
Communications and Network, 2024, 16, 1-30
https://www.scirp.org/journal/cn

ISSN Online: 1947-3826
ISSN Print: 1949-2421

DOI: 10.4236/cn.2024.161001 Feb. 29, 2024 1 Communications and Network

Python Server Page Performance Analysis and
Modeling

Razafindraibe Marolahy Alix, Randrianomenjanahary Lala Ferdinand,
Rafamantanantsoa Fontaine, Mahatody Thomas, F. Angelo Raherinirina

University of Fianarantsoa, Fianarantsoa, Madagascar

Abstract
Today, in the field of computer networks, new services have been developed
on the Internet or intranets, including the mail server, database management,
sounds, videos and the web server itself Apache. The number of solutions for
this server is therefore growing continuously, these services are becoming
more and more complex and expensive, without being able to fulfill the needs
of the users. The absence of benchmarks for websites with dynamic content is
the major obstacle to research in this area. These users place high demands
on the speed of access to information on the Internet. This is why the per-
formance of the web server is critically important. Several factors influence
performance, such as server execution speed, network saturation on the in-
ternet or intranet, increased response time, and throughputs. By measuring
these factors, we propose a performance evaluation strategy for servers that
allows us to determine the actual performance of different servers in terms of
user satisfaction. Furthermore, we identified performance characteristics such
as throughput, resource utilization, and response time of a system through
measurement and modeling by simulation. Finally, we present a simple queue
model of an Apache web server, which reasonably represents the behavior of
a saturated web server using the Simulink model in Matlab (Matrix Labora-
tory) and also incorporates sporadic incoming traffic. We obtain server perfor-
mance metrics such as average response time and throughput through simula-
tions. Compared to other models, our model is conceptually straightforward.
The model has been validated through measurements and simulations during
the tests that we conducted.

Keywords
Performance Analysis, Queue, Performance Model, Web Server, Internet,
World Wide Web, Web Server Performance

How to cite this paper: Alix, R.M., Ferdi-
nand, R.L., Fontaine, R., Thomas, M. and
Raherinirina, F.A. (2024) Python Server
Page Performance Analysis and Modeling.
Communications and Network, 16, 1-30.
https://doi.org/10.4236/cn.2024.161001

Received: September 30, 2023
Accepted: February 26, 2024
Published: February 29, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/cn
https://doi.org/10.4236/cn.2024.161001
https://www.scirp.org/
https://doi.org/10.4236/cn.2024.161001
http://creativecommons.org/licenses/by/4.0/

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 2 Communications and Network

1. Introduction

According to this survey
“https://lp.jetbrains.com/python-developers-survey-2021/”, for the last 4 years
the share of developers who use Python as their main language remains at the
pretty same level of 84% - 85%, which means that Python is the most popular
programming language in the world. Python is compatible with many operating
systems like Windows, IOS, and Linux. It is a cross-platform programming lan-
guage. Python is a portable language. Everything can be done with Python.
However, JSP and PHP have been used to analyze the Performance of Dynamic
Web Server and modeling by Simulink [1]. Explore whether there have been any
advancements or new technologies in Python server page performance since the
research was conducted.

Investigate how these advancements can address existing problems such as
web server crashes and slower. In this research, we look for case studies and
real-world problems that showcase specific issues and present how they were
resolved. These examples can provide insights into practical solutions. Evaluate
the methodologies and tools used in previous research. Determine if there are
new or more efficient approaches for performance analysis and optimization.
Moreover, the performances of the Web Server MySQL and PostgreSQL have
been analyzed by Neural Networks Modeling [2]. Therefore, Java and PHP have
been explored to secure the code of analyses and Evaluation of Performance [3].
Python continues to be the most preferred language for scientific computing,
cyber security, data science, machine learning, deep learning, GPU computing,
neural networks and web applications [4].

In this paper, we focus on the last area of usage of Python mentioned above
within coupling the Apache web server.

Obtaining the speed of execution is a more and more important factor in ap-
preciating the quality of service of the Internet. Having great applications availa-
ble through the Internet is one of the goals of the World Wide Web. The in-
creasing of internet users creates a lot of problems for the quality of service of-
fered to the user (saturation of the network and servers, increasing response
time) which are the bottlenecks [5]. Performance modeling is also used in capac-
ity planning to predict the system performance by spotting the system bottle-
necks. Other uses of modeling include capacity provisioning; which is an essen-
tial term in the equation for the success of a web application and in general for
all software. To directly assess required performance targets against available
resources [6] a measurement-based approach is adopted for capacity planning
purposes. The behavior of the system under the given client workload can yield
results that can help identify performance. Internet users are commonly inte-
racting with websites. Many of them are dynamic in nature. These sites produce
content based on user requests, instead of serving static web pages. Thanks to
the functionality and interactivity offered by these dynamic websites.

Appropriate web applications [7]. Along with providing the required functio-

https://doi.org/10.4236/cn.2024.161001
https://lp.jetbrains.com/python-developers-survey-2021/

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 3 Communications and Network

nality, these web applications must be fast and responsive enough that users do
not find their web experience unpleasant. From personal experience, it is easily
realized that sites that take a long time to respond are unpopular. With the de-
mographic growth of Internet users and the growing e-commerce market, which
reached 2.2 billion in 2013 [8], the future will likely see more of the Web pres-
ence of business in the form of web applications. However, if only the functional
characteristics are considered, the web applications will seriously suffer from
performance. Based on a study of online buyers by Forrester Consulting, 40% of
customers would leave a site if the loading of the web page is more than three
seconds. Poor performance is an impact factor for customer dissatisfaction and
site abandonment [9] [10]. If performance is poor then customers are lost [11],
which contributes to the loss of benefits and builds a bad reputation for the or-
ganization.

In this paper, we focus on the Apache web server which is a well-known web
server [12] [13]. It is also the most commonly used server according to [8]. Sev-
eral researchers have carried out research performance modeling analysis for the
Python server page. Different tasks of Hu et al. or MENASCE and Almeida have
proposed a validated model on the capacity planning of a web server used to
predict performance in different contexts. There are also [14] [15] [16] [17] who
offered M/M/1/k, M/G queue models/1/K * PS and MMPP/G/1/K * PS to eva-
luate the performance of a web server or a proxy. They studied the performance
consequences of parameters such as inbound traffic, document size distribution,
cache memory, and maximum number of connections.

Compared to other researchers, we carried out a performance test of the
Apache web server using the Apachebench tool and the tool developed in Py-
thon scapy which is designed to give statistics on the response time and the ser-
vice time of the Python server page as well as the processing of the document
size retrieved in various field of the used database table and also concurrency
queries. We also presented a simple model based on the M/M/1 queue representing
the performance of the Apache Web server, a model created with Simulink soft-
ware which follows the FIFO law (first come, first served) in MATLAB.

This document is organized into 4 sections. In Section 1 we will see the pres-
entation and performance of the Python server page as well as the tools for
measuring the performance of a web server. In section 2, we will see the gene-
rality of Python server pages. The configurations of the experiments and the
results obtained are examined respectively in Sections 3 and 4. A simple model
which represents the behavior of a saturated web server is given at the end of the
paper.

2. Apache Web Server Overview APACHE

Apache is HTTP server software produced by Apache Software Foundations. It
is the most popular HTTP server on the web (Apache represents 50.93% of the
market share). It is free software with a specific type of license, called the Apache

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 4 Communications and Network

license. Apache is designed to support many modules giving it additional features:
interpretation of Perl, PHP, Python and Ruby, proxy server, Common Gateway
Interface, Server Side Includes, URL rewriting, content negotiation, additional
communication protocols, etc. However, it should be noted that the existence of
many Apache modules complicates the configuration of the web server.

Indeed, best practices recommend loading only useful modules: many security
vulnerabilities affecting only Apache modules are regularly discovered.

Apache’s configuration possibilities are a flagship feature. The principle is
based on a hierarchy of configuration files, which can be managed independent-
ly. This feature is particularly useful for hosting companies who can serve the
sites of several customers using a single HTTP server. For customers, this func-
tionality is made visible through the hidden file htaccess.

2.1. Web Server Performance

The W3C working group defined the web service as a software system identified
by a URI whose public interfaces and associations are defined and described in
XML. Its definition can be discovered by other software systems. These systems
can then interact with the web service in the manner indicated in its definition,
using XML messages transmitted by internet protocols.

HyperText Transfer Protocol (http) is the first protocol used by the Web to
retrieve information from distributed servers.

In order to properly organize the performance metrics of a web server, the
system must meet the following conditions:
● A machine on which a Web server to be tested is installed.
● A Client machine containing the performance measurement tool.
● A network connecting the client machine and the server that we are going to

test.
Four metrics are used to measure the capacity of a web server:

● The number of requests processed per second;
● The flow;
● The latency of a request;
● The number of errors,

Among these four metrics, tests were carried out on the number of requests
processed per second, the throughput and the number of errors (mean squared
error).

2.2. Performance Analysis Methodology

Performance tests will determine which technology is the best. For that we have
another machine which will be used to stress our web server. The benchmark
machine will simulate user connections sending several requests at the same
time. There are tools that can do this.

In our protocol we used the Apachebench tool.
The Figure 1 shows the experimental setup.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 5 Communications and Network

Figure 1. Experimental setup.

The main steps for the assessment of are as follows:

● Understand the server environment.
● Monitor server operations.
● Analyze server capacity and performance.

2.3. Experimental Environment

Here are the inventories of the software and hardware used during the experi-
ment, summarized in Table 1.

2.4. The Apachebench Performance Measurement and Evaluation
Tool

Several tools are used to measure and evaluate the performance of a web server
such as: SURGE; SpecWeb96; WAGON [18]; SpecWeb99 [19].

Table 2 shows the characteristics of the used softwares.
Let’s take a look at the minimum.
ApacheBench usage:
Example:
ab -c 2 -n 10 http://www.apache.org
The three options are:
-Simultaneity (-C 2).
-Number of requests (-n 10).
-URL (http://www.apache.org).
How it works is that ApacheBench will create concurrent workers and each

worker will make requests one after the other until the total number of requests
are processed. Each request takes a little different time.

Each worker has to wait until only their request is complete before they can
start the next request, but they will start the next request as quickly as possible. It
is easy to see on Figure 2 that 2 workers should take about half the time to make
10 requests as a single worker would if he made all requests sequentially.

Competition is the best way to simulate the load on our web application. As
our app gets more users, your competition will increase, but it won’t not in a
report of one by one then that most requests can be processed within a short pe-
riod of time for a given user. Unlike ApacheBench workers, real users don’t
make requests one after another as quickly as possible: actual load has a lot of
gaps and splinters.

https://doi.org/10.4236/cn.2024.161001
http://www.apache.org/
http://www.apache.org/

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 6 Communications and Network

Table 1. Characteristics of the used materials.

 Server Client

CPU
AMD Athlon(tm) II

Dual-core M320 2.10 Ghz
Intel Pentium 4 (2,4 GHz)

RAM 2 Go 512 Mo

Hard Drive 250 Go

Network Cards 3Com et Qualcomm Atheros carte Realtek Semiconductor

Table 2. Characteristics of the used softwares.

 Server Client

Operating System
Pear Linux OS 8 (Distribu-

tion Ubuntu)
Debian 6 Squeeze

Web Server Apache2.2

Application Server PSP PHP

Database Server PostgreSQL9.1 MySQL

Tools System Monitor ApacheBench (ab) Scapy

Figure 2. Apachebench structure.

However, simulating this gusty traffic is difficult; simulating it the way Apa-

cheBench gives you a good worst case burst scenario. The number of requests
will depend on your application, but the rule of thumb is that you want this
number to be large enough to get a fairly consistent average. For example, if
your application has a cache, the first request will be slower than subsequent re-
quests so making a few requests will bias the result.

A value between the cached result and the uncached result (which does not
correspond to any actual request): The rule of thumb is to make the number
(thousands or more) large and then lower it as long as the decrease in the num-
ber gets similar results.

3. Python Server Pages
3.1. Introduction

Python offers strong introspection capacity, dynamic data typing, strong exten-

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 7 Communications and Network

sibility. It is also completely object-oriented and has platform independence
(Windows, Linux, Solaris, Mac Os, ...). Python allows the developer to be more
productive and get a better result in a small amount of time, since Python code is
extremely easy to read and understand, and also code maintenance is easier by
maintaining and following. Some programming styles in Python. This dynamic
nature of Python leaves the programmer to write a minimum of unambiguous
code to accomplish tasks that are very complex.

One of the great strengths of Python is its extensible standard library which
greatly improves the ability to realize very complex applications, including
reading Input/Output files (I/O file), interaction with the system, the network ,
data processing and manipulation, threading.

Figure 2 shows the Apachebench Structure.
Python Server Pages (PSP) is to Python what Java Server Pages is for Java.

Pages written in PSP can be 50 times more efficient than those using the CGI
standard. Mod_python includes a large number of specialized modules that will
make web application development easier. Python Server Pages (PSP) provides
the ability to produce dynamic web pages for use with the Webware WebKit Py-
thon Servlet engine, simply by writing standard HTML. The HTML code is scat-
tered between special tags indicating special actions that will be performed when
the page loads. The general syntax of Python Server Pages is based on the speci-
fications of the popular Java Server Pages used with Java Servlet.

Python Server Pages, for web application development, is fully “open source”,
he is still in progress of development and shows great promise for the future of
web application development.

PSP provides the ability to write scripts that include all the power of Python in
an HTML page. Python Server Pages can therefore be compared with other web
scripting languages, server side, such as JSP, PHP or ASP.

3.2. Features

Python Server Pages has the following main features:
● A familiar and similar syntax to JSP, PHP, ASP.
● The power of Python as a scripting language (speed, simplicity, etc.).
● Flexible and expandable PSP classes.
● The possibility of creating other additional methods for the PSP classes.

4. Analysis and Modeling of the Web Server
4.1. Experimentation

Series of experiments have been carried out to examine the performance of the
Python server page.

In the web pages there are different types of documents, for example texts,
images, sounds and videos. In addition, the sizes of documents vary widely de-
pending on their content.

We want to know the service time required for a given document size. In this

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 8 Communications and Network

section, we examine the relationship between document size and the processing
time required on the server.

4.1.1. Using the ApacheBench Tool
The Apachebench tool is therefore launched in a terminal as follows:

ab -n 100 -c 10 -g bench1.txt http://192.168.100.54/Requete1.psp with:
-n: Number of requests sent in parallel.
-c: Concurrent user.
-g: <file> Generate an exploitable file in plot format.
-192.168.100.54: IP address of the server we are going to test Screenshot of the

results obtained during the test.
The only numbers we really care about are:
- Complete requests.
Failed requests Times per Requests.
In this experiment, the sizes of documents requested in a field of the

POSTGRESQL and MYSQL database table were varied as already explained pre-
viously, as well as the number of fields that the queries were made.

In this experiment, the sizes of documents requested in a field of the
POSTGRESQL and MYSQL database table were varied as already explained pre-
viously, as well as the number of fields that the queries were made.

4.1.2. Experimental Results
Several experiments have been carried out to measure the performance of the
Apache Web server. Performance tests will determine which technology is the
best. This is why we have another machine which will be used to stress our web
server. The benchmark machine will simulate user connections sending several
requests at the same time. There are tools that can do this. In our protocol we
used the ApacheBench tool. After each test, the tool ApacheBench collects statis-
tics on various performance metrics such as average response time, number of
errors. We will also be using the Linux system monitor tool to monitor system
resources on the server machine. The monitored resources are: memory and CPU.

For each experiment, we will see the relationship between the size of the
documents and the average response time. To better organize this section, we
will represent the results of the different experiments as follows:
● First: Access to the 1st Field of the database table.
● Second: Access to the 2nd Field of the database table.
● Third: Access to the 3rd Field of the database table.
● Fourth: Access to the 4th Field of the database table.

1) Experiment 1: Access to the 1st Field of the Database Table
Figure 3 shows us the overall performance of Apache web server using the re-

lation between the size of the documents retrieved in the 1st Field of the data-
base table and the average response time, their ease in processing requests
quickly. Different configurations are used for the Apache web server such as:
Apache + Psp + Mysql, Apache + Psp + Postgresql, Apache + Php + Mysql,
Apache + Php + Postgresql.

https://doi.org/10.4236/cn.2024.161001
http://192.168.100.54/Requete1.psp

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 9 Communications and Network

Figure 3. Average response time according to document sizes (Retrieved in 1time field of
the database table).

Here are the results obtained during the test of the experiment1 summarized

in Table 3.
Figure 3 shows the average response time curve as a function of document

sizes.
Average response time is an important performance metric for a web server.

But the difference between them is that the configuration used and also the da-
tabase. It can be seen that logically, the average response time curve increases
with the size of the document. The curve increases until the document size equal
to 100th seems to stabilize at this level. This behavior would be due to the over-
load of the CPU and the network interface. Also at the database level, the direc-
tory has its own search system. It simply performs a SELECT in the directory ta-
ble in order to bring up the sites containing the occurrence sought in the title or
description. The result also shows the list of categories and subcategories in
which sites were found. This script will therefore place heavy demands on the
MySQL and POSTGRESQL databases, a SELECT type search consuming a lot of
resources.

Note: Here we can see that the response time for each of the requests increases
over the sending.

Also after processing the retrieved values, we can plot the average request re-
sponse time over the sending of requests which models quite well the reaction of
the Python server page to this and to have a better overview of the results ob-
tained. It is then that we observe an almost exponential evolution of the response
time.

Here are the formulas respectively of the curves in Figure 3, that is to say the

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 10 Communications and Network

Table 3. Results obtained E [S] average service time.

 Results obtained (E [S] mean time service (ms))

Doc
Uments Size

Apache + Psp +
Mysql

Apache + Psp +
Post gresql

Apache + Php +
Mysql

Apache + Php +
Post gresql

20 50.880 55.870 58.840 60.890

40 100.208 103.202 60.203 194.210

60 110.075 114.079 78.077 198.078

80 115.846 120.849 83.853 205.848

100 153.098 128.097 106.099 258.096

average response time as a function of the sizes of the documents obtained by
Matlab (Apache + psp + MySQL; Apache + psp + Postgresql; Apache + php +
Mysql; Apache + php + postgreSql):

y = 0.00074x3 − 0.14x2 + 8.7x – 73;

y = 0.00038x3 − 0.004x2 + 6.2x – 38;

y = 0.0053x2 − 0.047x + 57;

y = 0.0018x3 − 0.35x2 + 2.5x – 261.

2) Experiment 2: Access to 2th Database Table Field
The graph below shows the average response times for each simultaneous user

request when accessing the second field in the PostgreSQL and MySQL database
table.

Figure 4 shows the average response time according to document sizes (Re-
trieved in 2th field of the database table).

The Apachebench concurrency parameter corresponds to the average number
of simultaneous requests processed by the server. The smaller this number, the
more efficiently the server processes user requests. The higher this number, the
less efficient the server is because it takes time to respond to incoming requests.
This is a significant parameter of the performance of a server.

On the abscissa we have the size of documents. We find that the Apache + psp
+ Mysql and Apache + php + Mysql configuration behave better than the others
on this test.

From these results it can be concluded that the MySQL database is assembled
to a small base while PostgreSQL is adjusted to a sufficiently large base. As al-
ready explained above, here are the equations of the curves of the mean time of
response based on data sizes for configuration

Apache + psp + PostgreSQL, Apache + psp + MySQL, Apache + PHP + Post-
greSQL and Apache + PHP + MySQL obtained from Matlab:

Y = 0.0013 − 0.0016x2 + 1.03x + 249 (5)

y = 0.10x2 − 0.691x + 258 (6)

y = 0.0036x2 − 0.125x + 249 (7)

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 11 Communications and Network

y = 0.00013 − 0.16x2 + 1.04x + 259 (8)

3) Experiment 3: Access to 3th Database Table Field
In this experiment, we will access the third field of the database table. The test

configurations are always the same, first Apache + PSP + PostgreSQL, then
Apache + PHP + MySQL, finally Apache + PSP + PostgreSQL and Apache +
PHP + MySQL.

Figure 5 shows the average reponse time according to the documents sizes
(Retrieved in 3th field of the base table of data).

From Figure 5 it can be seen that the response times are almost constant
when the document sizes are small. This is due to the time taken to process
packet headers which is constant for any size of document. Between 20 and 40
bytes, there is a large increase in the average response time for each configura-
tion tested. But the average response time stabilizes between 60 and 100 bytes.

The only differences on the average response time compared to previous ex-
periments can be seen on the equations of the curves:

y = 0.001x3 − 0.0019x2 + 1.08x + 259 (9)

y = 0.15x2 − 0.72x + 263 (10)

y = 0.0038x2 − 0.135x + 254 (11)

4) Experiment 4: Access to 4th Database Table Field
The graph below shows us an average of the times to respond to each query

requested by users in the 4th Field of the database table.
Figure 6 shows the average response time according to document sizes (Re-

trieved in 4th field of the database table).

Figure 4. Average response time according to document sizes (Retrieved in 2th field of the
database table).

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 12 Communications and Network

Figure 5. Average reponse time according to the documents sizes (Retrieved in 3th field of
the base table of data).

Figure 6. Average response time according to document sizes (Retrieved in 4th field of the
database table).

On the x-axis we always have the size of documents requested by the user, on

the y-axis we have the average request response processing time. We note the
response time of each server. The performance here is mutually proportional to
the ordinate. Apache + psp + postgreSQL and Apache + psp + MySQL hold up
better than the others.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 13 Communications and Network

Formula obtained by Matlab for each of these curves:

y = 0.000123 − 0.19x2 + 1.2x + 393 (13)

y = 1.03443 − 0.0034x2 + 0.235x + 410 (14)

y = 2.5583 + 9.187x2 + 0.17x + 425 (15)

y = 0.000283 + 0.054x2 − 2.6x + 4.587 (16)

4.1.3. Use of the Tool Developed in Python Scapy
Figure 7 shows the experimental setup.

The packets are sent from the machine where the benchmark is installed, ie
where the tool developed in python and scapy is installed with an IP address
with the first network card eth0 (192.168.100.10) to the web server.

Graphical interface of the tool is presented in Figure 8:
Description of the measuring tool:
1) This is the Source IP address text box, i.e. the IP address where the packets

will be sent.
2) This is the destination IP address text box, i.e. the IP address of the web

server
3) This is the text box for the port used by the tool when sending the packet.

Figure 7. Experimental setup.

Figure 8. Graphical interface of the Python server page performance measurement tool.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 14 Communications and Network

4) This is the size text box for the requested queries.
5) This is the interface text box used when sending the packet.
6) This is the text box about the protocol used.
7) This is the text zone containing the results obtained (Service time E [S]).

4.1.4. Comparison between Service Times (E [S]) Obtained by the Tool
Developed in Python Scapy and the Tool ApacheBench

1) Experimentation:
The experiments we carried out here are therefore always the same data as the

experiment we did during all the tests previously on the ApacheBench tool.
Figure 9 shows the relationship between document size and service time E

[S].
In the text zone (4) of the Scapy tool (see Figure 8) corresponds to the size of

requests requested. The smaller this number, the more efficiently the server
processes user requests. The higher this number, the less efficient the server is
because it takes time to respond to incoming requests. This is a significant pa-
rameter of the performance of a server.

Here Figure 10 shows us the relation between document size and service time
E [S]. On the abscissa we have the size of documents and on the ordinate the
service time (E [S]). We find that the Scapy tool performs better than the Apa-
cheBench tool on this test. This behavior would be due to the overload.

Figure 11 shows the relationship between document size and service time E
[S].

Figure 12 shows the relationship between document size and service time E
[S].

Figure 9. Relationship between document size and service time E [S].

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 15 Communications and Network

Figure 10. Relationship between document size and service time E [S].

Figure 11. Relationship between document size and service time E [S].

Finally, in Figure 11, Figure 12 on the abscissa we always have the size of

documents, on the ordinate we have the service time of requests. The service
time of each tool is recorded. The performance here is inversely proportional to
the ordinate. The Scapy tool always stands up to the test better than Apache-
Bench, especially when the query size increases.

To process large queries we notice that the Scapy tool is superior to Apache-
Bench. This is probably due to the synchronous handling of client requests from
the Python server page.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 16 Communications and Network

Figure 12. Relationship between document size and service time E [S].

4.2. Analysis Process

The main steps for performance evaluation are:
● From the python Scapytool, we send the requests from the ApacheBench to

the apache server at the same time.
● Access to the fields of the table in the MySQL and PostgreSQL database using

various configurations such as Apache + Psp + MySQL, Apache + Psp +
PostgreSQL, Apache + Php + MySQL, Apache + Php + PostgreSQL, de-
pending on the document sizes to get service time E [S].

The service time E [S] is the average time for each request. The E [S] service
time can be calculated by subtracting the time the server responds to the packet
and the time the packet was sent.

5. Apache Web Server Log Analysis
5.1. Analyze Apache Logs with Webalizer
5.1.1. Presentation
Webalizer is a tool that allows you to synthesize apache logs in the form of html
pages with graphics.

Statistics given by Webalizer allow users to be counted and identified by their
IP address or the name of their access provider.

5.1.2. Use
Just type webalizer, by default it will read the parameters found in the file
/usr/local/etc/webalizer.conf.

Otherwise the syntax is as follows:
webalizer/dacces-path/access_log

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 17 Communications and Network

The data is collected using the Webalizer tool and Figure 13 shows the results
when accessing the Python server page.

5.1.3. Presentation of the Study of Laws
The stochastic study of the data is necessary for the analysis of the performance
of the Apache web server and it represents an evolution, discrete or in conti-
nuous time, of a random variable. This notion is generalized to several dimen-
sions.

There are different laws, here are some of them:
● Some Discreet Laws

Bernoulli’s law: It is used to model the situation of a simple alternative
(yes/no, active/inactive).

The binomial law: It models a series of independent Bernoulli trials, that is,
binary alternatives where the probability p remains constant for a given number
of samples.

The hypergeometric law: Unlike the previous one, an “individual” cannot be
observed twice. The probability is therefore not constant as the tests are carried
out.

Figure 13. Usage statics for the Apache web server (debian).

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 18 Communications and Network

The geometric law: it models a series of independent Bernoulli tests but un-
like the binomial law, the number of prints is not fixed. We seek the number of
tests to be carried out before obtaining a first success.

Poisson’s law: it is that of rare events. And the more these become frequent,
the more the Poisson law does not converge towards a normal law.
● Continuous Laws

Normal law (of Gauss): this is the most famous law of probability. It can be
purely descriptive, summarizing as best as possible the distribution of a popula-
tion using two parameters (mean and standard deviation) or be used in differen-
tial statistics based on the central-limit theorem.

Lognormal distribution: it is the natural logarithm of the va which follows a
normal law. Weibull’s law: this law models real events, in this case the lifespans
of devices. In general, these devices wear out, but this law also makes it possible
to consider an improvement or an absence of wear. In this particular case of a
component that does not age and fails without warning, we use a special form of
Weibull’s law, the exponential law, which also occurs in Poisson processes.

Gamma law: it is also involved in fishmonger processes and in the field of re-
liability. But this time, we admit wear before failure.

5.1.4. Determining the Distribution Access to the Server
Several authors have therefore shown their ideas on the distribution of docu-
ment size. For example the author showed that document size follows a
log-normal distribution.

Others and state that the document size on the website follows the Pareto dis-
tribution. We want to know the time service required for a document size given.

In the experiments, measurements were taken from the document size. The
result of the data is assembled using the Webalizer tool.

Figure 14 shows the histogram of the file size.
From Figure 14, Document size changes over time, and it is difficult to de-

termine. So it is essential to study its distribution to better understand it.
Note that remote clients cannot access the large document as much as local

clients. We let’s tune this manifestation to the speed of the network.

5.1.5. Table of Parameters of the Different Laws for File Size
Table 4 describes the parameters of different laws.

Table 4 shows the statistics for the file size. Measuring and defining file sizes
and distributions should be persistent, as the distribution could change over
time as technology evolves. Here the choice chosen for the law of file sizes is that
of Pareto, as well as that of Log-normal.

5.1.6. Choice of Document Size Laws
● Pareto Law

Figure 15 shows Pareto law histogram of documents size.
Figure 15 represents the histogram of the Pareto law for the size of docu-

ments with x0 = 2 and aplha = 3 which are positive and we can express from this

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 19 Communications and Network

Figure 14. Histogram of file size.

Figure 15. Pareto histogram of document size.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 20 Communications and Network

Table 4. Parameter table.

Law Settings

Pareto 0 = 2 α = 3

Log normal m = 0 σ = 1

Pareto Settings Values

 Average 3.01

 Variance 2.63

 Quantiles
-1st quantile: 2.2
-Median: 2.52
-3th quantile: 3.1

Log normal Settings Values

 Average 1.65

 Variance 4.2

 Quantiles
-1st quantile: 0.52
-Median: 1
-3th quantile: 2

figure that the passage in coordinates modifies in a straight line of the curve of
which the original form is a very drawn hyperbola on the abscissa and ordinate.
● Log-Normal Law

The log-normal law histogram of document size is represented in Figure 16.
Figure 16 shows the Log-normal histogram with X = 0 and sigma = 1 and

from the log-normal property X > 0. µ and σ are there mean and standard devia-
tion of the logarithm of the variable but according to the result the value of X = 0.

5.1.7. Testing the Laws for Document Size
To be sure that the law of the file size really follows the lognormal law or Pareto
law, we will do a test. We know that a site web contains many types of docu-
ments such as texts, images and videos, etc. Documents are often modified and
document formats are very varied depending on content. In addition the size
distribution of the documents stored in the web server could change in the fu-
ture due to an emerging improvement of the multimedia application.

Figure 17 shows the choice of law.
The choice of law between the Pareto law and the law of Log-normal for

document size is shown in Figure 17 and we see that the law of document size is
the log-law normal since the acceptance range for the lognormal distribution is
greater than that of the Pareto law.

6. Modeling of the Apache Web Server
6.1. Simulation Process

Model user behavior and traffic patterns use Simulink blocks. We exploit stochastic

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 21 Communications and Network

Figure 16. Histogram of Log-normal distribution of documents size.

Figure 17. Choice of law.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 22 Communications and Network

processes or predefined input signals to represent user requests. We created in-
put scenarios that mimic real-world usage, including user interactions, naviga-
tion, and requests for Python Server Pages.

In this section we will present a simple model based on the M/M/1 queue
representing the performance of the Apache web server.

During the modeling, we use the data obtained during the various experi-
ments

6.2. The M/M/1 Queue

A simple model based on the M/M/1 queue representing the performance of the
Apache web server is presented here. During the modeling, we use the data ob-
tained during the various experiments modeling computer systems. The charac-
teristics of the M/M/1 queue are as follows:
● Service time: Exponential law with parameter µ,
● Process of arriving clients: Fish law with parameter λ,
● Service time: Exponential law with parameter µ,
● Only one server.

All performance parameters of a system can be calculated using Markov
chains. All state probabilities are also calculable.

6.3. Model under Simulink

Figure 18 shows the M/M/1/K Queue model under Simulink.
In Figure 18, we will model a single single-server system of a queue with a

single source of traffic and an infinite storage capacity. In the notation, the M
represents Markovian; M/M/1 means that the system has an arrival Poisson
process suppose λ equal to the value of the mean that we will vary from 20 to 100
with λ is the number of requests sent per second (document size), an exponen-
tial service time distribution, and a server.

The template includes the items listed below:
- Event-Based Random Number: This block generates random numbers in an

event-based manner, infer from a next block when to generate a new random
number. For example, when connected to the T input port of a single server
block, the event-based random number block generates a new random num-
ber each time an entity arrives at the server.

- Time-Based Entity Generator: This models a Poisson process arrived by gen-
eration entities (also called “clients” in queue theory). This block too is de-
signed to generate entities using intergenerational times that meet the criteria
that we specified. Then the intergenerational time is the time interval be-
tween two succesive generation events.

- FIFO queue: This block stores entities that have not yet been used, so the in-
put sequence is first come, first served. We also varied the length of this line
from 10 to 1000.

- Single Server: Il modélise un serveur dont le temps de service a une distribu-
tion exponentielle.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 23 Communications and Network

Figure 18. M/M/1/K Queue model under Simulink.

- Single Server: It models a server whose service time has an exponential dis-
tribution.

6.4. Simulation Result Table

Table 5 represents the result of the experiment carried out under Simulink with
the same workload.

6.4.1. Average Response Time Depending on the Size of Documents
Figure 19 shows the average document size response time using the model in
Simulink.

Figure 19 shows us the average query response time as a function of docu-
ment size. We have seen that at the beginning the document size remains con-
stant, i.e. it is small in size and then gradually increases, the degradation of per-
formance is due to large documents, but for this model the performance is not
so degraded.

Then we will compare the two models with the same workload.
Table 6 shows the average response time (Simulation) and the average re-

sponse time (Experimentation).
Figure 20 shows a comparison of average document size response time be-

tween the analytical model and the model in Simulink using the same workload.
Always on the x-axis is the size of the document, and on the y-axis is the av-

erage response time. Average response times for the small document size remain
constant, while those for the large document size are increased for both models.
That is, the deterioration in performance is caused by large documents.

But we see that the quality of prediction for the model made on Simulink is

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 24 Communications and Network

Table 5. Average response time according to the size of documents (Simulation under
Simulink.

Documents Size Average time of response (Simulation)

20 0.64

40 0.198

60 0.202

80 0.240

100 0.262

Table 6. Average response time (Simulation) and the average response time (Experimen-
tation).

Documents Size
Average Time

of Response (Simulation)
Time Means Answer

(Experiment)

20 0.64 0.201

40 0.198 0.30

60 0.202 0.36

80 0.240 0.40

100 0.262 0.49

Figure 19. Average document size response time using the model in Simulink.

good and reasonable compared to the first model since the average response
time remains constant below 80 bytes, then it increases in relation to the number
of requests, this means that when the size of documents increases, the number of
packets also increases as well as the average response time. We can say that the

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 25 Communications and Network

Figure 20. Comparison between models analytical and model in Simulink.

average response time depends on the document size, the closed queue model
assumes that above 60 bytes, the predicted average response time for the second
model is better compared to the first model since the average response time de-
creases a little even if the number of packets increases, then the performance is
not so degraded for the second model.

6.4.2. Mean Squared Error
Squared error often referred to as Mean Squared Error (MSE) is a measure of the
average error, weighted by the square of the error. It answers the question, “what
is the magnitude of the prediction error”, but does not indicate the direction of
the errors. Because this is a squared quantity, the MSE is influenced more by
large errors than small errors. Its range is 0 to infinity, a score of 0 being a per-
fect score.

The EQM is calculated using the mathematical equation:

()2
1

1EQM N
i ii F O

N =
= −∑

or:
● Fi are the values of the prediction of the parameter in question.
● Oi is the corresponding verification value (observed or analyzed).
● NOT is the number of verification points (grid points or observation points)

in the verification zone.
EQM = 0.018

6.5. Server Throughput in Relation to Document Size

According to it already explained previously, we were able to discover that the

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 26 Communications and Network

throughput of the server increases with the size of documents. This is the server
speed depends on the document size.

Table 7 shows the Simulation result for the server throughput.
Figure 21 shows the server speed curve.
Figure 21 shows that server throughput increases with increasing document

size. The throughput is satisfactory even if the size of documents increases. This
means that the performance of the web server is not degraded for the model un-
der Simulink.

We will now see the comparison of the analytical model and the Simulink
model of the server throughput.

Figure 22 shows the comparison curve between analytical model and the
model under Simulink analytical model and the model under Simulink.

Figure 22 shows a comparison BETWEEN the analytical model and the Si-
mulink model of server throughput using the same workload. On the x-axis it is
the document size and on the y-axis it is the server speed. Server throughput in-
creases gradually and linearly to document size and server throughput depends
on document size.

Table 7. Simulation result for the server throughput.

Documents Size Experiments Throughput (Octets/s)

20 0.554

40 0.668

60 0.799

80 0.890

100 0.983

Figure 21. Server speed curve.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 27 Communications and Network

Figure 22. Comparison curve between analytical model and the model under Simulink
analytical model and the model under Simulink.

But we note that the quality of prediction for the model made on Simulink is

good and reasonable compared to the first model since at the beginning the bit
rate remains constant below 60 bytes, since the bit rate increases even if the size
of documents is large, this means that as document size increases, server
throughput increases.

To conclude on these tests we can already advance the fact that the use of the
laws of the various parameters such as the size of the documents, the access to
the server, etc. then we presented the experimental results to study the perfor-
mance of a web server.

From the experimental results, we built the model of a web server. Our mod-
eling approach is then demonstrated using two models; 1) the model in which
we have the same workload but using the analytical model and 2) a model built
using software Simulink.

Our approach helps identify the web system performance bottleneck and can
be used for performance planning.

In the performance study, we used an Apachebench tool and the tool devel-
oped in Python scapy and we looked at the relationship between document size
and average response time, document size and server throughput, it has been
observed that the average response time and throughput depends on the size of
the documents, that if the documents are small the average response time as well
as the throughput is also small and that if the documents are large , the average
response time and throughput also increases.

It is observed that for most small number accesses in servers and most work-
loads, a small group of clients are responsible for most of the accesses. These da-

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 28 Communications and Network

ta were investigated using the Poisson distribution for arrival of documents,
normal and exponential log, M/M/1 queue and FCFS for the discipline. We
demonstrate a modeling approach with an example and we validate by compar-
ing the data generated with the original and this model in Simulink is more rea-
sonable than the analytical model.

7. Conclusions

At the end of our experiences, we come out with some results validating our ex-
pectations and assumptions regarding the analysis and modeling of Python
server page performance. Using the resource monitoring tool, System monitor,
the performance measurement tool and Apachebench, a series of practices were
performed to monitor the behavior of the web server.

During the experimentation, we studied the relationship between the average
response time and the size of the documents retrieved from the databases. We
were able, first determine which web server technologies are going to adopt to
host the game. After several significant tests, we concluded that the Apache con-
figuration with PHP and MySQL was the most interesting. It is notably superior
for the processing of small files and more advantageous in terms of memory
footprint for the processing of dynamic files.

Thanks to our test server, we determined the ideal dimensions for a future
server based on the number of users. We’ve also proven that the server performs
is better when there are fewer requests to process.

Compared to other researchers we have performed a load test which is de-
signed to give details of the Python server page response. We obtained server
performance metrics such as average response time, and throughput. We vali-
dated the model by a series of experiments which included measurements and
simulations with inbound traffic in bursts. The performance indicators provided
by the model are well-adapted for measurements. We also discovered a queueing
model of a saturated Apache web server, which is a simple Simulink model like
M/M/1/ with a first come, first served (FIFO) in MATLAB, using a process of
sporadic arrival. We validated the model by a series of experiments which in-
cluded measurements and simulations with the arrival traffic in bursts. The per-
formance indicators provided by the model fit well with the measurements. This
paper will allow us to be able to carry out the optimization and the advanced
configuration of our server.

Finally, in the future, our objective is to take into account other criteria per-
formance and setting parameters on the systems and our web server. For exam-
ple, we believe that optimizing energy consumption is a major challenge, given
the ecological and financial impacts generated by the use of thousands of ma-
chines in parallel among internet service hosts.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

https://doi.org/10.4236/cn.2024.161001

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 29 Communications and Network

References
[1] Rafamantanantsoa, F. and Ravomampiandra, P. (2018) Analysis and Simulink

Modeling of the Performance of Dynamic Web Server Using JSP and PHP. Com-
munications and Network, 10, 196-210.

[2] Rafamantanantsoa, F. and Laha, M. (2018) Analysis and Neural Networks Modeling
of Web Server Performances Using MySQL and PostgreSQL. Communications and
Network, 10, 142-151.

[3] Rafamantanantsoa, F., Haja, R.L. and Ferdinand, R.L. (2021) Analysis and Evalua-
tion of Performance Related to Java and PHP Security Codes. Communications and
Network, 13, 36-49.

[4] Raschka, S., Patterson, J. and Nolet, C. (2020) Machine Learning in Python: Main
Developments and Technology Trends in Data Science, Machine Learning, and Ar-
tificial Intelligence. Information, 11, Article 193.

[5] Menasce, D.A. (2002) Load Testing of Web Sites. IEEE Internet Computing, 6,
70-74.

[6] Peng, D., Yuan, Y., Yue, K., Wang, X. and Zhou, A. (2004) Capacity Planning for
Composite Web Services Using Queuing Network-Based Models. In: Li, Q., Wang,
G. and Feng, L., Eds., Advances in Web-Age Information Management, Springer
Berlin, Heidelberg, 439-448.

[7] Elbaum, S., Karre, S. and Rothermel, G. (2003) Improving Web Application Testing
with User Session Data. Proceedings of 25th International Conference on Software
Engineering (ICSE’03), Portland, 3-10 May 2003, 49-59.

[8] Singh, N., Alhorr, H.S. and Bartikowski, B.P. (2010) Global E-Commerce: A Portal
Bridging the World Markets. Journal of Electronic Commerce Research: Special Is-
sue: Global B-Commerce, 11, 1-5.

[9] Consulting, F. (2009) E Commerce Web Site Performance Today: An Updated Look
at Consumer Reaction to a Poor Online Shopping Experience. White Paper, 1-21.

[10] Nygren, E., Sitaraman, R.K. and Sun, J. (2010) The Akamai Network: A Platform for
High-Performance Internet Applications. ACM SIGOPS Operating Systems Review,
44, 2-19.

[11] Totok, A. and Karamcheti, V. (2010) RDRP: Reward-Driven Request Prioritization
for e-Commerce Web Sites. Electronic Commerce Research and Applications, 9,
549-561.

[12] Hu, J.C., Mungee, S. and Schmidt, D. (1998) Principles for Developing and Mea-
suring High-Performance Web Servers over ATM.
https://citeseerx.ist.psu.edu/document?%20repid=rep1&type=pdf&doi=6bca8ad5dc
c846%20ba18ea28046807bea600b3bef6

[13] Menascé, D.A. and Almeida, V.A.F. (2002) Capacity Planning for Web Services.
Prentice Hall, New York. https://dl.acm.org/doi/abs/10.5555/647414.725176

[14] Mikael, A., Jianhua, C., Maria, K. and Christian, N. (2003) Performance Modeling
of an Apache Web Server with Bursty Arrival Traffic. Proceedings of the Interna-
tional Conference on Internet Computing, Las Vegas, 23-26 June 2003, 508-514.

[15] Yasuyuki, F., Masayuki, M. and Hideo, M. (2000) Performance Modeling and Eval-
uation of Web Server Systems with Proxy Caching. Ph.D. Thesis, Osaka University,
Japon.

[16] Elleithy, K.M. and Komaralingan, A. (2002) Using Queuing Model to Analyzes the
Performance of Web Servers. International Conference on Advances in Infrastruc-

https://doi.org/10.4236/cn.2024.161001
https://citeseerx.ist.psu.edu/document?%20repid=rep1&type=pdf&doi=6bca8ad5dcc846%20ba18ea28046807bea600b3bef6
https://citeseerx.ist.psu.edu/document?%20repid=rep1&type=pdf&doi=6bca8ad5dcc846%20ba18ea28046807bea600b3bef6
https://dl.acm.org/doi/abs/10.5555/647414.725176

R. M. Alix et al.

DOI: 10.4236/cn.2024.161001 30 Communications and Network

ture for e-Business, e-Education, e-Science, and e-Medecine on the Internet, Rome,
Italy, 21-27 January 2002.

[17] Cao, J., Anderson, M., Nyberg, C. and Kih, M. (2003) Web Server Performance
Modelling Using an M/G/1/K*PS Queue. Telecommunication, ICT 2003, 10th In-
ternational Conference, Lund, 1501-1506.
https://lucris.lub.lu.se/ws/files/5470459/625321.pdf

[18] Liu, Z., NIclausse, N. and Jalpa-Villaanueva, C. (1999) Web Traffic Modeling and
Performance Comparison between HTTP 1.0. and HTTP 1.1.

[19] Nahum, E.M. Deconstructing SPEC Web 99.
https://cs.uwaterloo.ca/~brecht/courses/856-Internet-Server-Performance-2003/rea
dings-new/nahum-deconstructing-2002.pdf

https://doi.org/10.4236/cn.2024.161001
https://lucris.lub.lu.se/ws/files/5470459/625321.pdf
https://cs.uwaterloo.ca/%7Ebrecht/courses/856-Internet-Server-Performance-2003/readings-new/nahum-deconstructing-2002.pdf
https://cs.uwaterloo.ca/%7Ebrecht/courses/856-Internet-Server-Performance-2003/readings-new/nahum-deconstructing-2002.pdf

	Python Server Page Performance Analysis and Modeling
	Abstract
	Keywords
	1. Introduction
	2. Apache Web Server Overview APACHE
	2.1. Web Server Performance
	2.2. Performance Analysis Methodology
	2.3. Experimental Environment
	2.4. The Apachebench Performance Measurement and Evaluation Tool

	3. Python Server Pages
	3.1. Introduction
	3.2. Features

	4. Analysis and Modeling of the Web Server
	4.1. Experimentation
	4.1.1. Using the ApacheBench Tool
	4.1.2. Experimental Results
	4.1.3. Use of the Tool Developed in Python Scapy
	4.1.4. Comparison between Service Times (E [S]) Obtained by the Tool Developed in Python Scapy and the Tool ApacheBench

	4.2. Analysis Process

	5. Apache Web Server Log Analysis
	5.1. Analyze Apache Logs with Webalizer
	5.1.1. Presentation
	5.1.2. Use
	5.1.3. Presentation of the Study of Laws
	5.1.4. Determining the Distribution Access to the Server
	5.1.5. Table of Parameters of the Different Laws for File Size
	5.1.6. Choice of Document Size Laws
	5.1.7. Testing the Laws for Document Size

	6. Modeling of the Apache Web Server
	6.1. Simulation Process
	6.2. The M/M/1 Queue
	6.3. Model under Simulink
	6.4. Simulation Result Table
	6.4.1. Average Response Time Depending on the Size of Documents
	6.4.2. Mean Squared Error

	6.5. Server Throughput in Relation to Document Size

	7. Conclusions
	Conflicts of Interest
	References

