and of α .  

Without loss of generality, the quantities which appear in Equations (58)-(60) 
can be considered to be real-valued, having the following meanings:  

1) Matrices are denoted using capital bold letters while vectors will be denoted 
using either capital or lower-case bold letters. The symbol “ � ” will be used to 
denote “is defined as” or “is by definition equal to.” Transposition will be indi-
cated by a dagger ( † ) superscript. The equalities in this work are considered to 
hold in the weak (“distributional”) sense. Both sides of Equations (58)-(60) may 
contain “generalized functions/functionals”, particularly Dirac-distributions and 
derivatives thereof.  

2) The TP-dimensional column-vector ( )†
1, , TP

TPα α ∈α � � �  represents 
the “vector of primary model parameters” and has components denoted as 

1, , TPα α� , where TP denotes the “total number of parameters” involved in the 
model under consideration. These model parameters usually stem from 
processes that are external to the system under consideration and afflicted by 
uncertainties (i.e., they are not known precisely). The known characteristics of 
the model parameters usually includes their nominal (expected/mean) values 
and, possibly, higher-order moments or cumulants (i.e., variance/covariances, 
skewness, kurtosis) of their unknown distribution; these characteristics are 
usually determined from experimental data and/or processes external to the 
physical system under consideration. Occasionally, just the lower and the upper 
bounds may be known for some model parameters, expressed by inequality 
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and/or equality constraints that delimit the ranges of the system’s parameters are 
known. Without loss of generality, the imprecisely known model parameters can 
be considered to be real-valued scalar quantities. It is important to note that the 
components of the vector α  include not only parameters that appear in in Eq-
uations (58) and (59), but also include parameters that may specifically occur 
only in the definition of the model’s response provided in Equation (60). The 
nominal parameter values will be denoted as 

†0 0 0 0
1 , , , ,i TPα α α  α � � � ; the su-

perscript “0” will be used throughout this monograph to denote “nominal” or 
“mean” values. 

3) The TI-dimensional column vector ( )†
1, , TI

TIx x ∈x � � �  comprises the 
model’s independent variables, denoted as , 1, ,ix i TI= � , where the 
sub/superscript “TI” denotes the “total number of independent variables.” The 
vector TI∈x �  is considered to be defined on a phase-space domain denoted as 

( ) ( ) ( ){ }; 1, ,x i i ix i TIλ ωΩ ≤ ≤ =x α α� � , including the particular cases when 
( )iλ = −∞α , ( )iω = ∞α  for some independent variables , 1, ,ix i TI= � . The 

domain boundary ( ) ( ) ( ) ( ){ }; , 1, ,x i i i TIλ ω∂Ω ∪ =  λ α ω α α α� �  of  
( )xΩ   f α  is defined to comprise the set of all of the endpoints  

( ) ( ), , 1, ,i i i TIλ ω =α α � . For subsequent mathematical developments, it is con-
venient to consider that the endpoints ( ) ( ), , 1, ,i i i TIλ ω =α α �  are compo-
nents of column-vectors ( ) ( ) ( ) †

1 , , TIλ λ  λ α α α� �  and  
( ) ( ) ( ) †

1 , , TIω ω  ω α α α� � , respectively These endpoints depend on the phys-
ical system’s geometrical dimensions, which may be imprecisely known because 
of manufacturing tolerances, and are considered therefore to be components of 
the vector ( )†

1, , TP
TPα α ∈α � � �  of primary model parameters. Furthermore, 

the boundary-endpoints ( ) ( ), , 1, ,i i i TIλ ω =α α � , may also depend on the pa-
rameters that define the material properties of the respective medium. For ex-
ample, in models based on diffusion theory, the boundary conditions for mate-
rials facing air/vacuum are imposed on a physics-based mathematical construct 
called the “extrapolated boundary” of the respective spatial domain. The “extra-
polated boundary” depends both on the imprecisely known physical dimensions 
of the system’s materials and also on the material’s properties, such as atomic 
number densities and microscopic transport cross sections. Therefore, the 
boundary end-points can be considered, in general, to be functions of (some of) 
the primary model parameters. 

4) The components ( ) , 1, ,iu i TD=x �  of the TD-dimensional column vec-
tor ( ) ( ) ( ) †

1 , , TDu u  u x x x� �  represent the model’s dependent variables (al-
so called “state functions”); the abbreviation “TD” denotes “total number of de-
pendent variables.” 

5) The vector ( ) ( ) ( )1 , , TGg g  g α α α� �  is a TG-dimensional vector 
having components ( ) , 1, ,ig i TG=α � , which are real-valued functions of 
(some of) the primary model parameters TP∈α � . The quantity TG denotes 
the total number of such functions which appear exclusively in the definition 
of the model’s underlying equations. Such functions customarily appear in 
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models in the form of correlations that describe “features” of the system un-
der consideration, such as material properties, flow regimes. etc. Usually, the 
number of functions ( )ig α  is considerably smaller than the total number 
of model parameters, i.e., TG TP� . For example, the numerical model 
(Cacuci and Fang, 2023) of the OECD/NEA reactor physics benchmark (Va-
lentine 2006) comprises 21,976 uncertain primary model parameters (in-
cluding microscopic cross sections and isotopic number densities) but the 
neutron transport equation, which is solved to determine the neutron flux 
distribution within the benchmark, does not use these primary parameters 
directly but instead uses several hundreds of “group-averaged macroscopic 
cross sections” which are functions/features of the microscopic cross sections 
and isotopic number densities (which in turn are uncertain quantities that 
would be components of the vector of primary model parameters). In partic-
ular, a component ( )jg α  may simply be one of the primary model para-
meters jα , i.e., ( )j jg α≡α . 

6) The TD-dimensional column vector ( ) ( ) ( )†
1; ; , , TDN N  N u x x g α � �  

comprises components ( ) ( ); ; , 1, ,iN i TD=  u x x g α � , which are operators 
(including differential, difference, integral, distributions, and/or finite or infinite 
matrices) acting nonlinearly (in general) on the dependent variables ( )u x , the 
independent variables x  and on the functions ( )g α  of model parameters 
α . 

7) The TD-dimensional column vector ( ) ( ) ( )†
1; ; , , TDq q  Q u x x g α � � , 

having components ( ) ( ); ; , 1, ,iq i TD=  u x x g α � , denotes inhomogeneous 
source terms, which usually depend nonlinearly on uncertain parameters α . 

8) The components of ( ) ( ); ;  B u x g α x  are nonlinear operators, while the 
components of ( ),  C x g α  represent inhomogeneous boundary sources, all 
defined on the boundary x∂Ω . 

9) The integral representation of the response provided in Equation (60) can 
represent “averaged” and/or “point-valued” quantities in the phase-space of in-
dependent variables. For example, if ( ) ( );R   u x f α  represents the computa-
tion or the measurement (which would be a “detector-response”) of a quantity 
of interest at a point dx  in the phase-space of independent variables, then 

( ) ( ) ( ); ; ;S   u x g α h α x  would contain a Dirac-delta functional of the form 
( )dδ −x x . Responses that represent “differentials/derivatives of quantities” 

would contain derivatives of Dirac-delta functionals in the definition of 
( ) ( ) ( ); ; ;S   u x g α h α x . The vector ( ) ( ) ( )1 , , THh h  h α α α� � , having com-

ponents ( ) , 1, ,ih i TH=α � , which appears among the arguments of the func-
tion ( ) ( ) ( ); ; ;S   u x g α h α x , represents functions of primary parameters that 
often appear solely in the definition of the response but do not appear in the 
mathematical definition of the model, i.e., in Equations (58) and (59). The quan-
tity TH denotes the total number of such functions which appear exclusively in 
the definition of the model’s response. Evidently, the response will depend di-
rectly and/or indirectly (through the “feature”-functions) on all of the primary 
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model parameters. This fact has been indicated in Equation (60) by using the 
vector-valued function ( )f α  as an argument in the definition of the response 

( ) ( );R   u x f α  to represent the concatenation of all of the “features” of the 
model and response under consideration. The vector ( )f α  of “model features” 
is thus defined as follows: 

( ) ( ) ( ) ( ) ( )

( ) ( )

†

†
1

; ; ;

, , ; 2 .TFf f TF TG TH TI

  

+ +  

f α g α h α λ α ω α

α α

�

� � �
         (61) 

As defined in Equation (61), the quantity TF denotes the total number of 
“feature functions of the model’s parameters” which appear in the definition of 
the nonlinear model’s response and underlying equations. 

Solving Equations (58) and (59) at the nominal parameter values,  
†0 0 0 0

1 , , , ,i TPα α α  α � � � , provides the “nominal solution” ( )0u x ; which 
means that the vectors ( )0u x  and 0α  satisfy the following equations: 

( ) ( ) ( ) ( )0 0 0; , , ,x
   = ∈Ω   N u x g α Q x g α x x             (62) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0 0

; ; ;

; ; , ; .x

 
 
   = ∈∂Ω   

B u x g α λ α ω α

C g α λ α ω α x λ α ω α
          (63) 

Using the nominal parameter values 0α  together with the “nominal solution” 
( )0u x  in Equation (60) yields the nominal value of the response, namely: 

( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )0 0
1

0 0
1

0 0 0 0 0 0
1; ; ; ; d d

TI

TI

TIR R S x x
ω ω

λ λ

   
   ∫ ∫

α α

α α

u x f α u x g α h α x� � � � .(64) 

In view of Equation (64), each model response ( ) , 1, ,kR k TR=  f α � , 
where TR denotes the “total number of responses,” can be considered to depend 
directly on the feature functions ( )f α , and would therefore admit a Tay-
lor-series expansion around the nominal value ( )0 0f f α� , having the follow-
ing form:  

( ) ( ) ( )

( )

1
01 1

1 2
01 2 1 2

0

1

2

1 1

1
2

TF
k

k k j
j j

TF TF
k

j j
j j j j

R
R R f

f

R
f f

f f

δ

δ δ

=

= =

 ∂ = +     ∂  

 ∂ + + ∂ ∂  

∑

∑∑

f

f

f
f α f

f
�

        (65) 

where ( ) ( )0 0 0; ; 1, ,j j j j jf f f f f j TFδ  − = α α� � � . The “sensitivities of the 
model response with respect to the (feature) functions” are naturally defined as 
being the functional derivatives of ( )kR   f α  with respect to the components 
(“features”) ( )jf α  of ( )f α . The notation { } 0f

i  indicates that the quantity 
enclosed within the braces is to be evaluated at the nominal values ( )0 0f f α� . 
Since TF TP� , the computations of the functional derivatives of ( )kR   f α  
with respect to the functions ( )jf α , which appear in Equation (65), will be 

https://doi.org/10.4236/ajcm.2024.141002


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2024.141002 36 American Journal of Computational Mathematics 
 

considerably less expensive computationally than the computation of the func-
tional derivatives involved in the Taylor-series of the response with respect to 
the model parameters. The functional derivatives of the response with respect to 
the parameters can be obtained from the functional derivatives of the response 
with respect to the “feature” functions ( )jf α  by simply using the chain rule, 
i.e.: 

( ) ( ) ( )

( ) ( ) ( )

1

0 011 1 1

1

0 011 2 2 1 1

1

2

1

;

;

TF
ik k

ij i j

TF
ik k

ij j j i j

fR R
f

fR R
f

α α

α α α α

=

=

   ∂∂ ∂   =   ∂ ∂ ∂      

   ∂∂ ∂∂   =   ∂ ∂ ∂ ∂ ∂      

∑

∑

α α

α α

αα f

αα f
              (66) 

and so on. The evaluation/computation of the functional derivatives  
( )

1 1i jf α∂ ∂α , ( )
1 1 2

2
i j jf α α∂ ∂ ∂α , etc., does not require computations involving  

the model, and is therefore computationally trivial by comparison to the evalua-
tion of the functional derivatives (“sensitivities”) of the response with respect to 
either the functions (“features”) ( )jf α  or the model parameters 

, 1, ,i i TPα = � . 
The range of validity of the Taylor-series shown in Equation (65) is defined by 

its radius of convergence. The accuracy—as opposed to the “validity”—of the 
Taylor-series in predicting the value of the response at an arbitrary point in the 
phase-space of model parameters depends on the order of sensitivities retained 
in the Taylor-expansion: the higher the respective order, the more accurate the 
respective response value predicted by the Taylor-series. In the particular cases 
when the response happens to be a polynomial function of the “feature” func-
tions ( )jf α , the Taylor series is actually exact.  

In turn, the functions ( )if α  can also be formally expanded in a multivariate 
Taylor-series around the nominal (mean) parameter values 0α , namely:  

( ) ( ) ( ) ( )

( )

1 1 2
0 01 1 21 1 2

1 2 3
01 2 3 1 2 3

2
0

1 1 1

3

1 1 1

1
2

1 ,
3!

TP TP TP
i i

i i j j j
j j jj j j

TP TP TP
i

j j j
j j j j j j

f f
f f

f

δα δα δα
α α α

δα δα δα
α α α

= = =

= = =

   ∂ ∂   = + +   ∂ ∂ ∂      

 ∂ + + ∂ ∂ ∂  

∑ ∑∑

∑∑∑ �

α α

α

α α
α α

α
    (67) 

The domain of validity of the Taylor-series in Equation (67) is defined by its 
own radius of convergence. 

Appendix B: The 1st-FASAM-N: First-Order  
Function/Feature Adjoint Sensitivity Analysis Methodology  
for Nonlinear Systems 

The 1st-order G-differential, denoted as ( ) ( ) ( ) ( ) ( )10 0; ; ;Rδ δ 
 u x f α v x f α , of 

the response ( ) ( );R   u x f α  at a point ( )0 0;u f  in the phase-space of de-
pendent variables ( )u x  and feature-functions ( )f α  is defined as follows: 
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( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )0 0
1 1

0 0
1 1

10 0

10 0 0
1

0

; ; ;

d , ; ; d d .
d

TI TI

TI TI

TI

R

S x x
ω ε δω ω ε δω

λ ε δλ λ ε δλ
ε

δ δ

ε ε δ ε δ
ε

+ +

+ +
=

 
 

 
  + + +  
  

∫ ∫
α α

α α

u x f α v x f α

u v g g h h x� � �
 

(68) 

The necessary and sufficient conditions for the 1st-order G-differential 
( ) ( ) ( ) ( ) ( )10 0; ; ;Rδ δ 

 u x f α v x f α  to be linear in the variations ( )1 δv u�  
and δ f  (and hence admit partial G-derivatives with respect to u  and f ) at 
a point ( )0 0;u f  in the phase-space of dependent variables and fea-
ture-functions are as follows:  

i) ( ) ( );R   u x f α  satisfies the following inequality: 
( ) ( ) ( ) ( )10 0 0 0 0 0; ; ; ,R R k kε ε δ ε + + − ≤ < ∞ u v f f u f u f .    (69) 

ii) ( ) ( );R   u x f α  satisfies the following condition for a scalar ε  and 
vectors 2 2, v f : 

( ) ( ) ( ) ( )

( ) ( )

1 10 0 0 0
2 2

0 0 0 0
2 2

; ;

; ;

R R

R R o

ε ε ε δ ε ε ε δ

ε ε ε

   + + + + − + +   
 − + + + = 

u v v f f f u v f f

u v f f u f .
    (70) 

In practice, the relations provided in Equations (69) and (70) are seldom used 
directly since the computation of the expression on the right-side of Equation 
(68) reveals immediately if the respective expression is linear (or not) in the 
vectors ( ) ( )1v x  and/or ( )δ f α . 

Numerical methods (e.g., Newton’s method and variants thereof) for solving 
Equations (58) and (59) also require the existence of the first-order G-derivatives 
of the original model equations. Therefore, the conditions provided in Equations 
(69) and (70) are henceforth considered to be satisfied by the model responses 
and also by the operators underlying the physical system modeled by Equations 
(58)-(60), which implies that all of the operators/functions considered in this 
work admit G-derivatives.  

When the 1st-order G-variation ( ) ( ) ( ) ( ) ( )10 0; ; ;Rδ δ 
 u x f α v x f α  satisfies 

the conditions provided in (69) and (70), it can be written as follows:  

( ) ( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( ) ( ){ }
10 0

1

; ; ;

d ; ; d ; ; .
dir ind

R

R R

δ δ

δ

 
 

 +    

u x f α v x f α

u x f α f u x f α v x�
       (71) 

In Equation (71), the “direct-effect” term ( ) ( ){ }d ; ;
dir

R δ  u x f α f  com-
prises only dependencies ( )δ f α  and is defined as follows: 

( ){ } ( )

( ) ( ) ( ){ }
0

1
1

1
1

1

;
d ; ;

; ; ,

dir

TF

jdirj

R

R j f

δ δ

δ
=

∂ 
     ∂ 

  ∑

�

�

α

R u f
u x f f f

f

u x f α
                (72) 

where: 
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[ ] [ ] [ ] [ ] [ ] [ ]
1 1 1 1 1

,
TF TG TH TI TI

i i i i i
i i i i ii i i i i

f g h
f g h

δ δ δ δ δλ δω
λ ω= = = = =

∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ ∑f
f

�   (73) 

and where:  
i) For 1 1, ,j TG= � : 

( ) ( ) ( ){ } ( )
( )

( )

( )

( )1

1
01

1
1 1

; ;
; ; d d ;

TI

TI

j TI idir
i

S
R j f x x g

g

ω ω

λ λ

δ δ
 ∂      ∂  
∫ ∫
α α

α α α

u g h
u x f α � � �  (74) 

ii) For 1 1, ,j TG TG TH= + +� : 
( ) ( ) ( ){ }

( )
( )

( )

( )

( )

1

1

01

1
1

1 1

; ;

;
d d ; ;

TI

TI

jdir

TI i
i

R j f

S
x x h i j TG

h

ω ω

λ λ

δ

δ

  

 ∂  = − 
∂  

∫ ∫
α α

α α α

u x f α

u h
� � �

           (75) 

iii) For 1 1, ,j TG TH TG TH TI= + + + +� : 
( ) ( ) ( ){ }

( )( ) ( )

1

1 11

01 1 1 1

1
1

1 1 1 1

1

; ;

d d d d ,., ,., ; ; ,

where ;

i i TI

x
i TI

jdir

i i TI i N i

R j f

x x x x S x x

i j TG TH

ω ωω ω

λ λ λ λ

δ

ω δω
− +

− +

− +

  

       
= − −

∫ ∫ ∫ ∫
α

u x f α

u α g h α� � �  (76) 

iv) For 1 1, , 2j TG TH TI TG TH TI= + + + + +� : 
( ) ( ) ( ){ }

( )( )

1

1 11

01 1 1 1

1
1

1 1 1 1

1

; ;

d d d d ,., ,., ; ; ,

where .

i i TI

x
i TI

jdir

i i TI i N i

R j f

x x x x S x x

i j TG TH TI

ω ωω ω

λ λ λ λ

δ

λ δλ
− +

− +

− +

  

   −    
= − − −

∫ ∫ ∫ ∫
α

u x f α

u α g h� � �   (77) 

The notation on the left-side of Equation (73) represents the inner product 
between two vectors (comprising an implied multiplication of a vector with a 
transposed vector), but the symbol “( † )” which indicates “transposition” has 
been omitted in order to keep the notation as simple as possible. “Daggers” in-
dicating transposition will also be omitted in other inner products, whenever 
possible, while avoiding ambiguities. 

The direct-effect term can be computed after having solved Equations (58) 
and (59) to obtain the nominal values, ( )0u x , of the dependent variables. On  

the other hand, the quantity ( ) ( ) ( ) ( ){ }1d ; ;
ind

R  
 u x f α v x  defined in Equation  

(71) comprises only variations in the state functions −and is therefore called the 
“indirect-effect term” being defined as follows:  

( ) ( ) ( ) ( ){ } ( ) ( ) ( )
( )

( )

( )

( )1

01

1 1
1

; ;
d ; ; d d

TI

TI

TI
ind

S
R x x

ω ω

λ λ

 ∂      ∂  
∫ ∫
α α

α α α

u g h
u x f α v x v x

u
� �  (78) 

where: 

[ ] ( ) ( ) [ ]
( ) ( )1

1

TD

i
i i

u
u

δ
=

∂ ∂
∂ ∂∑v x x
u x

� .                 (79) 
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The “indirect-effect” term induces variations in the response through the var-
iations in the state functions, which are, in turn, caused by the parameter varia-
tions through the equations underlying the model. The indirect-effect term can 
be quantified only after having determined the variations ( ) ( )1v x  in terms of 
the variations δ g , δ λ , and δω .  

The first-order relationship between the vectors ( ) ( )1v x  and the variations 
δ g , δ λ , and δω  is determined by solving the equations obtained by apply-
ing the definition of the G-differential to Equations (58) and (59), which yields 
the following equations: 

( ) ( ) ( ) ( ) ( ) ( )10 0 0

0 0

d d; ,
d dε ε

ε ε δ ε δ
ε ε= =

      + + = +        
N u v x g α g Q x g α g , (80) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

10 0 0 0

0

0 0 0

0

d ; ; ;
d

d ; ; ,
d

ε

ε

ε ε δ ε δ ε δ
ε

ε δ ε δ ε δ
ε

=

=

  + + + +   

  − + + + =   

B u v x g α g λ α λ ω α ω

C g α g λ α λ ω α ω 0
 (81) 

Carrying out the differentiations with respect to ε  in Equations (80) and 
(81), and setting 0ε =  in the resulting expressions yields the following equa-
tions:  

( ) ( ) ( ) ( ){ } ( ) ( ){ }0 0

1 1 1; ; ; , ,V xδ= ∈Ω
α α

N u g v x q u g g x           (82) 

( ) ( )( ){ } 0

1 1; ; ; ; ; ; ; , .V xδ δ δ = ∈∂Ω
α

b u g λ ω v g λ ω x0            (83) 

In Equations (82) and (83), the superscript “(1)” indicates “1st-Level” and the 
various quantities which appear in these equations are defined as follows: 

( ) ( ) ( )1 ;
; ;i

j TD TD

N
u

×

 ∂  ∂ 
   

∂ ∂    

N u g
N u g

u
� �              (84) 

( ) ( )
( ) ( ) ( ) ( )

1
1

1 1
1

1

;
; ; ; ;

TG

V V j
j

j gδ δ δ
=

∂ −  
∂ ∑

Q g N u g
q u g g g s u g

g
� � ;    (85) 

( ) ( )( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

1 1

1

; ; ; ; ; ; ;

; ; ; ; ;; ; ;

; ; ; ; ; ; ; ; ; ;
.

V δ δ δ

δ

δ δ

∂ − ∂    +  ∂ ∂  
∂ − ∂ −       + + ∂ ∂ 

α

α

α

b u g λ ω v g λ ω

B u g λ ω C g λ ωB u g λ ω
v g

u g

B u g λ ω C g λ ω B u g λ ω C g λ ω
λ ω

λ ω

�  (86) 

The system of equations comprising Equations (82) and (83) is called the 
“1st-Level Variational Sensitivity System” (1st-LVSS). The solution, ( ) ( )1v x , of 
the 1st-LVSS will be a function of the variations δ g , δ λ , and δω . Hence, 
when the function ( ) ( )1v x  is introduced into the expression of the indi-
rect-effect term defined in Equation (78), it will introduce dependencies of the 
response sensitivities on δ g , δ λ , and δω , which will be in addition to the 
dependencies displayed by the direct-effect term defined in Equation (72). As 
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Equations (82) and (83) indicate, every parameter variation 
1j

δα , 1 1, ,j TP= � , 
will induce, directly or indirectly, a variations in the model’s state variables. In 
principle, therefore, for every parameter variation 

1j
δα , 1 1, ,j TP= � , there 

would correspond a solution ( ) ( )1
1;jv x , 1 1, ,j TP= � , of the 1st-LVSS. Thus, if 

the effect of every parameter variation were of interest, then the 1st-LVSS would 
need to be solved TP times, with distinct right-sides and boundary conditions 
for each parameter variation 

1j
δα , which would require at least TP large-scale 

computations. If only variations induced by the functions δ g , δ λ , and/or 
δω  were of interest, then fewer than TP large-scale computations would be 
required. 

However, solving the 1st-LVSS can be avoided altogether by using the ideas 
underlying the “adjoint sensitivity analysis methodology” as originally conceived 
by Cacuci (1981) and subsequently generalized by Cacuci (2022, 2023a) to ena-
ble the computation of arbitrarily high-order response sensitivities to model pa-
rameters. Thus, the need for computing the vectors ( ) ( )1

1;jv x , 1 1, ,j TP= � , is 
eliminated by expressing the indirect-effect term defined in Equation (78) in 
terms of the solutions of the “1st-Level Adjoint Sensitivity System” (1st-LASS), 
which is constructed by introducing a (real) Hilbert space denoted as ( )1 xΩH , 
endowed with an inner product of two vectors ( ) ( )1

1∈w x H  and 
( ) ( )2

1∈w x H  which is denoted as ( ) ( )1 2

1
,w w  and defined as follows:  

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )1

01

1 2 1 2
11

, d d
TI

TI

TIx x
ω ω

λ λ

   ⋅    
∫ ∫
α α

α α α

w w w x w x� � � .      (87) 

In Equation (87), the “dagger” ( † ), which indicates “transposition,” has been 
omitted to simplify the notation for the scalar product  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

1

TD

i i
i

w w
=

⋅ ∑w x w x x x� . 

The 1st-LASS is now constructed by considering a vector ( ) ( )1
1∈a x H , which 

is an element in ( )1 xΩH  but is otherwise arbitrary at this stage, and by using 
Equation (87) to form the inner product of ( ) ( )1

1∈a x H  with the relation pro-
vided in Equation (82) to obtain: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }0 0

1 1 1 1 1

1 1
, ; , ; ; , .V xδ= ∈Ω

α α
a N u g v a q u g g x    (88) 

Next, the left-side of Equation (88) is transformed by using the definition of 
the adjoint operator in ( )1 xΩH , as follows: 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ( ) ( ) ( )( )

0

0 0

1 1 1

1

1 1 1 1 1 1

1

, ;

; , ; ; ; ; ; ,
x

P
∂Ω

  = +    

α

α α

a N u g v

A u g a v u g λ ω v a
   (89) 

where ( ) ( ) ( )( )1 1 1; ; ; ; ;
x

P
∂Ω

 
 u g λ ω a v  denotes the associated bilinear concomitant 

evaluated on the domain’s boundary x∂Ω , and where  
( ) ( ) ( ) ( )

*1 1; ; 
 A u g N u g�  denotes the operator formally adjoint to ( ) ( )1 ;N u g .  
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The symbol [ ]∗  indicates “formal adjoint” operator. 
The first term on the right-side of Equation (89) is now required to represent 

the indirect-effect term defined in Equation (78) by imposing the following rela-
tionship: 

( ) ( ) ( ) ( ){ } ( ){ } ( ) ( )00

1 1 1; ; ; ; ; ,A xS= ∂ ∂ ∈Ω  αα
A u g a x u g h u q u x g h x� .  (90) 

The domain of ( ) ( )1 ;A u g  is determined by selecting appropriate adjoint 
boundary and/or initial conditions, which will be denoted in operator form as: 

( ) ( )( ){ } 0

1 1; ; , .A x= ∈∂Ω
α

b u a g x0                   (91) 

The above boundary conditions for the adjoint operator ( ) ( )1 ;A u g  are ob-
tained by imposing the following requirements:  

i) they must be independent of unknown values of ( ) ( )1v x  and δ g ;  
ii) the substitution of the boundary and initial conditions represented by Equ-

ations (83) and (91) into the expression of ( ) ( ) ( )( )
0

1 1 1; ; ;
x

P
∂Ω

     α
u g a v  must 

cause all terms containing unknown values of ( ) ( )1v x  to vanish.  
Using the adjoint and forward variational boundary conditions represented by 

Equations (91) and (83) into (89) reduces the bilinear concomitant  
( ) ( ) ( )( )

0

1 1 1; ; ;
x

P
∂Ω

     α
u g a v  to a residual term denoted as  

( ) ( )( )
0

1 1ˆ ; ; ; ; ; ; ;
x

P δ δ δ
∂Ω

     α
u g λ ω a g λ ω , which will contain boundary terms in-

volving only known values of δ g , δ λ ;δω ; g , u , and ( )1a  The residual 

term ( ) ( )( )
0

1 1ˆ ; ; ; ; ; ; ;
x

P δ δ δ
∂Ω

     α
u g λ ω a g λ ω  is linear in δg , δ λ ;δω , and  

can therefore be expressed in the following form: 

( ) ( )( )
( ) ( )

( )

0

1 1 1 1
0 01 1

1 1
01

1 1

1 1

1 1

1

1

ˆ ; ; ; ; ; ; ;

ˆ ˆ

ˆ .

x

TG TI

j j j j
j j

TI

j j
j

P

P g g P

P

δ δ δ

δ λ δλ

ω δω

∂Ω

= =

=

     

         = ∂ ∂ + ∂ ∂            

   + ∂ ∂    

∑ ∑

∑

α

α α

α

u g λ ω a g λ ω

         (92) 

Equations (90) and (91) are called the 1st-Level Adjoint Sensitivity System 
(1st-LASS). The solution, ( ) ( ) ( )1

1 x∈ Ωa x H , of the 1st-LASS is called the 
1st-level adjoint function.  

The results obtained in (89) and (90) are now replaced in (78) to obtain the 
following expression of the indirect-effect term as a function of ( )(1)a x : 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( )( )0 0

1

1 1 1 1

1

; ;

ˆ, ; ; ; ; ; ; ; ; ; .
x

ind

V

R

P

δ

δ δ δ δ
∂Ω

 
 

  = −    α α

u x f α v x

a q u g g u g λ ω a g λ ω
   (93) 

Replacing in Equation (72) the result obtained in Equation (93) together with 
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the expression for the direct-effect term provided in Equation (74) yields the 
following expression for the first-order G-differential of the response 

( ) ( );R   u x f α :  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ } ( ) ( ) ( ){ }
( ) ( )( )
( ) ( ) ( ) ( ) ( )

0

0

0

1
01

1

1 1

1

1 1

1 1
1

1

d ; ; ;

d ; ; , ; ;

ˆ ; ; ; ; ; ; ;

; ; ; ,

x

Vdir

TF

j
j

R

R

P

R j f

δ

δ δ

δ δ δ

δ

∂Ω

=

 
 

= +  

  −    

       
∑

α

α

α

α

u x f α v x f α

u x f α f a q u g g

u g λ ω a g λ ω

u x a x f α�

       (94) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 1
1; ; ; ; jR j R f  ∂ ∂   u x a x f α u x f α�  denotes the 

1st-Order sensitivity of the response ( ) ( );R   u x f α  with respect to the com-
ponents 

1j
f  of the “feature” function ( ) ( ) ( ) ( ) ( ) †

; ; ;  f α g α h α λ α ω α� . 
Each1st-order sensitivity ( ) ( ) ( ) ( ) ( )1 1

1; ; ;R j 
 u x a x f α  is obtained by identi-

fying the expression that multiplies the corresponding component of the “fea-
ture” variations δ g , δh , δ λ , and δω , respectively, on the right-side of Eq-
uation (94). After having obtained the 1st-level adjoint function ( ) ( )1

1∈a x H , 
each of the 1st-order sensitivities ( ) ( ) ( ) ( ) ( )1 1

1; ; ;R j 
 u x a x f α  of the response 

( ) ( );R   u x f α  with respect to the components of the functions g , h , λ , 
and ω  can be computed inexpensively by using quadrature formulas to eva-
luate the inner products involving ( ) ( )1

1∈a x H  in Equation (94). The only 
large-scale computation needed for obtaining all of the first-order sensitivities is 
the computation of the 1st-Level adjoint function ( ) ( )1

1∈a x H , which is ob-
tained by solving numerically the 1st-Level Adjoint Sensitivity System (1st-LASS) 
represented by Equations (90) and (91).  

It is very important to note that the 1st-LASS is independent of all variations 
δ g , δh , δ λ , and δω  (or, equivalently, of all parameter variations 

1j
δα ,

1 1, ,j TP= � ) and therefore needs to be solved only once, regardless of the 
number of model parameters under consideration. Furthermore, since the 
1st-LASS is linear in ( ) ( )1a x , solving it requires less computational effort than 
solving the original model, which is nonlinear in ( )u x . The first-order sensi-
tivity ( ) ( ) ( ) ( ) ( )1 1

1; ; ;R j 
 u x a x f α  can be represented formally in the follow-

ing integral form:  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )1

1

1 1
1

1 1
1 1 1

; ; ;

; ; ; d d ; 1, , .
TI

TI

TI

R j

S j x x j TF
ω ω

λ λ

 
 

  = ∫ ∫
α α

α α

u x a x f α

u x a x f α� � � �
   (95) 

The functions ( ) ( ) ( ) ( ) ( )1 1
1; ; ;S j 

 u x a x f α  are subsequently used for de-
termining the exact expressions of the second-order sensitivities of the response 
with respect to the components of the function ( )f α  of model parameters. 
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