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Abstract 
This paper aims to explore the application of Extreme Value Theory (EVT) in 
estimating the conditional extreme quantile for time-to-event outcomes by 
examining the functional relationship between ambulatory blood pressure 
trajectories and clinical outcomes in stroke patients. The study utilizes EVT 
to analyze the functional connection between ambulatory blood pressure tra-
jectories and clinical outcomes in a sample of 297 stroke patients. The 24-hour 
ambulatory blood pressure measurement curves for every 15 minutes are 
considered, acknowledging a censored rate of 40%. The findings reveal that 
the sample mean excess function exhibits a positive gradient above a specific 
threshold, confirming the heavy-tailed distribution of data in stroke patients 
with a positive extreme value index. Consequently, the estimated conditional 
extreme quantile indicates that stroke patients with higher blood pressure 
measurements face an elevated risk of recurrent stroke occurrence at an early 
stage. This research contributes to the understanding of the relationship be-
tween ambulatory blood pressure and recurrent stroke, providing valuable 
insights for clinical considerations and potential interventions in stroke man-
agement.  
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1. Introduction 

Recurrent stroke is considered one of the leading causes of death and disability 
worldwide, accounting for approximately 5 million deaths annually, which consti-
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tutes 9% of the total. Additionally, another 5 million people suffer from long-term 
disability. 

According to the literature, numerous risk factors for recurrent stroke exist, 
including age, sex, smoking status, high blood pressure measurement, and lipid 
metabolism. Several researchers have identified these risk factors, as noted by [1]. 
Their findings reveal a significant increase in systolic blood pressure among pa-
tients with late recurrent stroke. Besides, [2] identified hypertension as the lead-
ing cause of recurrent stroke. 

Furthermore, [3] discovered a significantly higher stroke recurrence rate in 
men, older individuals, and those with a prior history of ischemic stroke com-
pared to women, younger individuals, and those with no history of stroke. More-
over, in their results, [4] recommend considering hypertension, diabetes mellitus, 
atrial fibrillation, and coronary heart disease as factors associated with a high 
risk of stroke recurrence. 

In the context of this paper, the time of stroke occurrence is treated as survival 
data. Survival or (time-to-event) data analysis problems have arisen in a number 
of scientific fields. For instance, an event time of interest can be the survival time 
of a stroke patient in a medical study, the time to high school dropout studied by 
sociologists, the survival time of a new business addressed in economic research, 
or a lifetime of a part under stress evaluated in an engineering reliability study. 

A common characteristic of survival data is often the presence of incomplete 
time-to-event information due to censoring or truncation. Here, we consider 
that the censoring appeared when a time to-event is known to have occurred 
only within certain intervals. Besides, truncation is defined as a condition which 
excludes certain subjects from the study population for more details see [5]. 
However, survival data analysis needs an appropriate statistical approach which 
takes into account a different form of censoring. Many authors have addressed 
this issue, we can cite a few among them [6] [7] [8] [9] for more details. 

Nowadays, due to the progress in technology, it is possible for some covariate 
information to be recorded simultaneously with the quantity of interest in some 
sort of continuum. This continuum may have a link with time, and space or ori-
ginate from multiple sources. For those kinds of problems, we deal with the sta-
tistical unit as a curve, a space or any more complex mathematic object having 
the concept of some continuum feature. Then such data are called function data 
by enumerating few of authors who work with the functional data such as [10] 
[11]. 

This paper proposes to focus on three statistical aspects in order to derive a 
methodology for estimating conditional extreme quantiles where the variable of 
interest has a heavy-tailed distribution under right random censoring in the 
presence of functional random covariate. 

Let us consider 1, , nY Y  independent identically distributed copies of ran-
dom variable of time to the event of interest Y. It has become a challenge in sev-
eral fields to estimate extreme quantiles of the distribution of Y which has the 
form ( ) ( ){ }1 inf : 1F y F yα α← − = ≥ − , with α  is small such that α  closed 
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to zero as the sample size is large enough. Further, that quantile falls beyond the 
range of the observed data 1, , nY Y . According to the literature, extreme value 
theory has been proven to be a powerful tool for studying the behavior of ex-
treme event distributions and is widely used in the estimation of the extreme 
value index (tail) of the distribution of Y. The extreme value index measures the 
tail heaviness of the distribution of Y and thus has a key role in the analysis of 
extreme event distribution. One of the known famous results in extreme value 
theory is the Fisher-Tippett-Gnedenko Theorem [12] [13]. 

As aforementioned, the estimation of the extreme-value index or tail-index is 
a cornerstone when we deal with various problems in extreme value analysis 
such as the estimation of the conditional extreme quantile of a random variable 
in the presence of covariate. Nevertheless, in this paper, we consider the situa-
tion where some covariate information X is available to the investigator, and the 
distribution of Y depends on X. Our focus centers on the problem of estimating 
a conditional extreme quantile of a heavy-tailed distribution when there is access 
to functional covariate information X ∈E  is available, where E  is an infinite 
dimensional space associated with a semi-metric ( ),d ⋅ ⋅ .  

Recently, many authors have been interested in the estimation of the extreme 
value index and extreme quantile we can enumerate a few of them such as [14] 
[15] [16] [17] have considered the cases of the estimation of extreme value index 
and extreme quantile from censored data when the covariate information is not 
available. In [14] the authors proposed to estimate the extreme value index by 
using the modification of Hill’s estimator version. In [18] [19] [20] authors pro-
posed the Bayesian extreme value index and extreme quantile for the case of un-
censored data. [21] [22] [23] investigated the estimation of extreme value index 
and extreme quantile where there is no covariate information and censored data 
are taken into consideration. [7] investigate the estimation of the conditional ex-
treme value-index and conditional extreme quantile under randomly right cen-
sored with the presence of covariate for finite dimension.  

Motivated by studies that utilize conditional extreme quantiles to assess the 
probability of survival for AIDS patients across various age groups within 
heavy-tailed distributions in the presence of finite-dimensional covariates, this 
study aims to estimate the conditionally extreme quantile of recurrent stroke 
occurrence time distribution under right random censoring. The ambulatory 
blood pressure curve will be considered as a functionally random covariate. 
However, the aim of this study is to estimate the conditionally extreme quantile 
of the time of occurrence of recurrent stroke distribution under right random 
censoring, with the ambulatory blood pressure curve as a functionally random 
covariate. 

The remainder of this paper is organized as follows. Section 2 is devoted to the 
data description and the theoretical framework. A real data application illu-
strates the use of our estimators in Section 3, while Section 4 presents the discus-
sion of our results. Finally, the conclusion and some perspectives are presented 
in Section 5. 
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2. Materials and Methods 
2.1. Data Description 

The data used in paper obtained by considering 297n =  stroke patients, con-
sists of triplet ( ), ,i i iX Yδ , where iX  is the 24-hr ambulatory blood pressure 
curve of ith patient, while iδ  is indicator function equal to one when a patient i 
is uncensored, otherwise equal to zero. The censoring rate is 40%. Finally, iY  is 
an interesting clinical outcome about ith stroke patients. The primary endpoint is 
the time to the composite stroke recurrent event, including death, disability, or 
vascular events (see [24] for more details). Each patient’s systolic blood pressure 
(SBP) is measured every 15 min starting from 19:00 for 24 hr. The covariate iX  
is thus defined by ( ),1 ,96, ,i i iX x x= 

 with ,i jx  the SBP for each patient for all 
1, ,297i =  . 

The data is available online at  
https://amstat.tandfonline.com/doi/suppl/10.1080/01621459.2019.1602047/suppl
_file/uasa_a_1602047_sm0766.zip. Figure 1 below illustrates some realizations 
of random curves of the given functional random variable ( )X ⋅ . The covariate 

iX  is in fact a discretized curve but the fineness of the grid spanning the discre-
tization allows us to consider each subject as a continuous curve as stated in [25]. 
Hence, the covariate can be considered as belonging to an infinite dimensional 
space E . Figure 2 shows an estimated density of the time to recurrent stroke.  
 

 

Figure 1. Measurement of blood pressure at 1, ,96t =  . 
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Figure 2. Density function of the time to stroke. 

2.2. Extreme Value Theory 

Let iY  be the survival time, iC  be the censoring time and then let iX  be a 
functional random variable covariate. Let ( ),i iX Y  1, ,i n=   be the indepen-
dent copies of the random pairs ( ),X Y , where Y is positive real random varia-
ble and X ∈E , where E  is an infinite dimensional space associated to a 
semi-metric ( ).,.d . Therefore, we really observe independent triplets ( ), ,i i iX Zδ , 
where ( )min ,i i iZ Y C=  and { }i ii Y Cδ ≤= 1  for 1, ,i n=   where A1  is the indi-
cator function of the event A. 

Let ( )|F x⋅  and ( )|G x⋅  be the conditional cumulative distribution functions 
of random variables Y and C given X x=  respectively. 

Let ( )|F x⋅  and ( )|G x⋅  be the conditional survival function of random va-
riable Y and C given X x=  respectively. 

In this paper, we focus on heavy tails. More specifically, we assume that the 
conditional survival functions satisfy the following assumption.  

(A1).  

 ( ) ( ) ( ) ( )1 11
1

1 d| exp |
t

F t x r x x
x

µε µ
γ µ

   = − −      
∫  (1) 

and  

 ( ) ( ) ( )2 21
2

1 d| ( )exp |
t

G t x r x x
x

µε µ
γ µ

   = − −      
∫  (2) 

where ( ) ( )1 2,x xγ γ  are positive unknown functions of the covariate x, 1 2,r r  
are positive functions and ( )1 | xε µ , ( )2 | xε µ  are continuous and ultimately 
decreasing to zero. From (1) and (2), we can state that the conditional distribu-
tion functions of Y and C given X x=  are in Fréchet maximal domain of at-
traction. Thus, ( )1 xγ  and ( )2 xγ  are taken as the conditional extreme tail in-
dex functions. Therefore, for all 0t > , ( )|F x⋅  and ( )|G x⋅  are regularly varying  

functions at infinity with index 
( )1

1
xγ

−  and 
( )2

1
xγ

−  respectively. Thus,  

 ( ) ( ) ( ) ( ) ( ) ( )1 2

1 1

1 2| | and | |x xF u x u L u x G u x u L u xγ γ
− −

= =  (3) 

where for x fixed, ( )1 . |L x  and ( )2 . |L x  are slowly varying functions at infinity, 
that is, for all 0λ > ,  
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( )
( )

|
lim 1, 1,2.

|
i

u
i

L u x
i

L u x
λ

→∞
= =  

By conditional independence between Y and C, the conditional survival func-
tion ( )|H x⋅  of Z given X x=  is also a regularly varying function at infinity  

with index 
( )
1
xγ

−  as expressed as follows:  

 

( ) ( ) ( ) ( )

( ) ( ) ( )
1

| 1 | | |

1 dexp |
z

H x H x F x G x

r x x
x

µ µ µ µ

µε µ
γ µ

= − =

   = − −      
∫

 (4)  

with ( ) ( ) ( )1x x p xγ γ=  where ( ) ( )
( ) ( )

2

1 2

x
p x

x x
γ

γ γ
=

+
 is the ultimate propor-

tion of uncensored observations among , 1, ,iZ i n=  ; (see [15] [26] for more 
details) and ( ) ( ) ( )1 2r x r x r x= , ( ) ( ) ( )1 2| | |x x xε µ ε µ ε µ= + .  

2.3. Estimation of Conditional Extreme Tail Index 

Let ( ), ,i i iX Zδ , 1, ,i n=  , be independent realizations of the random vector 
( ), ,X Zδ  where ( )min ,i i iZ Y C=  and { }i ii Y Cδ ≤= 1  for 1, ,i n=   and  
( ) *,X Z +∈ ×E . 

If iZ  were uncensored it means that i iZ Y=  for all i. In this situation, [27] 
proposed a Hill’s version of the conditional extreme value index when the cova-
riate response is in p . Following the same idea, we propose a functional 
Hill-type estimator depending on a semi-metric ( ).,.d : 

 ( )
( )( ) ( ) ( )( ) { }

( )( ) { }

1

1
1

1 , log log
ˆ ,

,
i n

n k

i n

n
i i n Z yH

Z n
y

i

Zi i

K h d x X Z y
x

K h d x X
γ

−

=

=

−
>

−
>

−
=
∑

∑




1

1
 (5)  

where ( ).K  is a real-valued kernel function on E , nh h=  is a positive 
non-random bandwidth sequence such that 0h →  as n →∞  and ny  is a 
local non-random threshold sequence for estimation with ny →∞  as n →∞ . 
Here, as stated in [27], a local threshold means a threshold depending on the 
point x in the covariate space where the estimation takes place, though the thre-
shold is constant in a neighbourhood of x.  

The estimator (5) is not consistent for ( )1 xγ  if it is directly applied to the 
censored sample ( ), , , 1, ,i i iX Z i nδ =  . Indeed, under appropriate regularity 
assumptions, estimator (5) will converge to the extreme-value index ( )xγ  of 
the conditional distribution of Z given X x= . To accommodate censoring, we 
suggest, like in [7], to divide (5) by the proportion ( )ˆnp x  of uncensored ob-
servations among the , 1, ,iZ i n=   that are larger than ny , in a neighborhood 
of x:  

 ( ) ( )
( )

1 |
ˆ

|
n n

n
n n

H y x
p x

H y x
=  (6) 

where ( ) ( ) { }1|
i ni

n
n n i Z yH y x B x >=

= ∑ 1 , ( ) ( ) { },1
1

1|
i n ii

n
n n i Z yH y x B x δ> ==

= ∑ 1  and 
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( )iB x  are the well-known Nadaraya-Watson weights defined by  

 ( )
( )( )
( )( )

1

1
1

,
.

,j

i
i n

j

K h d x X
B x

K h d x X

−

−
=

=
∑

 (7) 

The survival functions ( )|n nH y x  and ( )1 |n nH y x  can be rewritten as fol-
low: 

( ) ( ) ( )1 ˆ ˆ| ,n n n n nH y x y x g xψ=  and ( ) ( ) ( )ˆ ˆ| ,n n n n nH y x y x g xζ=  respectively, 

where  

( ) ( ) ( )( )
( )

{ }, 11
1

,1ˆ , ;
i n i

n
i

n n Z y
ix

d x X
y x K

hn h
δψ

µ
> =

=

 
=  

 
∑ 1  

( ) ( ) ( )( )
( )

{ }1
1

,1ˆ ,
i n

n
i

n n Z y
ix

d x X
y x K

hn h
ζ

µ
>

=

 
=  

 
∑ 1  

and 

( ) ( ) ( )( )
( )

11

,1ˆ n
i

i
n

x

d x X
g x K

hn hµ =

 
=  

 
∑ . 

Therefore we propose to estimate ( )1 .γ  by  

 ( )
( )
( )

,
ˆ

ˆ .
ˆ
n k

n k

H
Zc H

Z
n

x
x

p x
γ

γ −

−
=  (8) 

This estimator depends on the bandwidth h, the threshold ny  and the 
semi-metric ( ),d ⋅ ⋅ . The choice of the semi-metric is a crucial point in nonpa-
rametric functional data analysis (see [11]). Once the semi-metric has been cho-
sen, packages are available in the literature (see  
https://cran.r-project.org/web/packages/fda.usc/index.html) to evaluate proxim-
ities between functional data. The semi-metric distance based on the derivative 
will be used to determine the distance between two curves 1X  and 2X . We 
consider the semi-metric:  

 ( ) ( ) ( ) ( ) ( )( )2

1 2 1 2, d ,q qderive
qd X X X t X t t= −∫  (9) 

where q is the degree of derivative and where ( )qX  denotes the qth derivative of 
X. In the following, second, third and fourth derivatives are considered. The 
impact of the degree of derivatives on the performance of our estimator we will 
be discussed when semi-metric based on derivatives are considered for smooth 
curves as covariates.  

2.4. Estimation of Conditional Extreme Quantile 

We now investigate the estimation of large conditional quantile ( )|nq xα  of 
order 1 nα−  of ( )|F x⋅  for a variable Y given X x=  defined by  

( )( )1 | |n nF q x xα α− =  with 0nα →  as n →∞ . To define our estimator, we 
have in the first step to define ( )ˆ |c

n nq xα  the functional estimator of a large 
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conditional quantile ( )|nq xα  within the sample. 
Let us consider the Kernel conditional Kaplan-Meier estimator of the condi-

tional survival function ( )1 |F x− ⋅ , for all x∈E  and ( )0,ny ∈ ∞  defined as 
follows :  

 ( )
( ) { }

( ) { }

, 1

1 1

ˆ | 1 .
1

i n i

j i

n ni Z y
n n n

i nj Zj Z

B x
F y x

B x
δ> =

=
≤=

 
 = − − 
 

∏
∑ 

1

1
 (10) 

This function may be rewritten as  

 ( ) ( )

{ } ( )

{ }

( )

, 1

1 1

ˆ | 1 if

Z yi n i

j i

n
ni

n n n nn
i njZj Z

B x
F y x y Z

B x

δ> =

==
≥

 
 = − ≤  
 

∏
∑ 

1

1
 (11) 

and zero otherwise where ( ) ( )1 nZ Z≤ ≤  denoted the order statistics of 1, , nZ Z . 
By taking into account the estimator in Equation (11), we propose to estimate 

conditional quantile ( )|nq xα  within the sample of observation (i.e. for fixed 
( )0,1nα ∈ ) as a generalized inverse of ( )ˆ |F x⋅  as  

 ( ) ( ) ( ){ }ˆ ˆˆ | | inf : | ,c
n n n n n nq x F x u F u xα α α←= = ≤  (12) 

where 0nα →  as n →∞ , we propose to estimate the conditional extreme 
quantile ( )|nq xα  by Weissman-type estimator 

 ( ) ( )( )( ) ( )( )
( ),ˆ

,
ˆ |ˆˆ ˆ| | .

c H
Zn k

x

n n kc W c
n n n n n k

n

F Z x
q x q F Z x

γ

α
α

−

−

−

 
 =   
 

 (13) 

The term ( )( )
( ),ˆˆ |

c H
Zn k

x

n n k

n

F Z x
γ

α

−

−
 
 
  
 

 is an extrapolation factor allowing to esti-

mate arbitrary large quantiles and ( ),ˆc H
n xγ  is the estimator of the censored 

functional conditional extreme value index ( )1 xγ . 

3. Results 

In recurrent stroke patients, clinical outcomes were assessed using ambulatory 
blood pressure measurements from 297 patients to estimate conditional extreme 
values. This estimation considers that the time of occurrence of the recurrent 
stroke is randomly right-censored. We examined the distribution of time to re-
current strokes is whether they follow a heavy-tailed distribution. In statistics, a 
quantile-quantile Q-Q plot is a powerful tool to check whether the sample comes 
from a specific distribution. In EVT, the QQ plot is plotted against the standard 
exponential distribution to measure the heaviness of the tail of the distribution. 

Besides, another tool to examine whether the sample comes from a specific 
distribution in extreme value theory is the sample mean excess function (MEF). 
The MEF is a sum of the excess over a threshold β  divided by the number of 
data points that exceed the threshold β . A positive gradient above a certain 
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threshold β  of the empirical MEF, is a sign that the data has a heavy tailed 
distribution with a positive extreme value index ( )1 xγ  as illustrated in Figure 
3. 

We therefore carry out our analysis of the conditional tail index quantile using 
the methodology described in [8]. The results, presented in Table 1, give an 
overview of the estimates of conditional extreme value index for different de-
grees of derivative for semi-metric distance. In addition, the confidence interval 
is provided using resampling techniques which reveal that the confidence inter-
val becomes narrow as the degree of derivative increases. To get these empirical 
confidence intervals, we suggest a bootstrap methodology described as follows:  

1) Draw 500N =  samples of the indexes of our dataset from 1,2, ,297  
with replacement. 
 
Table 1. Table of estimation result of ( )1 xγ  and ( )|nq xα  for the stroke data, [∙] 

Bootstrap 95%-empirical confidence interval for ( )1 xγ  and ( )|nq xα , (∙) empirical 

width of the confidence interval for 0.005nα = . 

  4th derivative 3rd derivative 2nd derivative 

mean (x) 
− 

sd (x) 

( )1 xγ  0.5170 0.5290 0.5093 

ACI [0.1966, 0.8374] [0.1766, 0.8813] [0.0678, 0.8509] 

LCI (0.6407) (0.7047) (0.7831) 

( )0.005 |q x  203.5339 217.25 211.1639 

ACI [203.2135, 203.8543] [216.8976, 217.6024] [210.7223, 211.5054] 

LCI (0.6407) (0.7047) (0.7831) 

mean (x) 

( )1 xγ  0.5026 0.5545 0.4997 

ACI [0.1395, 0.8657] [0.2492, 0.9898] [0.0459, 0.8342] 

LCI (0.7261) (0.7406) (0.7882) 

( )0.005 |q x  186.3794 213.3353 170.632 

ACI [186.0163186.7425] [213.0300, 213.7706] [170.1878, 170.9761] 

LCI (0.7261) (0.7406) (0.7882) 

mean (x) 
+ 

sd (x) 

( )1 xγ  0.5186 0.5462 0.4743 

ACI [0.2104, 0.8248] [0.2148, 0.8777] [0.1270, 0.8217] 

LCI (0.6144) (0.6628) (0.6946) 

( )0.005 |q x  175.718 191.0137 163.3799 

ACI [175.4108, 176.0252] [190.6823, 191.3451] [163.0326, 163.7272] 

LCI (0.6144) (0.6628) (0.6946) 

ACI presents the asymptotic confidence interval. LCI presents length of confidence in-
terval. 
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Figure 3. Meplot of time to event. 
 

2) Generate 500N =  samples of ( ) ( ),1 ,1 ,1 ,297 ,297 ,297, , , , , ,i i i i i iY X Y Xδ δ
 for 

corresponding indexes sampled in the first step.  
3) Carry out on each of these N samples the estimation of the conditional ex-

treme value index by ( )
*( )

,ˆ
n k

c H
Z xγ

−
 using the procedure described in [9] (with the 

same ( )* *,h k ).  
4) Also for each of these N samples, we work out the estimation of the condi-

tional extreme quantile ( ),ˆ |c W
n nq xα  which corresponding to each ( )

*( )

,ˆ
n k

c H
Z xγ

−
 

for the same ( )* *,h k ).  
5) Take the interval bounded by the 2.5% and 97.5% quantile of the condi-

tional extreme value index estimates as a confidence interval. Therefore, the av-
erage of low and upper bounds formed the 95%-level asymptotic empirical con-
fidence interval presented in Table 1. 

4. Discussion 

In this paper, we address the estimation of the tail index and extreme quantiles 
of a heavy-tailed distribution when some functional covariate information is 
available and the data are randomly right-censored. 

To the best of our knowledge, this is the first study about ischemic stroke and 
transient ischemic attack patients, with the main objective of studying a func-
tional relationship between ambulatory blood pressure trajectories and clinical 
outcomes in stroke patients using a concept of conditional extreme value analy-
sis. 

To achieve our goal, we are interested in evaluating the conditional extreme 
quantile of Y the time to recurrent stroke in days given the ambulatory blood 
pressure trajectory as a functional covariate. In this paper, we assess the quantile 
( )5 1000 |q x  of order 1 5 1000−  of the conditional distribution of time to 

recurrent stroke Y given x, for x has the value ( )1mean sd , , nx x x= −  ,  
( )1mean , , nx x x=   and ( )1mean sd , , nx x x= +   with ( )1sd , , nx x  denoted 

the empirical standard deviation of 1, , nx x . For example, the estimated condi-
tional extreme quantiles of the time to recurrent stroke were 203.5339, 186.3794 
and 175.718 days at 95% of confidence interval [203.2135, 203.8543], [186.0163, 
186.7425] and [175.4108, 176.0252] for lower, middle and higher the ambulatory 
blood pressure trajectories respectively at fourth derivative as described above. 
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Furthermore, the average bootstrap of low and upper bounds formed the 
95%-level asymptotic empirical confidence interval for estimate ( )5 1000 |q x  
and ( )1 xγ  presented in Table 1 where the confidence interval becomes narrow 
as the degree of derivative increases. 

As illustrated in Table 1 the stroke patients with higher blood pressure mea-
surements had a higher risk of occurrence of recurrent stroke at early time. This 
result is not a surprise because the hypertension was an independent predictor of 
recurrent stroke according to the literature for more details [28]. 

5. Conclusions 

We have explored the estimation of the functional Weissman kernel type esti-
mator in the presence of a functional random covariate, valued in an infi-
nite-dimensional space, alongside a right-censored scalar response variable. Our 
primary application revolves around discerning the potential impact of ambula-
tory blood pressure trajectories on the time of stroke recurrence. 

Our findings suggest that higher blood pressure measurements significantly 
elevate the risk of stroke recurrence within a short time period, consistently ob-
served across multiple quantiles of the time-to-recurrence distribution, as re-
vealed by the estimated extreme quantiles. 

The application of extreme value theory in the medical field, particularly those 
involving functional covariates, is still in its infancy. Nevertheless, various intri-
guing topics within this domain warrant further investigation in future research. 
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