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Abstract 
The paper is devoted to a spherically symmetric problem of General Relativity 
(GR) for a fluid sphere. The problem is solved within the framework of a spe-
cial geometry of the Riemannian space induced by gravitation. According to 
this geometry, the four-dimensional Riemannian space is assumed to be Euc-
lidean with respect to the space coordinates and Riemannian with respect to 
the time coordinate. Such interpretation of the Riemannian space allows us to 
obtain complete set of GR equations for the external empty space and the in-
ternal spaces for incompressible and compressible perfect fluids. The obtained 
analytical solution for an incompressible fluid is compared with the Schwarz-
child solution. For a sphere consisting of compressible fluid or gas, a numeri-
cal solution is presented and discussed. 
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1. Introduction 

The paper is concerned with the spherically symmetric GR problem for a sphere 
consisting of perfect fluid. This problem is of primary importance for the theory, 
because the model of an incompressible fluid allows us to obtain the exact ana-
lytical solution which is hardly reachable for more complicated models. The first 
solution of the problem was found by K. Schwarzchuld [1] who discovered than 
for a certain radius of the sphere (8/9 of the gravitation radius) the pressure at 
the sphere center can become infinitely high. This result was later associated 
with the existence of Black Holes [2]. However, the model of an incompressible 
fluid is not compatible with GR [3], because the velocity of sound in such fluid is 
infinitely high, whereas in GR it is limited by the velocity of light. The numerical 
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solution for a sphere consisting of a compressible gas was obtained by J.R. Op-
penheimer and G.M. Volkoff [4]. A class of inverse solutions was constructed by 
R.C. Tolman [5]. Since three field equations (for the energy-momentum tensor 
components 11 22,T T  and 44T ) include four unknown functions (two metric 
coefficients 11g  and 44g , pressure and density), the metric coefficients were 
linked by an assumed equation and the obtained solutions were studied with re-
spect to physical consistency. Further results are presented elsewhere [6] [7] [8] 
[9]. 

Though a sphere of perfect fluid is frequently used as an idealized model of 
stellar objects, particular neutron stars [4], the problem considered in this paper 
corresponds to the conventional phenomenological GR theory based on the tra-
ditional model of space as a homogeneous isotropic continuum whose actual 
microstructure is ignored. 

The aforementioned results are based on the traditional form of the line ele-
ment in which space and time metric coefficients correspond to the Riemannian 
space. This paper demonstrates the alternative approach based on the proposed 
special model of the Riemannian space which is Euclidean with respect to space 
coordinates and is Riemannian with respect to time only. Within the framework 
of this model, analytical solutions of the external and internal problems for a 
sphere of perfect incompressible fluid are obtained and the numerical solution of 
the internal problem for a sphere consisting of compressible fluid or gas is con-
structed. 

2. Special Riemannian Space Model 

Within the framework of the traditional GR theory, the continuum is characte-
rized with the energy-momentum tensor j

iT ( ), 1,2,3,4i j =  introduced in a 
4-dimensional Riemannian space with the line element 

2d d di j
ijs g x x=                        (1) 

The energy-momentum tensor must satisfy four conservation equations 

( )0 , 1,2,3,4k
k iT i k∇ = =                    (2) 

If ( )1,2,3kx k =  are the space coordinates and 4x  is the time coordinate, 
the first three Equations (2) are the motion equations, whereas the fourth Equa-
tion (2) provides the conservation of mass. 

To obtain the expressions for j
iT , consider a spherically symmetric problem 

in coordinates , ,r θ ϕ  for the Newton gravitation theory. The field equations 
including the motion equation and the conservation equationin the Euler coor-
dinates are [10] 

( ) ( )2 2, 0rir r r
r r r

vv vv v
r r r t r r r tθ

µψσ µσ σ µ µ µ
∂∂∂ ∂ ∂ ∂ + − − = + + + = ∂ ∂ ∂ ∂ ∂ ∂ 

  (3) 

Here, rσ  and θσ  are the radial and the circumferential stresses, rv  is the 
radial velocity, µ  is the density, t is time, and ψ  is the Newton gravitation 
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potential. Using identical transformations and the second equation in Equations 
(3), we can reduce the right-hand part of the first equation to the following form 
[10]: 

( ) ( ) ( )

( ) ( )

2

2
22

rr rr r
r r

rr
r

vv vv vv v
t r t r t r

vv
v

t r r

µµ µµµ

µµ
µ

∂∂ ∂ ∂ ∂ ∂ + = + − +  ∂ ∂ ∂ ∂ ∂ ∂   

∂∂
= + +

∂ ∂

 

Using this result, we can present Equations (3) as 

( ) ( ) ( )

( )
( )

2 2

2

2 0,

2 0

r
r r r r

r r

v
v v

r r r t
c

cv cv
r r c t

θ

µψσ µ σ µ σ µ

µ
µ µ

∂∂ ∂ − + − − − − = ∂ ∂ ∂
∂∂

+ + =
∂ ∂

       (4) 

Here, c is the velocity of light. To apply Equations (2) for the energy-momentum 
tensor to the spherically symmetric problem of the Newton theory, we should take 
the following form of the line element in Equation (1): 

( )2 2 2 2 2 2 2 2 2 2d d d 1 d , d d sin ds r r f c t θ θ ϕ= + Ω − − Ω = +         (5) 

in which the amplitude value of function f is much smaller than unity. Applying 
Equations (2) for the line element in Equation (5) and undertaking linearization 
of these equations with respect to f, we arrive at 

( )
1 4 1 4

1 2 4 11 1 4 4
1 2 4 4

2 1 20, 0
2

T T T TfT T T T
r r r c t r r c t

∂ ∂ ∂ ∂∂
+ − + + = + + =

∂ ∂ ∂ ∂ ∂
      (6) 

Matching Equations (4) to Equations (6), we can conclude that 

1 2 2 4 2 1 4
1 2 4 4 1 2

2, , , , ,r r r r
fT v T T c T v c T v c
r rcθ

ψσ µ σ µ µ µ ∂ ∂
= − = = = = − = −

∂ ∂
 (7) 

The last of these equations in which f is the component of the metric tensor of 
the Riemannian space and ψ  is the Newton gravitation potential shows that the 
analogy between the gravitation and the Riemannian geometry actually follows 
from the Newton gravitation theory. In GR, Equations (7) are generalized as 

4 2 4
4 4, , ,j j j i i

i i i i iT v v T c T cv T cvσ µ µ µ µ= − = = = −          (8) 

It is assumed that µ  is the same in the first and the rest equations which 
follows from the principle of equivalence of the gravitation and the inertia masses. 
It is important to take into account that in the spherical coordinates mixed tensor 
components coincide with physical components. So, for a spherically symmetric 
problem, we have 

1 1 2 4 2 1 1 4
1 1 2 4 4 1 1, , , ,rT v v T T c T cv T cvθσ µ σ µ µ µ= − = = = = −      (9) 

To determine the geometry of the Riemannian space corresponding to the 
Newton gravitation theory, the trajectory of a particle in a Newton gravitation 
field is compared to the equation that specifies a geodesic line in a Riemannian 
space with the line element 
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2 2 2 2 2
11 22 44d d d ds g r g g c t= + Ω −                   (10) 

The result of comparison yields the following expressions for the components 
of the metric tensor [11]: 

2
11 22 441, , 1 grg g r g

r
= = = −                    (11) 

in which 

2
2

g
mGr
c

=                           (12) 

is the so-called gravitation radius that depends on the sphere mass m and the 
classical gravitation constant G. Note that Equations (10) and (11) correspond to 
the Riemannian space which is Euclidean with respect to the space coordinates 

, ,r θ ϕ  and Riemannian only with respect to the time coordinate tc. 
The obtained solution is not confirmed with experiment. The angle of devia-

tion of the light beam from the straight line in the vicinity of Sun calculated for 
the space with the metric coefficients in Equations (11) turns out to be only one 
half of the measured value. A more general GR theory is based on equation 

j j
i iE Tχ=                          (13) 

according to which the energy-momentum tensor in Equations (8) is propor-
tional to the Einstein tensor 

1
2

j j j j
i i i iE R g R Tχ= − =                  (14) 

in which j
iR  are the components of the Ricci curvature tensor depending on 

the metric tensor of the four-dimensional Riemannian space. The coefficient 
48 G cχ = π                      (15) 

is the relativity gravitation constant. 
Thus, in accordance to Equations (13) and (14), gravitation is associated with 

the curvature of the Riemannian space. However, as follows from the foregoing 
derivation, only one component of the energy-momentum tensor, namely 4

4T , 
allows for gravitation. The rest components in Equations (8) include mechanical 
stresses and velocities which induce the curvature of the Riemannian space as 
well. So, we can conclude that according to GR the space can be Euclidean only 
in the absence of gravitation, stresses and motion. Since this is not the case for 
the real continuum, the corresponding space is Riemannian and the Euclidean 
space does not exist. It should be noted that three-dimensional Riemannian 
space can exist in the Euclidean space with six dimensions [12], so the actual 
space is Euclidean but six-dimensional. This strange result follows directly from 
the GR theory. Fortunately, there is a more simple and realistic model of space. 
Recall that in the Newton theory Equations (10) and (11) correspond to the 
space which is Euclidean with respect to space coordinates and Riemannian with 
respect to time. Thus, introduce, in general, the special Riemannian space which 
is Euclidean with respect to space coordinates 1 2 3, ,x x x  and Riemannian with 
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respect to the time coordinate 4x ct=  only. In the absence of gravitation, the 
space is three-dimensional and Euclidean, whereas the continuum is described 
by the classical theories of deformable solids, fluids and gasses. Gravitation re-
sults in a four-dimensional space with space coordinates supplemented with 
time whereas the continuum is described by GR theory Equations (2), (13) and 
(14) in which six components of the metric tensor, namely ( ), 1,2,3ijg i j = , 
correspond to the Euclidean space and are known. The rest four metric coeffi-
cients, namely ( )4 1,2,3,4ig i = , are found from equations, following from Equ-
ations (13) and (14). In general, there are ten such equations which describe the 
gravitation in vacuum. However, since the tensor j

iE  is proportional to tensor 
j

iT  and hence satisfies four Equations (2), only six of these ten equations are 
mutually independent. The traditional set of GR equations is not complete [11] 
[13] [14] [15] and should be supplemented with the so-called coordinate condi-
tions the general form of which is not known. For the proposed special Rieman-
nian space, the set of independent GR equations consists of six equations and in-
cludes four unknown metric coefficients. In the theory of partial differential eq-
uations, the case in which the number of equations exceeds the number of un-
known functions is less critical than the case in which the number of unknown 
functions exceeds the number of equations, because some equations can be used 
to determine the integration functions which enter the solutions of the other 
equations. Moreover, it can occur that some of equations are satisfied identically. 
This is the case for a spherically symmetric problem considered further for 
which the set of GR equations is complete. For this problem, the line element 
corresponding to the proposed special Riemannian space is [16] 

2 2 2 2 2 2
14 44d d d 2 d d ds r r g c r t g c t= + Ω + −               (16) 

As can be seen, in contrast to the traditional Equation (19), there are two un-
known metric coefficients and the space is not “orthogonal” to time. 

3. The Schwarzchild Solution 

The first solution of the GR problem for a sphere consisting of a perfect incom-
pressible fluid was obtained by K. Schwarzcchild. The set of the Einstein equa-
tions, Equations (13), (14), for a spherically symmetric static problem with the 
line element in Equation (10) has the following form [17]: 

2
1 122 22 44
1 1

22 11 22 22 44

1 1 1
4 2

g g gЕ T
g g g g g

χ
 ′ ′ ′ 
 = − + = 
   

            (17) 

2 2
2 44 44 22 22 22 44 11 11 44
2

11 44 44 22 22 22 44 11 11 44

2
2

1 1 1
2 2 2 2 2

g g g g g g g g gE
g g g g g g g g g g

Tχ

 ′′ ′ ′′ ′ ′ ′ ′ ′ ′     
 = − − + − + − −     
       

=

 (18) 

2
4 422 22 11 22
4 4

22 11 22 22 11 22

1 1 1
4 2

g g g gE T
g g g g g g

χ
 ′′ ′ ′ ′ 
 = − − − = 
   

        (19) 
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where ( ) ( )d dr′⋅ = ⋅ . For the sphere consisting of a perfect incompressible fluid, 

r pθσ σ= = − , where p is the pressure and the density is constant, i.e. 0µ µ= . 
For a static problem, 1

1 0v v= =  and Equations (8) yield 
1 2 4 2 4 1

1 2 4 0 1 4, , , 0T p T p T c T Tµ= − = − = = =  

Consider the empty space surrounding the sphere with radius R. For this 
space, 0p = , 0 0µ =  and Equations (17)-(19) are homogeneous. As can be seen, 
Equations (19) and (17) allow us to express 11g  and 44g  in terms of 22g . The 
general solution of these equations is [18] 

( )
( )

2
22 1

11 44 2
2222 1 22

, 1
4

g Cg g C
gg C g

 ′
= = +  +  

          (20) 

in which C1 and C2 are the integration constants. Substituting Equations (20) in 
Equation (18), we can conclude that this equation is satisfied identically with any 
function ( )22g r . This result looks natural because the set of the GR equations is 
not complete. The Schwarzchild solution was obtained under the additional 
coordinate condition 2

22g r= . Originally, K. Schwarzchild used a different 
condition which can reduced to the written above [19]. The integration con-
stants can be found from the asymptotic conditions according to which Equa-
tions (20) should reduce to Equations (11) corresponding to the Newton theory 
for r →∞ . Taking 2

22g r= , we finally get 

11 44
1 , 1

1
ge e

g

r
g g

r r r
= = −

−
                 (21) 

Here gr  is specified by Equation (12) and index “e” corresponds to the ex-
ternal space. The solution in Equations (21) formally has two singular points—

gr r=  and 0r = . The second singularity does not appear because Equations 
(21) are valid for r R≥  in which R is the radius of a fluid sphere. The first sin-
gularity takes place at the minimum possible value of r which is r R= . Thus, 
for the problem under study, the so-called Schwarzchild singularity appears 
on the sphere surface. Naturally, gr  cannot be referred to as the radius of the 
horizon of events because the penetration through this surface is physically not 
possible. 

Consider the internal problem for 0 r R≤ ≤ . For 2
22g r=  and 4 2

4 0T cµ= , 
integration of Equation (19) yields 

( )11 2 2
0 3

1
1 3

ig
c r C rχµ

=
− +

                 (22) 

in which index “i” corresponds to the internal space and C3 is the integration 
constant. We should take 3 0C = , otherwise, 11

ig  becomes singular at the cen-
ter of the sphere of any radius. Thus, 

( )11 2 2
0

1
1 3

g
c rχµ

=
−

                   (23) 

As can be seen this expression does not include an integration constant. This 
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is associated with the coordinate condition 2
22g r= . Indeed, substitution of this 

condition in Equation (19) which has initially the second order reduces it to the 
equation of the first order whose solution (22) includes only one constant. As a 
result, we arrive at the problem associated with the boundary condition on the 
sphere surface according to which 

( ) ( )11 11
i eg R g R=                       (24) 

Substituting Equations (21) and (23) and using Equations (12) for gr  and 
(15) for χ , we arrive at the following expression for the sphere mass: 

3
0

4
3

m Rµπ=                        (25) 

which corresponds to the Euclidean space. However, the space inside the sphere 
is Riemannian and the mass can be found using Equation (23) as 

2
2 3

0 11 0
0

34 94 d 1
3 10 56

R
g gi r r

m g r r R
R R

µ µ
  
 = ≈ + + + 


π π
  

∫ �      (26) 

This result coincides with Equation (25) if 0gr =  which means the absence of 
gravitation. Naturally, the actual mass is specified by Equation (26) and the 
boundary condition (24) is not satisfied in the Schwarzchild solution. 

To proceed, transform Equation (23) Equations (12), (15) and (25) for gr , 
χ  and m which yield 

2
0 3

1
3

grc
R

χµ =                        (27) 

Then, Equation (23) becomes  

11 2 3
1

1
i

g

g
r r R

=
−

                     (28) 

Consider Equation (2) which for the problem under study has the following 
form: 

( ) ( )
1

1 2 1 41 22 44
1 2 1 4

22 44

d 0
d 2
T g gT T T T
r g g

′ ′
+ − + − =  

Substituting Equations (20) for the energy-momentum tensor, we get 

( )244
0

44

0
2
gp p c
g

µ
′

′ + + =                    (29) 

Taking 1
1T p= −  in Equation (17) and substituting 11

ig  from Equation (28), 
we can find 

44
2

44

d1 3 1
d 1

i

gi
g

g pr r
rg r r

+
=

−
                   (30) 

where 

2
0

, ,g
g

rr pr r p
R R cµ

= = =                  (31) 

Equations (29) and (30) yield the final equation for the normalized pressure 
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( )2
d 1 3 1 1 0
d 2 1g

g

p pr r p
r r r

+
+ + =

−
 

The solution of this equation which satisfies the boundary condition 
( )1 0p r = =  is [17] 

2

2

1 1

3 1 1
g g

g g

r r r
p

r r r

− − −
=

− − −
                  (32) 

Using this result and integrating Equation (30) under boundary condition 
( ) ( )44 441 1i eg r g r= = = , we can obtain the following expression for the time me-

tric coefficient [17]: 

( )2
2

44
1 3 1 1
4

i
g gg r r r= − − −                (33) 

Substituting the obtained solution, Equations (28), (32) and (33), in the re-
maining field equation, Equation (18), we can prove that this equation is satis-
fied identically. Thus, Equations (21), (28), (32) and (33) specify the Schwarz-
child solution of the spherically symmetric problem for a sphere consisting of a 
perfect incompressible fluid. To analyze this solution, calculate the pressure at 
the sphere center. Taking 0r =  in Equation (32), we get 

0

1 1

3 1 1
g

g

r
p

r

− −
=

− −
                    (34) 

The denominator of this expression is zero at 8 9s
gr = . This means that the 

pressure 0p  becomes infinitely high for the sphere with radius  
9 8 1.125s g gR r r= = . It is natural to suppose that the Schwarzchild solution is 

not valid for the spheres whose radius is less than sR . Indeed, for 1.11 gR r=  
( 0.9gr = ) Equation (33) gives negative pressure ( 0 11.35p = − ) which has no 
physical sense. Thus, the Schwarchild singularity following from Equations (21) 
and taking place at gR r=  is not reached in the Schwarzchild solution for a 
fluid sphere. 

4. GR Theory Equations for the Special Riemannian Space 

Consider spherically symmetric problem in the Riemannian space with the line 
element in Equation (16). The Einstein equations, Equations (13) and (14), have 
the following form: 

( )1 2 144
1 14 44 14 44 12 2 2

14

1 ln gE g g rg rg g T
с tr g g

χ
 ∂′= − + = ∂ 

        (35) 

(

)

2 2 2 2
2 14 44 14 14 44 44 44 44 44 44 14 442

14 14 44 44 14 14 44 14 14 14 14 44 14

2
2

1 4 4 2 2 2
4

2 4 2 4 2 4

E g g g g g g g rg g rg rg g
rg

rg g g g g g g rg g g rg g rgg

Tχ

′ ′ ′ ′′ ′ ′′= − − − + −

′ ′ ′ ′ ′+ − + + + −

=

� � � � �  (36) 

2
4 414
4 42

1 rgE T
r gr

χ
 ∂

= = ∂  
                    (37) 
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4 414
1 1

1gE T
r r g

χ
 ∂

= = ∂  
                     (38) 

2
1 114 44 44
4 42 2

14

lng g gE T
с trg g

χ∂
= =

∂
, 2

44 14g g g= +            (39) 

Here, ( ) ( ) r′⋅ = ∂ ⋅ ∂  and ( ) c t⋅⋅ = ∂ ∂ . The energy-momentum tensor satisfies 
conservation Equations (2) whose explicit form is 

( ) ( ) ( )1 1 2 1 4 4 1 4 444 14 44 14
1 1 2 1 4 1 4 1 1

2 0
2 2 2
g g g g gT T T T T T T T T

r g g g g
′ ′ ′′ + − + − + + + + =

��  (40) 

( ) ( )1 4 4 4 1 1
44 14 1 4 44 1 4 4 4

1 4 4
14 14 4 44 14 1 14 44 1

2 2

2 2 0

rg g T T g T g rT r T T

rg g T rg g T rg g T

 ′ ′ − − + + +    
′+ − + =

�

� �
        (41) 

The energy-momentum tensor is specified by Equations (9) which need some 
additional comments. The GR problem cannot be strictly static even if there is 
no motion, because Equations (9) include the velocity of light. If the radial and 
the time coordinate axes are orthogonal as in Equation (10) used in the previous 
Section, the velocity of light directed along the time axis does give the projection 
on the radial axis and for a static problem 1

1 0v v= = . However, for an oblique 
coordinate frame the situation is different [20]. The velocity of light gives zero 
contravariant projection on the radial axis, whereas the covariant projection is 
not zero. Thus, we must take 1 0v =  and 1 0v ≠  in Equations (9) which take the 
following form for a sphere consisting of a perfect fluid: 

1 2 4 2 1 4
1 2 4 4 1 1, , , 0,T p T p T c T T cvµ µ= − = − = = = −         (42) 

Simplify Equations (35)-(39). Since 1
4 0T = , Equation (39) yields 

( )2
14 44g f r g=  

where ( )f r  is an unknown function. It is natural to assume that for a static 
problem the functions in Equations (35)-(38) and (40)-(42) do not depend on 
time. Then, taking into account Equations (41), we can present Equations 
(35)-(38) and (40), (41) as 

( )1 2
1 14 442

1E g rg p
r g

χ′= − = −                   (43) 

( ) ( ) ( )2 2
2 14 44 14 14 44 44 44 44 14 44 14 442

1 4 2 2
4

E g g g g g g rg rg rg g g g p
rg

χ ′′ ′ ′ ′ ′′ ′ ′= − − + − − = −  
 (44) 

2
4 214
4 2

1 d
d

rgE c
r gr

χµ
 

= = 
 

                    (45) 

( )4 214
1 1 44 14 44

d 1 , 1
d

gE v c g g g g f r
r r g

χµ
 

= = − = + = +    
 

      (46) 

( )244 14 44
1 0

2 2
g g gp p c cv

g g
µ µ

′ ′
′ − + − =                (47) 
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( )2
14 44 1 0g p c g cvµ µ+ + =                    (48) 

Since we have two Equations (47) and (48), only two of four Equations (43)-(46) 
are mutually independent. Thus, we have four equations for four functions 

14 44 1, , ,g g p v  and the system of GR equations is complete. 

5. External Solution 

Consider the empty space surrounding the sphere with radius R. In this space, 
0p =  and 0µ = , Equations (47) and (48) are satisfied identically, whereas 

(43)-(46) are homogeneous. Taking 0µ =  in Equations (45) and (46), we get 

2 2 1 2
14 1 2 44 14 2, , C Cgg C g C g g g C

r r
= = = − = −  

For r →∞ , the obtained solution must reduce to the solution following from 
the Newton theory, i.e.,to 14 0g = , ( )44 1 gg r r= − . Thus, 

14 44, 1g ge er r
g g

r r
= ± = −                     (49) 

The obtained solution is not singular and specifies two equivalent spaces that 
correspond to the positive and the negative values of 14

eg . Recall that solution 
(49) is found from Equations (45) and (46). Direct substitution in the rest ho-
mogeneous Equations (43) and (44) satisfies these equations identically. Equa-
tions (49) correspond to the so-called Gullstand-Painlever coordinates [21] [22] 
found as a result of coordinate transformation of the Schwarzchild solution. 
Here, the metric coefficients in Equations (49) are not associated with the 
Schwarzchild solution and follow from the proposed model of the Riemannian 
space. 

6. Internal Solution for a Sphere Consisting of a Perfect  
Incompressible Fluid 

Consider an internal space of a fluid sphere for which 0µ µ= . Integration in 
Equation (45) yields 

2 2 2 3
14 0

1
3

Cg g c r
r

χµ = + 
 

                 (50) 

in which 3 0C = . We can transform this result with aid of Equation (27). Note 
that in contrast to the Schwarzchild solution considered in Section 2, for the 
problem under study this equation is exact, because the space in coordinates 

, ,r θ ϕ  is Euclidean and the sphere mass is specified by Equation (25). Thus, 

2 2
14 3 g

gg r r
R

=  

Applying Equation (42) and Equation (46) for g, we get 
2

3 2
g

g

r r
f

R r r
=

−
                        (51) 

Consider Equation (48) and express 
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( )214
1 0

44 0

gv p c
g с

µ
µ

= − +                     (52) 

Substituting this result in equation (47), we arrive at the following equation: 

( )244
0

44

0
2
gp p c
g

µ
′

′ + + =                     (53) 

which is the same as Equation (29) in the Schwarzchild solution. Transforming 
Equation (43) with the aid of Equations (27), (42) and (46), we find 

44
3 2 2

44 0

3 1g

g

r rg p
g R r r cµ

 ′
= + 

−  
                   (54) 

This equation is also the same as Equation (30) in the Schwarzchild solution. 
Since Equations (53) and (55) coincide with Equations (29) and (30), and the 
boundary conditions are the same in the Schwarzchild solution, the pressure is 
specified by Equation (32) and the time metric coefficient 44g  by Equation 
(33). As in the Schwarzchild solution, the pressure at the sphere center becomes 
infinitely high for the sphere with radius 9 8s gR r= . For spheres whose radii 
are less than sR , the solution does not exist. It should be noted that, in contrast 
to the Schwarzchild solution, the obtained external solution is not singular for 

gR r= . 
The metric coefficient 14g  can be found from Equations (42) and (51), i.e. 

( )2
14 2

1 3 1 1
2 1

g
g g

g

r r
g r r r

r r
= ± − − −

−
            (55) 

Taking 1r = , we get 14 gg r= ±  and the boundary condition on the sphere 
surface is satisfied. To complete the analysis, determine the velocity 1v . Substi-
tuting the obtained results in Equation (52), we arrive at 

( )
( )1 2

2 2

4 1

1 3 1 1

g g

g g g

cr r r
v

r r r r r

−
=

− − − −
∓             (56) 

The maximum absolute value takes place on the sphere surface, i.e., 

1 1
gm

g

c r
v

r
=

−
 

Formally, 1
mv c>  if 0.382gr > . The same result was obtained for a solid 

elastic sphere [20]. However, as follows from Equation (56), any point of a fluid 
has two equal velocities with different signs and we can suppose that 1v  is not 
associated with any real motion. The obtained solution identically satisfies the 
field equations, Equations (43)-(48). 

7. Internal Solution for a Sphere consisting of a Perfect  
Compressible Fluid or Gas 

The model of a perfect incompressible fluid considered in Sections 2 and 5 is not 
compatible with GR, because the velocity of sound in this model is infinitely 
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high, whereas in the GR theory it cannot be higher than c. To avoid this short-
coming, consider the case of a compressible fluid or gas and assume that the 
density is a linear function of the pressure, i.e., 

( )0 1 kpµ µ= +                        (57) 

in which k is a given coefficient. Recall that only four of six field Equations 
(43)-(48) are mutually independent. To study the problem, i.e., to determine 

14 44 1, ,g g v  and p, we use Equations (43), (45), (47) and (48). In addition to Equ-
ations (31), introduce the following normalized parameters: 0µ µ µ=  and 

2
0k k cµ= . Then, Equation (57) can be presented as 

1 kpµ = +                         (58) 

Consider Equations (12), (25) and (20) for ,gr m  and χ . The first of them, 
i.e. 22gr mG c= , is valid for a compressible sphere material, because the GR 
Equations (2) provide the conservation of mass which has the form 

( ) ( )
1

2 2 3 2
0 0

0 0 0

4 d 4 1 d 4 1 d
R R

m r r kp r r R kp r rµ µ µπ π π= = + = +∫ ∫ ∫     (59) 

Introduce a formal parameter 0 22g or m G c=  which is the gravitation radius of 
the homogeneous sphere with radius R, density 0µ  and mass ( ) 3

0 04 3m Rµπ= . 
Then, Equation (27) yields 

0

2 2
0

3 gr
c R

χ
µ

=                         (60) 

in which 0 0
g gr r R= . 

The first equation of the governing set follows from Equation (43) which can 
be presented with the aid of Equation (60) as 

2 0 244
14

d 3
d g
gr g r gpr
r

− =                    (61) 

Taking into account Equations (58), (61) and using Equation (45), we can ob-
tain the second equation of the governing set 

( )
2

0 2 214
44 14

d 3 1 ,
d g

rg r r kp g g g
r g
 

= + = + 
 

           (62) 

Equation (48) can be used to determine 1v , i.e., 

14
1

44

2
1

cg kpv
g kp

+
= −

+
 

Substituting this result in Equation (47), we arrive at the third equation of the 
governing set 

( )44

44

dd 1 1 0
d 2 d

gp p kp
r g r
− + + =                  (63) 

Thus, we arrived at three Equations (62), (63) and (64) for 14 44,g g  and p . 
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In these equations, r r R=  and 0 1r≤ ≤ . Note that we do not know the 
sphere radius R which depends on pressure. To obtain the solution, we need 
three boundary conditions according to which 

( ) ( ) ( )14 440 0, 1 0, 1 1 1g
g

r
g r p r g r r

R
= = = = = = − = −       (64) 

Since we do not know g gr r R= , we apply the following iteration procedure. 
For the preliminary selected parameter 0

gr , we take 0
g gr r=  and undertake 

numerical integration of the equations. Substituting the obtained solution for 
( )p r  in Equation (59), we find  

( )
1 1

0 0 2 0 2 0

0 0 0

3 1 d 1 3 dg g g g g
mr r r kp r r r k pr r r
m

λ
 

= = + = + = 
 

∫ ∫     (65) 

The integration is repeated with this value of gr  and so on. The procedure is 
terminated when the fourth boundary condition following from the solution for 
the external space in Equations, i.e., 

( )14 1 gg r r= =                       (66) 

is satisfied with the given accuracy. 
To demonstrate the procedure, take 1k =  and 0 0.5gr = . Then, for the first 

iteration step, we have initially ( )0
14 1 0.707g = . Integration yields 1.190385λ =  

and 0.59519gr = . We find ( ) 0
14 141 0.857g g= ≠  and the boundary condition in 

Equation (66) is not satisfied. For the second step, we take 0.59519gr =  in Equa-
tions (65), so that 1

14 0.771487g = . The result of integration is 14 0.771488g =  
and the boundary condition in Equation (66) is practically satisfied. Thus, for 

0 0.5gr =  we arrive at 0.59519gr =  and we need only two iteration steps to 
obtain the solution with the reasonable accuracy. 

For 0k = , we have the analytical solution presented in Section 4. According 
to this solution, the pressure at the sphere center becomes infinitely high for the 
sphere with the normalized gravitation radius ( )8 9 0.888 8gr = = . Numerical 
integration for 1410k −=  allows us to conclude that the numerical procedure 
does not converge if 0.885gr ≥ . Thus, we can associate the absence of the 
process convergence with the pressure singularity at the sphere center. Assume a 
relatively small value, e.g. 0.0001k = . The maximum value of 0

gr  for which 
the process converges is 0.884 which corresponds to 0.8842gr = . The results of 
the parametric analysis are presented in Table 1. 

As can be seen, the higher is the fluid or gas compressibility, the lower is the 
maximum gravitation radius. In general, the maximum gravitation radius depends 
on the model of the sphere material. For example, for a solid elastic sphere, it is 

1gr =  [20]. 
The dependence of the normalized pressure on the radial coordinate is shown 

in Figure 1. Solid lines correspond to the compressible fluid or gas, whereas 
dotted lines demonstrate the analytical solution for an incompressible fluid (the 
numbers on curves correspond to Table 1). 
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Table 1. The maximum values of 0
gr  and gr  for various values of parameter k . 

k  0.0001 0.001 0.01 0.1 0.5 1.0 1.5 2.0 

0
gr  0.8840 0.8820 0.8650 0.7710 0.6110 0.5120 0.4470 0.3990 

gr  0.8842 0.8836 0.8803 0.8276 0.7197 0.6492 0.5877 0.5359 

 

 
Figure 1. Dependences of the normalized pressure on the radial coordinate for various 

values of parameter k , ─: compressible fluid or gas, ∙∙∙: incompressible fluid.  

8. Conclusion 

The proposed model of the Riemannian space according to which the space is 
Euclidean with respect to space coordinates of the continuum and is Riemannian 
with respect to the time coordinate only is applied to a spherically symmetric GR 
problem for a perfect fluid or gas sphere. The solution to the external problem 
results in the so-called Gullstand-Painlever metrics. The solution of the internal 
problem for an incompressible fluid gives the pressure which coincides with the 
Schwarzchild solution for the same problem. The solution for the fluid or gas 
whose density is a linear function of pressure is obtained numerically and com-
pared to the Schwarzchild solution for an incompressible fluid. 
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