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Abstract 
The breakdown of the Heisenberg Uncertainty Principle occurs when ener-
gies approach the Planck scale, and the corresponding Schwarzschild radius 
becomes similar to the Compton wavelength. Both of these quantities are ap-
proximately equal to the Planck length. In this context, we have introduced a 
model that utilizes a combination of Schwarzschild’s radius and Compton 
length to quantify the gravitational length of an object. This model has pro-
vided a novel perspective in generalizing the uncertainty principle. Further-
more, it has elucidated the significance of the deforming linear parameter β 
and its range of variation from unity to its maximum value. 
 

Keywords 
Generalized Uncertainty Principle, Deformed Heisenberg Algebra,  
Minimal Length 

 

1. Introduction 

In the realm of quantum gravity, which is expected to be applicable at extremely 
small length scales or high energies, the fundamental units of measurement 
are often considered to be the Planck length ( pl ) and Planck mass pm . These 
quantities play a significant role in understanding the behavior of gravity at such 
scales. The Planck length is often associated with a minimum measurable length 
scale. It is speculated that beyond this scale, the traditional concept of space-time 
may no longer hold. This minimum length scale is thought to be connected to 
the granularity or quantization of space-time at very small scales. It is important 
to note that the existence and precise nature of this minimum measurable length 
scale are still subjects of ongoing research and conjecture. 
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When it comes to black holes, general relativity predicts the presence of an 
event horizon, also known as the Schwarzschild radius. This radius represents 
the point beyond which nothing, not even light, can escape the gravitational pull 
of the black hole. The Schwarzschild radius sR  is determined by the mass of  

the black hole and can be calculated using the formula 2
2

s
GMR
c

= , where G is 

the gravitational constant and c is the speed of light and M is the mass. 
In quantum effects, such as quantum fluctuations, there is a concept known as 

the fluctuation-dissipation theorem. According to this theorem, quantum sys-
tems inherently experience fluctuations due to the uncertainty principle. These 
fluctuations can manifest as variations in various physical quantities, including 
mass [1]. 

The interplay between quantum effects and the minimum measurable length 
scale associated with quantum gravity has significant implications for the lower 
boundary of mass. According to the uncertainty principle, there is always inhe-
rent uncertainty in the measurement of physical quantities, including mass. This 
uncertainty is directly proportional to the reduced Planck constant (ħ), which is 
a fundamental constant that characterizes the quantum nature of a system [2]. 

In contrast, within the context of black holes, general relativity imposes an 
upper limit on mass. The maximum mass that a black hole can contain is deter-
mined by its Schwarzschild radius. If the mass exceeds this limit, the black hole 
would collapse into a singularity. 

Hence, the combination of quantum effects and general relativity establishes 
boundaries on the mass of objects. The lower boundary is influenced by quan-
tum effects and the minimum measurable length, which is proportional to the 
Planck length. On the other hand, the upper boundary is determined by general 
relativity and the maximum mass that can be accommodated within a given re-
gion, as indicated by the Schwarzschild radius [3]-[9].  

It is important to acknowledge that the regime of quantum gravity, where the 
Planck quantities become relevant, remains a challenging area to explore expe-
rimentally. The study of black holes and their behavior within the framework of 
quantum gravity continues to be an active field of research, and further investi-
gations are necessary to fully comprehend the implications of these fundamental 
scales in the context of mass and gravity. 

A simple comparison can be made between the generalized uncertainty prin-
ciple (GUP) and the Heisenberg uncertainty principle. The generalized uncer-
tainty principle (GUP) is a modification of the Heisenberg uncertainty principle, 
which is a fundamental concept in quantum mechanics. The GUP arises from 
attempts to reconcile quantum mechanics with gravitational theories, particu-
larly general relativity. It proposes the existence of a minimum measurable length 
scale due to the effects of quantum gravity. 

The GUP modifies the commutation relation between position and momen-
tum operators, which has several implications. In the standard Heisenberg un-
certainty principle, the commutation relation is given by [ ]ˆ ˆ,x p i=  , where x̂  
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represents the position operator, p̂  represents the momentum operator, and ħ 
is the reduced Planck’s constant. However, in the GUP, this commutation rela-
tion is modified to include a correction term that depends on a deformation pa-
rameter, typically denoted by β : [ ] ( )2ˆ ˆ, 1i px p β= + . 

The presence of the deformation parameter 𝛽𝛽 in the commutation relation 
leads to various physical predictions and effects. It is important to note, however, 
that the GUP is still a theoretical proposal and has not yet been experimentally 
confirmed. Nonetheless, it has generated significant interest among researchers 
investigating quantum gravity and related fields.  

The generalized Uncertainty Principle (GUP) brings about modifications to 
the uncertainty relations between position and momentum. This signifies that 
there is a fundamental limit to the precision at which certain pairs of observables 
can be simultaneously measured. Unlike the standard Heisenberg uncertainty 
principle, the GUP suggests that this limit is not an exact equality but is instead 
altered by the deformation parameter β . 

Furthermore, the GUP predicts the existence of a minimum measurable length 
scale. The inclusion of the deformation parameter β  introduces a correction 
term in the uncertainty of position, indicating that there is a fundamental limit 
to the accuracy with which distances can be measured. This minimum length 
scale is often associated with quantum gravitational effects and is speculated to 
be approximately equal to the Planck length [10]. 

Additionally, the Generalized Uncertainty Principle (GUP) can lead to mod-
ifications in the energy-momentum relations of particles. Specifically, it can in-
troduce corrections to the dispersion relation, which establishes the relationship 
between a particle’s energy and momentum. These modifications have potential 
implications in the field of high-energy physics, particularly in understanding 
the behavior of particles at extremely short distances or high energies [11]. 

When it comes to experimental tests and limitations on the value of the de-
formation parameter, it is important to acknowledge the inherent challenges in 
directly probing the GUP. The effects of the GUP are expected to be significant 
at very high energies or extremely small length scales, where quantum gravita-
tional effects become prominent. However, current experimental capabilities have 
not yet reached these scales [12]. 

Nowadays, there have been no direct experimental tests that definitively con-
firm or rule out the GUP. Consequently, the value of the deformation parameter 
β  remains largely unconstrained by empirical data. Nevertheless, various theo-
retical frameworks within the realm of quantum gravity, such as string theory 
and loop quantum gravity, offer some rationale for the existence of a minimum 
length scale and modifications to the uncertainty principle. 

It is worth noting that ongoing and future experiments, including those con-
ducted at high-energy colliders or gravitational wave observatories, may indi-
rectly provide evidence or constraints on the GUP. Nonetheless, this remains an 
active area of research, and further advancements are necessary to establish ex-
perimental boundaries on the value of the deformation parameter.  
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In this paper, we will give a simple derivation of the generalized uncertainty 
principle (GUP) and the physical meaning of the linear deformation parameter.  

2. Generalized Uncertainty Principle 

The expansion of fundamental physical principles emerged as a result of the neces-
sity to elucidate certain phenomena that were beyond the scope of non-expanded 
physical laws. Wu, X., Wu, B., Li, H., and Wu, Q [13], introduced the concept of 
the generalized Hamilton principle, which encompasses the description of both 
heat exchange systems and non-conservative force systems.  

In the realm of microscopic measurements, the mass of the particle (m) is less 
than Planck mass ( pm ), ( pm m< ), it is worth noting that the Compton length  

cλ  surpasses the Schwarzschild’s radius sR . Consequently, the term 2
2

s
GmR
c

=  

is disregarded, and the measuring length is equivalent to the Compton length 

c mc
λ =

 . Conversely, in macroscopic measurements ( pm m> ), the term 
mc
  is  

omitted. As a result, quantum effects do not manifest themselves on a macros-
copic scale. Therefore, it can be explicitly stated that the mass determines the 
equation that can be utilized for measurement, whether it be Schwarzschild’s ra-
dius or the Compton length. This signifies a transformation between the ma-
croscopic and microscopic scales [14].  

Several examples are provided to illustrate how the mass of an object deter-
mines the equations employed for measurement as in the framework of general 
relativity, the gravitational field surrounding a massive object is described by the 
Schwarzschild metric. The Schwarzschild radius ( sR ) represents a characteristic 
length scale associated with the object’s mass (m). For macroscopic objects with 
substantial masses, such as planets or stars, the Schwarzschild radius becomes 
significant, necessitating the consideration of its effects on the surrounding 
space-time. Conversely, for microscopic objects with small masses, the Schwarz-
schild radius is negligible compared to other length scales, and its effects can be 
disregarded. 

In quantum mechanics, the Compton wavelength ( cλ ) is linked to the mass of 
a particle. For macroscopic objects with large masses, the Compton wavelength 
becomes exceedingly small in comparison to the object’s size, rendering quan-
tum effects insignificant. However, for microscopic particles like electrons or 
photons, the Compton wavelength is significant and determines the characteris-
tic scale at which quantum phenomena become prominent. 

Particle collisions play a crucial role in high-energy particle physics experi-
ments, as they provide valuable insights into the fundamental properties of mat-
ter and the underlying physical laws. The energy scales at which these interac-
tions occur are determined by the mass of the particles involved. In experiments 
conducted at particle accelerators such as the Large Hadron Collider (LHC), 
protons are accelerated to high energies and made to collide with each other. 
The energy of these collisions is directly linked to the mass of the particles be-
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ing collided. 
By carefully studying the outcomes of these collisions, physicists can probe the 

intricate details of matter and gain a deeper understanding of its fundamental 
nature. These experiments allow scientists to investigate the behavior of particles 
at both macroscopic and microscopic scales. It is essential to consider the inter-
play between quantum mechanics and general relativity to comprehensively de-
scribe the physical world. The mass of an object or particle plays a significant 
role in shaping the equations and phenomena that are relevant for measurement 
and analysis in these experiments. 

Several modified iterations of the conventional Heisenberg argument have 
been proposed in order to obtain physical solutions, such as what Beckwith [15] 
did to answer the question, if initial vacuum field corresponds to a configuration 
of early universe space-time at the start of inflation?.  

In one such version, outlined in [16], a comprehensive description is provided. 
According to this version, a stream of photons possessing an energy E has the 
potential to theoretically identify an object with an approximate size ∆x. This es-
timation assumes the dispersion relation E = pc, P is a momentum. 

2
cx
E

∆ =
                           (1) 

As previously mentioned, Heisenberg’s thought experiment initially disre-
gards the influence of gravity. However, if we consider the potential creation of 
micro black holes during high-energy scatterings, with a gravitational radius 

( )s sR R E=  that is approximately proportional to the scattering energy E ,as re-
ferenced in [8], it becomes evident that the conventional uncertainty relation 
needs to be modified. 

( )
2 s

cx R E
E

β∆ = +
                       (2) 

( )sR E  represents the gravitational effect and β  the proportional constant.  
The Heisenberg Uncertainty Principle (HUP), which states that the uncertainty 

in position (∆x) multiplied by the uncertainty in momentum (∆p) is approximately 
equal to Planck’s constant (  ), is not applicable when dealing with energies close to 
the Planck scale. At this scale, the Schwarzschild radius, which represents the 
size of a black hole, becomes comparable to the Compton wavelength, which 
characterizes the quantum nature of a particle. Both of these quantities are ap-
proximately equal to the Planck length. As the energy increases, the Schwarz-
schild radius also increases, leading to a modified version of the uncertainty  

principle: ∆x is proportional to the square of the Planck length ( Pl ), 2~ P
px l ∆

∆


  

multiplied by ∆p divided by Planck’s constant (  ). This observation, supported 
by thought experiments and rigorous derivations, suggests that the Generalized 
Uncertainty Principle (GUP) holds true at all scales. The GUP is represented by  

the equation, ( )( ) ( )222 21 2
2i i i ix p p p p pα α ∆ ∆ ≥ + ∆ + + ∆ +  
 , 1,2,3i =  and 
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2

22
Plα =


 as it referenced in [17]. 

The threshold mass can be defined as the mass at which the transition occurs 
between the microscopic system and the macroscopic system, it can be defined 
as the mass that satisfies the equality between Compton length and Schwarz-
schild radius, 

2

2
c r

cl G
=

                              (3) 

The solution depends on the length, Pl r l= = , where the threshold mass be-
comes Planck’s mass Pm .  

Now, if an individual attempt to calculate the gravitational radius of an object 

with an average mass m  by employing both equations, 1 2
2Gmr

c
=  and 2r mc

=
 , 

The resulting measurement, denoted as r r r= ± ∆ , can be expressed as, 

2 2
1 2 1 2
2 2

Gm Gmr
mc mcc c

   = + ± −   
   

                   (4) 

When pm m=  equation (4) gives Planck length, 

2 2 3

2 21 2
2

p p
P

p p

Gm Gm Gr l
m c mc c c

r
c

 
= = + = = = =  

 

   , with 0r∆ =    (5) 

where Pl  is Planck length. But in general, 1 2r r≠  and 0r∆ ≠ . 
By utilizing the aforementioned principles, we can establish a correlation be-

tween measurement in the microscopic realm and measurement in the macros-
copic domain through the application of the subsequent equation, 

2 ; ,
2

c cGM M
m m G

α α→ → =
                     (6) 

The symbol “m” represents the microscopic mass, which is smaller than the 
Planck mass ( pm ), pm m< , while the symbol “M” represents the macroscopic 
mass, which is larger than the Planck mass pM m> . 

A connection has been established between the macroscopic and microscopic 
realms, with the Planck mass serving as the dividing line between them. When 
the mass surpasses the Planck mass, a shift occurs between the two systems. This 
shift can be interpreted as a duality in mass [18]. Consequently, in Equation (4), 
the transition signs become equivalent to the Planck mass. This observation in-
spired Arbab [19] to base his work on the characteristics of Planck’s constant 

c , which is contingent upon the system’s size. 
In the context of T-duality, there is a relation between the length scales in the 

two dual theories. This relation gives rise to a modified uncertainty principle 
known as the T-duality uncertainty principle. According to this principle, the 
spatial resolution (∆l) is bounded not only by the reciprocal of the momentum 
spread (∆p), as in the standard Heisenberg uncertainty principle, but also by the 
string scale sL  [20]. 

The string scale sL  is a fundamental length scale in string theory, and it is 
related to the tension of the string. It represents the characteristic size of strings 
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in the theory. It is given by sL β=  , where β  is the Regge slope parameter, 
which is related to the string tension. 

In the T-duality uncertainty principle, the spatial resolution (∆l) is con-
strained by the product of the momentum spread (∆p) and the string scale sL , 
such that 1 sl p L∆ ∆ > . This implies that there is a fundamental limit to the pre-
cision with which one can simultaneously measure position and momentum in 
the context of T-duality. 

3. The Deformation Parameter 

Return to the measurement, the uncertainty in measuring the length l is ∆l. The 
standard deviation (The standard deviation is essentially the width of the range 
over which the function f is distributed around its mean value, f ) is defined by  

22l l l∆ = −                          (7) 

By substituting 2

2 2P
pl l

p
= +





, noting that, the first term is proportioning to  

the momentum P which representing the macroscopic scale. The second one is 
proportioning to the reciprocal of the momentum and represents the micro-
scopic scale. Now we can estimate the uncertainty in measuring l by the follow-
ing inequality, 

( )

2

24 2

2 22
2

4 2

1 1
2 11 1

2P
P P

pppl l p
pl l pp p

−
 

≥ + + −
∆

 
−  

∆
∆

 



       (8) 

where p is the momentum, 2
2 2P

Gm pl
c

=


. The standard deviation in microscopic 

scale is measured by 
1
p

 
 
 

∆ , 
2

2
1 1 1
p pp

 
= − ∆

 
. And the standard devia-

tion in macroscopic scale is measured by P∆ , 22P p p∆ = − .  

If the term 
( )

2

24 2

22 24 2

1 1
2 11 1

P P

pp
p

pl l pp p

−
 

+ − 
− ∆ 

 

 ,  

We can use the binomial expansion formula, which gives the expansion of (1 
+ x)n where “n” is a rational number. This expansion has an infinite number of 
terms, 

( ) ( ) ( )( )2 31 1 1 2! 1 2 3!nx nx n n x n n n x+ = + + − + − − +         

Equation (8) simplified to 

2
2

2
3 1

11
2 24P

P

ppl l p
p pl p

 
∆
 

     ∆ ≥ + +∆
∆∆

− 
 







            (9) 

But the term 
1
p

 
 
 

∆  acts in microscopic scale in the regime of Compton 
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length, where, 

1 l
p

 
∆ =



∆

 

                         (10) 

Therefore, the generalized uncertainty takes the form 
22 1 11

2 2
P

P

pl ll P p
l p

∆ ∆    ≥ +∆ + −   
  

∆
  





            (11) 

We note that the right side consists of four terms. Where the first term 
represents the known value of uncertainty as it is known. We will explain the 
following three terms. 

The first term 
2

Ppl 
 
 

∆


, accounts for the contribution of the macroscopic 

system to uncertainty. 

The second term 
2

P

l
l

 
 
 

∆ , accounts for the contribution of the microscopic 

system to uncertainty. 

The last term 
1p
p

, accounts for the contribution of the interaction be-

tween macroscopic and microscopic systems to uncertainty. 
Moreover, the commutation relation for position and momentum is given by 

[ ]
22 1 1, 1

2
P

P

pl lX P i p
l p

∆ ∆    = + + −       




            (12) 

By comparing (11) with the deformed Heisenberg uncertainty [21] [22] [23] 

( )( )221
2

x p p Pσ σ≥ + ∆ +∆ ∆
                  (13) 

Upon comparing (11) with the deformed Heisenberg uncertainty relation, 
where σ represents the deformation parameter, it becomes evident 

2

2
Plσ =


                         (14) 

Moreover, the minimum measuring length is 

( ) 2
min 1x P Pσ σ∆ = +                 (15) 

The smallest measuring length according to (14) and (15), when 0P =  [24] 
[25] is  

min Px lσ∆ = =                      (16) 

According to the model Equation (9) gives the smallest measuring length 

Pl l∆ =  in Plank’s scale which implies  
2

2
1 2 2Pl P P
P

σ ∆ = ∆ = ∆ 
  

, minl p∆ =  , and 
1 1p
p

=       (17) 

The above result consents with the result in (5). The measurement Pr l=  
when pm m= . 
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By rewriting Equation (9) in linear combination  

( )
2

211 1 11
2 2

l P p a a p
p p

−
    ∆ ∆ ≥ − + ∆ + ∆  
    

           (18) 

With the linear parameter 2

2

2 P

a
l

=


. 

The general form of the linear parameter a, is β . It can be formed and re-
lated to Plank’s length as 

( )

2
1

1 !

n

n
pn l

β
 

=   +  

                         (19) 

nβ  is a new deformation parameter, which demands and conserves the di-
mension of the inequality (18). 

0 1, 2n = ± ±  represents the state of the scale e.g. 0n =  is the Plank’s scale 
where pm m= .we find the coupling of macroscopic and microscopic state, relation  

(18) shows this state in terms of (
1p
p

). also the state 1n = +  represents  

microscopic scale where pm m< . The state 1n = −  represents the macroscopic 
scale with pm m> , the β  parameter index indicates scale order.  

Finally, the general form of the uncertainty and the commutation relation for 
position and momentum according to relation (18) and Equation (19) is given by 

( )

2
11

2 1 !

n

n

p

l P p
p n l

α  
 ∆ ∆ ≥ − + ⋅   +   

               (20) 

[ ] ( )

2
1, 1

1 !

n

n

p

X P i p
p n l

α  
 = − + ⋅   +   



             (21) 

where nα  is the relation of the standard deviation of momentum and the fun-
damental length of the scale, which ensures that the dimension of the term 

l P∆ ∆  is conserved. 
 

n βn αn ΔlΔp [X, P] 

0 1 
1p
p

 
2


 i  

1 
2

1
2 pl
 
  
 

  
2l∆ 

 
 

 
2

1 11
2 2 p

lp
p l

  ∆ − +      

  
2

1 11
2 p

li p
p l

  ∆ − +      
  

−1 
2

pl

−
 
  
 

  ( )2p∆  ( )
2

211
2 p

p p
p l

−  
 − + ∆     

   ( )
2

211
p

i p p
p l

−  
 − + ∆     



  

2 
4

1
6 pl
 
  
 

  
4l∆ 

 
 

 
4

1 11
2 6 p

lp
p l

  ∆ − +      

  
4

1 11
6 p

li p
p l

  ∆ − +      
  

−2 0 ( )4p∆  
11

2
p

p
 
−  

 



 
11i p
p

 
−  

 
  
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The reason for the value of nβ  to be equal to zero is the term 
( )

1
1 !n +

, 

which leads to zero for negative values of 1n + , when 1n < − . 

4. Minimal Length 

Since the negative values of n represent the macroscopic system, the model 
gives a constant relationship to uncertainty for all values achieved 2, 3,n = − −  . 
Thus, we find that uncertainty leads to 

11
2

l P p
p

 
∆ ∆ = − 

 

                     (22) 

[ ] 1, 1X P i p
p

 
= − 

 
                    (23) 

If a particle is confined within a specific volume, such as a box, the particle’s 
average momentum p  will be zero. As a result, the Heisenberg uncertainty 
relations, described by Equations (22) and (23), emerge due to the uncertainty 
and commutation relation. However, in free space, the particle possesses an av-
erage momentum p  that is greater than zero. Consequently, when measur-
ing the average momentum of macroscopic bodies in the microscopic system, a  

very small value is obtained, leading to the term 
1p
p

 approaching zero.  

Once again, the well-known Heisenberg uncertainty relations are derived from 
relations (22) and (23). This process ensures that relations (22) and (23) do not 
yield a negative value. 

In the region of n = 1, where  
2

1 11
2 2 p

ll P p
p l

  ∆ ∆ ∆ = − +      

                  (24) 

For the system where pl l∆  , and 
11 p
p

≥ . Relation (24) construes to 

24 p

lP
l
∆

∆ ≈                           (25) 

By comparing the smallest measuring length minl p∆ =   in (17) with the rela-
tion (25), we find 

2

min

4 pl
l

l
=
∆

                          (26) 

As the value of minimum measurement can be detected is Planck length, then 

min pl l≥ . This leads to verify the domain of l∆  as 

4 pl l∆ ≤                           (27) 

By following the same previous treatment, the minimum length of the ma-
croscopic system can be calculated when n = −1 
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2

min 2
pl

l
l

=
∆

                          (28) 

Then the uncertainty in l and p become 

2
pl

l∆ ≤                            (29) 

PP p∆ ≥                           (30) 

3

P
cp
G

=


 is Planck momentum 

The above can be summarized by specifying the minimum length range ac-
cording to relations (26) and (28) as follows 

2 2

min

4
2

p pl l
l

l l
≤ ≤

∆ ∆
                       (31) 

From above there are numerous values of nβ  related to the various scales or 
energies. 

According to equation (18), the hidden physical meaning of the deformation 
parameter, nβ  became clear as the following: 
• 0β  is the mass flow rate or the creation-annihilation rate.  
• 2β  is the cosmic string energy loss (cosmic string had formed at a phase 

transition in the early universe, which is responsible for the large-scale 
structure of the universe). 2β  demands that the energy loss mechanism is 
sufficient so that the energy density of strings will scale as 4l−  as is neces-
sary for the consistency of the string scenario [26] [27] [28] [29]. 

Hence, nβ  varies through the range 41 Pn lβ −≤ ≤ . This result is in a good 
agreement with the values predicted in [30] and references therein. 

Moreover, Das S and Vagenas [10], showed that the GUP effect is unobserva-
ble with 0 1β = , this consists of the arguments given above. That is, in Plank’s 

scale from Equation (17) 
1 1p
p

=  and 
2

2
1 2Pl P
P

 ∆ = ∆ 
  

. By substituting 

these in Equation (18) the first term in RHS vanished in Plank’s scale and the 

term ( )
22

2
2

2

2
1 2

2
P

P

l p
pl

  
∆ + ∆ =  
  





. Therefore, Equation (18) construes to the 

well-known form of uncertainty relation l P∆ ∆ ≥   and the GUP effect disap-
peared. 

5. Conclusion 

Instructively, in this work, we generalized the uncertainty principle by combin-
ing microscopic and macroscopic measurements. Equations (20) and (21) are 
the complete generalizations of uncertainty and commutation relation formula-
tion respectively. The physical meaning of the linear parameters, nβ , can be 
used to explain mass (creation-annihilation) rate and cosmic string energy loss. 

Most quantum theories of gravity indicate that, 0β  in order of unity in the 
Planck scale. On the other hand, nβ  is believed to be an energy scale constant 
and varies with the scale [26]. 
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Notation List 

represents the position operator x̂  

represents the momentum operator p̂  

reduced Planck’s constant ħ 

Speed of light in the vacuum c 

Planck length Pl  

Planck mass Pm  

gravitational radius sR  
the relation of the standard deviation of momentum and the fundamental length  
of the scale, which ensures that the dimension of the term ∆l∆P is conserved. nα  

Regge slope parameter β  

string scale sL  

mean value f  

standard deviation f∆  

deformation parameter nβ  
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