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Abstract 
The initial idea for baryonic acoustic oscillations (BAO) came about during 
early efforts to understand the origin of galaxies by studying perturbed ver-
sions of the Friedmann-Robertson-Walker (FRW) model. In more recent 
times, the emphasis has shifted to the idea that 2-point galaxy correlations 
embedded in the distribution of matter by the BAO could be used as a stan-
dard ruler to fix the parameters of cosmological models. In this paper, we first 
consider the actual business of extracting the correlation length from large 
data sets of measured galaxy locations. To facilitate this process, we introduce 
a much-improved method for extracting the correlation peak from the data 
set. Fundamental to this process in any model is the use of a fiducial cosmo-
logical model to transition from redshift space to comoving coordinate space 
where the correlations actually exist. The belief is that the correlation length 
so determined can then be reverted to redshift space to fix the parameters of 
cosmological models. We show, however, that this process is circular and 
hence of no value whatsoever for fixing model parameters. All one obtains are 
the parameters of the model used to transition to comoving space in the first 
place. Finally, we present simple arguments that show that the idea of BAO 
being responsible for the structure of the universe, i.e. the cosmic web, is un-
workable. 
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1. Introduction 

The subject of this paper is the baryonic acoustic oscillation (BAO) model. The 
history of the idea goes back many decades and had its beginnings in efforts to 
understand galaxy formation by studying models that add perturbations to the 
standard FRW model. These solutions indicate a possibility of sound waves be-
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ing excited in the early photon-baryon fluid that would propagate away from the 
perturbation at a speed close to the speed of light and would persist until the 
time of recombination when the photons and protons decoupled. According to 
the standard lambda-cold dark matter (ΛCDM) model, this latter event occurred 
at a time of about 1013 s. Multiplying by the sound speed gives a characteristic 
length of about 150 Mpc. The theory is that these sound waves created a pattern 
of higher-than-average baryon densities in some regions of space over others 
and that these higher densities induced the formation of galaxies. If that was the 
case, then the distribution of the so-created galaxies should reflect this dimen-
sion. In the few decades that followed, and after a lot of effort, the perturbation 
model of galaxy formation problem seems to have languished and now recent 
observations by the James Webb telescope cast doubt on the whole idea. At the 
end of this paper, we will present arguments to show that the BAO model of 
structure formation is unworkable. 

In the last two decades, interest in the BAO has shifted away from the galaxy 
formation problem to the idea that this characteristic distance could be used as a 
standard ruler to better determine the parameters of cosmological models. If we 
start with a random galaxy at some point in space and calculate the probability 
that another galaxy exists at some distance from the first one, the existence of 
such a correlation length would result in a bump in the probability at a distance 
of about 150 Mpc. Detection of this bump, which is known as the 2-point galaxy 
correlation distance was accomplished in 2005 [1] which, at the time, was taken 
as confirmation of the BAO model.  

The physical manifestation of this correlation distance is that it is the basic 
length scale of the cosmic web, both of the size of the superclusters making up 
the filaments and the inter-filament spacing. The proponents of BAO shouldn’t 
have an issue with that idea since the model is supposed to account for the exis-
tence of the cosmic web. The problem for the BAO model is that it is not the 
only model that can account for the cosmic web so a claim of its conformation is 
spurious. In particular, our new model proposes a much simpler origin in which 
the matter in the universe, the over-densities of matter in regions that became 
galaxies, and the cosmic microwave background (CMB) with its anisotropies all 
came into existence at the same moment at the beginning of nucleosynthesis 
under the direction of imprints that were established in the vacuum during an 
initial Planck era inflation. 

Much of this paper will focus on the 2-point correlation issue. In the first sev-
eral sections, we discuss the problems that arise when trying to recover the cor-
relation peak from the galaxy location data and introduce a new method that 
goes a long way toward solving those difficulties. This new method illuminates 
the underlying cosmic structure and allows the correlation peak to be detected 
without the need for the artificial biases that are used in the standard analysis 
methods.  

Following our discussion of the detection problem, we then consider the 
standard ruler idea. What we show is that the correlation length so determined 
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cannot be used to fix the parameters of cosmological models. The essence of the 
problem is that a fiducial model must be used to transition from redshift space 
to comoving coordinate space and that coordinate space is a fictitious space 
whose properties are fixed by the parameters of the fiducial model. It is possible 
that the “user-created” space is identical to the actual comoving coordinate space 
but that is both unknowable and irrelevant. The fact is that the extracted correla-
tion peak location and width are properties of the fictitious space so when tran-
sitioning back to redshift space, the model parameters that will best fit the ob-
served peak are precisely those that one started with. One can use a fiducial 
model to obtain an estimate of the actual correlation length or if it were possible 
to obtain knowledge of the actual comoving coordinates without the use of a 
fiducial model, one could use a model to extract model parameters from the ac-
tual correlation length but using a model in both directions is circular and 
hence, meaningless. 

2. Galaxy 2-Point Correlations—The Data 

To determine the 2-point galaxy correlation length, one must begin with a data 
set containing the redshifts and angular positions of a large number of galaxies. 
As a basis for our investigation, we chose to use data sets similar to those used in 
[1] and [2], in part because we wanted to use those results as a check on our 
methods. Both of these studies are based on data available from the Sloan Digital 
Sky Survey (SDSS) database [3] which is the repository for an ongoing observa-
tional program to identify all the galaxies in a significant angular portion of the 
sky out to a redshift somewhat larger than 2. At present, the database contains 
well over a million galaxies. 

The SDSS website has an extensive user interface which includes an SQL 
search engine that users can program as they wish. For our first effort, we uti-
lized the redshift and magnitude selection criteria specified in [1], namely red-
shifts in the range 0.16 0.44z≤ ≤  and “r” magnitudes in the range, 17.77r ≤ . 
The symbol “r” refers to one of the 5 standard frequency passbands used in as-
tronomical observations. Please refer to [1] for a discussion of why these limits 
were selected. The full SDSS data set divides into two distinct regions and be-
cause they are distinct, nothing useful can be obtained by trying to combine the 
sets. For simplicity, we limited our attention to just the “North Cap” which is 
much the larger of the two. In Figure 1, we show the SQL query we used. It is 
the last line of the query that imposes the “North Cap” restriction. 
 

 
Figure 1. Galaxy data set SQL query. 
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This query returned a set of 98,240 galaxies at the time of our writing. Because 
the database is continually being updated, the same query run at a later date is 
likely to produce a different count. Our query does not restrict the galaxies to 
any particular type. The authors of [1] on the other hand, restrict their list to just 
luminous red galaxies (LRG) and they ended up with a total of 46,748 galaxies. 
The reason for imposing that restriction follows from a determination that those 
galaxies better reflect the cosmic structure than do the general population of ga-
laxies. By making such a selection, however, the authors are at risk of introduc-
ing the bias they are seeking. Our new method which we will introduce shortly, 
does not make any distinction about galaxy type and so avoids that risk. 

With the data set in hand, the next step is to determine the comoving coordi-
nates of each galaxy. The reason this is necessary is that the correlations are a 
reflection of the comoving coordinate positions of the galaxies instead of their 
redshifts. (Redshifts are a consequence of the observer, not the galaxies). The 
observed redshift of a galaxy is based on its apparent velocity which is the sum of 
the Hubble flow velocity and its peculiar velocity. Our interest, however, is in 
just its Hubble flow velocity and, while various models have been developed to 
estimate the peculiar velocities of local galaxies, it is not feasible to determine the 
peculiar velocities of distant galaxies. Generally, peculiar velocities are small 
compared to the Hubble flow velocities for redshifts greater than about 0.01z >  
so one can avoid the whole problem by restricting one’s attention to redshifts 
larger than that value. In any case, discovering the correlation peak is a statistical 
problem so a moderate repositioning of the galaxies won’t change the final re-
sults. 

Converting from redshift to comoving coordinate is model-dependent. The 
standard model formula is [4], 

( ) ( ) ( )
3 2

0 0 0

2

0 0

1 dd 1 1
z z

m k
c c zz z z

a H a H z
χ Λ

− ′ ′ ′ ′= Ω + +Ω +Ω + =  ′∫ ∫     (2-1) 

with ( )sin rχ =  where r is the original radial coordinate. The FRW radiation 
contribution has been dropped so 1k m ΛΩ = −Ω −Ω . In the standard model, the 
curvature is constant and in recent years, it has become common to assume a flat 
spacetime in which case, 0kΩ = . For the remaining parameters, the values used 
in [1] were ( ) ( ), 0.3,0.7m ΛΩ Ω = . In our new model [5] [6], the curvature varies 
with time so spacetime is definitely not flat, and at early times, it was quite large, 
e.g. at 1st = , 172.1 10k = × . Unlike the case above, there does not exist a simple 
formula relating redshift and comoving coordinate so instead, we use numerical 
methods to calculate both the radial coordinate, r, and the redshift as functions 
of look-back time and then combine those results to determine ( )r f z=  [6].  

In Figure 2, we show the radial coordinate-redshift relationship for both the 
new and standard models. For later comparison, we also show the scaling over 
the same redshift range. According to the FRW model, the scaling is given by  

( ) 0

1
aa z

z
=

+
                            (2-2) 
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Figure 2. Radial coordinate and scaling versus redshift for both the FRW (blue) and the 
new model (red). 
 
which, in spite of its widespread use, is not a model independent result. In our 
new model, the scaling is given by, 

( ) ( ) 1
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0
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e e
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                     (2-3) 

where 0.5γ ∗ =  and 1 0.53c = . From this, we obtain the Hubble parameter, 

( ) ( )
( )

1

0

a t cH t
a t t t

γ ∗≡ = + .                      (2-4) 

Substituting gives 0 73 MpcH = . We see that the new and FRW model pre-
dictions of the radial coordinate are similar for redshift less than about 2.0 and 
that the two scalings are also initially similar but begin to diverge somewhat ear-
lier than do the coordinates. 

The next step is concerned with the coordinate systems used to depict the ga-
laxy locations. The coordinate system used in SDSS is the standard right-ascension 
system with its origin at the center of the Earth. Instead of using that system, we 
found it convenient to define two new coordinate systems based on the average 
location of the galaxies which better represent the sky as viewed by an observer 
on Earth. In these new systems, the positions of the galaxies are relative to the 
average position so an observer, for example, would see their locations as being 
to the right or left of the center point of the collection. Of course, this only 
amounts to a shift in the axes of the graphs used to display the datasets and re-
sults.  

We first convert from redshifts to comoving radial coordinates and then de-
termine the average position of the galaxies by summing over the angles and 
radial coordinates of the full set. (In what follows, to avoid confusion concerning 
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the variable z, we will use lowercase z to refer to the redshift and uppercase let-
ters to denote cartesian coordinates, e.g. ( ), ,X Y Z ).  

To define our new coordinate system, we first rotate about the Z-axis by an 
amount equal to the right-ascension. After the rotation, the new X-axis lies in 
both the original XY plane and the plane formed by the average position vector 
(the line of sight to the average position) and the original Z-axis. Next, we rotate 
about the new Y-axis to bring the new X-axis into coincidence with the average 
position vector. In this system, an increase in X corresponds to an increase in 
redshift. The final Z-axis is now tangent to the original great circle of longitude 
at the position of the averaged right-ascension. The result is a right-hand coor-
dinate system that presents the galaxies as viewed by an observer on the Earth 
who is facing the average position. 

This coordinate system we call the “Earth” coordinate system (ES). We also 
make extensive use of a second coordinate system we call the “Galaxy” coordi-
nate system (GS) which we obtain by translating the ES to the average position 
of the galaxies. The Y and Z coordinates of each galaxy are the same in the two 
systems but in the GS, the X coordinates of the galaxies will be range over both 
positive and negative values. 

In Figure 3 we show the distribution of galaxies as viewed by an observer on 
Earth, (ES). Each frame shows the ( ),Y Z  positions of all the galaxies lying in 
an X-coordinate spherical shell with the radius indicated in each frame and with 
a thickness of, 0.005X∆ = . The angle φ is the usual spherical coordinate angle 
of rotation about the Z-axis. The usual spherical polar angle, θ measures the an-
gular position of the galaxies relative to the Z-axis but in this case, we want the 
angle relative to the ,X Y  plane so we define the angle 2ψ θ= π − . As one 
can see, in our new coordinate system, the galaxies are fairly evenly distributed 
about 0φ ψ= = . We noted earlier that we are searching for a 2-point correla-
tion at a distance ≈ 150 Mpc. That distance corresponds to a coordinate differ-
ence of 0.01 which is shown by the heavy black line at the bottom of each frame.  

It is apparent that the number of observed galaxies decreases rapidly with 
redshift. This, however, is purely an observational issue because, on the length 
scales we are considering, the universe is homogeneous. The widths of the sam-
ple set in both the Z and X directions are about 1/2 the width in the Y direction. 
The angular size of the data set is nearly constant with redshift. At 0.16z = , the 
width in the Y direction is about 10 times the correlation length but that ratio 
increases with redshift because the correlation length is independent of redshift. 

3. Correlations 

To discover the correlations, the idea is to calculate the distances from each ga-
laxy to all others and then sort the results into a series of bins. The earliest work 
considered just the observed galaxies and compared the observed densities in 
spherical shells surrounding each galaxy with the average density of galaxies [7]. 
The problem with this method is that it is very sensitive to edge effects. A second  
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Figure 3. Galaxy distributions for several values of redshift. 
 
problem is that not all galaxies in any particular region of observation are rec-
orded. The latter results in artificially low densities in some regions compared to 
others.  

In more recent work [1] [2] [8], to minimize the edge effects, instead of com-
paring the sample set with the average expected density, one introduces a popu-
lation of randomly distributed hypothetical galaxies within the boundaries of the 
actual galaxies and then compares the distance distribution of the random ga-
laxies with that of the actual galaxies. This mitigates the edge effects since both 
sets are subject to the same boundaries, but it does not eliminate the problem 
of artificial underrepresentation of galaxies. We will come back to this point 
later.  

We now need an expression for the probability of finding galaxies with a given 
separation. Based on the idea of a homogeneous universe, it is customary to as-
sume spherical symmetry in which case the probability of finding a galaxy at a 

https://doi.org/10.4236/jmp.2024.153016


J. C. Botke 
 

 

DOI: 10.4236/jmp.2024.153016 382 Journal of Modern Physics 
 

distance r (in comoving coordinate space) from some other galaxy in a volume 
dV is given by  

( ) ( )( )1dP r n r dVξ= +                       (3-1) 

where n is the average density of galaxies. For a random distribution, ( ) 0rξ = . 
The problem is to estimate ( )rξ  based on the observed positions of some large 
set of galaxies. During the development of this field of study, a few different 
analysis methods have been developed [9]. The most recent and most commonly 
used is that introduced in [10]. In that model,  

( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

2

2

1 2

2 1

R R

D D

R R

D D

n nr DD r DR r RR r
RR r n n

DD r DR rn n
RR r n RR r n

ξ
    
 = − +        

    
 = − +        

       (3-2) 

The symbols D and R refer to the actual galaxies (D) and the hypothetical 
random galaxies (R) respectively. The Dn  and Rn  are the average densities of 
the indicated types In practice, one specifies a range of r and then divides that 
range into a number of bins of width r∆ . In our case, we used a bin count of 50 
and an upper limit of 2r ≤  with the result that 0.04r∆ = . 

By definition,  

( ) ( ) ( )
1

1 if 2 2

0 otherwise

N N
i j

i j i

r r r r
DD r

= >

 − ∆ ≤ − < + ∆ =  
  

∑∑
r r

       (3-3) 

where in this case, both sums run over the actual galaxies. As the calculation 
proceeds, the calculated distance between each pair is determined and the cor-
responding bin’s count is incremented.  

One significant step we introduce in our new method is to sort the galaxies 
according to their distance from the center of the GS in increasing distance or-
der. Referring to Equation (3-3), the sum over i, which we will call the primary 
sum, then runs over a sorted list of galaxies from the center outwards. For each 
of these, we then run over all the galaxies in the list (the secondary sum) with 
indices greater than I calculating the distance between each pair as we go. Be-
cause of our sorting, each of the secondary galaxies is at least as far from the 
center as the primary galaxy. One advantage of doing it this way is that we can 
watch the probability distribution as it develops from the center outwards. A 
second advantage is that we can terminate the secondary sum at the point where 
the distance from the secondary galaxy to the origin is greater than the distance 
from the primary galaxy to the origin plus the correlation distance cutoff that we 
specify. The latter reduces the calculation time by more than a factor of 2.  

The measures, ( )DR r  and ( )RR r  are computed in the same way with the 
substitution of the random sets for the actual galaxy sets as appropriate. 

We now wish to apply this formalism to the data set described earlier. Before 
we do, we will first specify the size of a spherical region that will contain our 
subject list of galaxies. If the region is too small, the number of galaxies will be 
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too small to achieve reasonable statistical results. We also must require that the 
diameter of the region is, at a minimum, a few times larger than the expected 
correlation length. At the other limit, making the region too large adds time to 
the calculation without adding anything to the results and exacerbates the ob-
servational underdensity problem which increases with increasing distance from 
the center of the collection. Galaxies further and further from the center tend to 
be randomly located and their inclusion washes out the correlation peak.  

We specify our region in terms of two radii. The smaller of the two, the pri-
mary radius, corresponds to the primary sum in Equation (3-3). We then define 
the larger radius by adding to the primary radius, the maximum correlation dis-
tance we consider (the maximum r considered in Equation (3-3)). After running 
several test cases, we found that with this galaxy data set, a primary radius of 
0.03 is a good compromise. Choosing a maximum correlation distance of 0.02 
then results in a secondary radius of 0.05. The reason for adding this outer re-
gion is to make available pair partners for the full range of primary galaxies. 

We now need to initialize the random data set. Although they don’t explicitly 
say so, the implication from [2] and [8] is that they create their random galaxies 
in redshift space and then transpose those into comoving coordinate space. This, 
however, introduces a bias because the relationship between redshift and com-
oving coordinate is not linear. What is even worse is that in these same studies, 
the redshift distribution of the random set is fixed to be the same as for the ac-
tual galaxies. The result is a “random” set in comoving coordinate space that 
isn’t random at all.  

We instead create our random set directly in comoving coordinate space. We 
imagine a cubic region in GS using Cartesian coordinates with a side dimension 
equal to twice the secondary radius which thus encloses the actual galaxy data 
set. We then create galaxies at random positions in that region and check their 
distance from the origin. If the random galaxy is within the secondary radius 
sphere, it is added to the list; if not, it is dropped. The cycle is repeated until the 
total number of random galaxies equals the required number. At a minimum, 
the total should equal the number of actual galaxies but after trying a few cases, 
we found that better results can be obtained by using a multiple of the actual ga-
laxy count. 

At one point, we considered sorting the actual galaxies into spherical shells 
and then adding random galaxies to each shell based on the number of actual 
galaxies in that shell. This would better reflect the actual distribution of observed 
galaxies but it would also to some extent impress the correlation length onto the 
random set so we would be making the same errors that we just finished saying 
other authors were making. 

In the next 2 sections, we will present some results. We emphasis that we are 
presenting a method for extracting the correlation peak from observational data 
sets. We do not have any particular interest in the precise parameters of the 
peaks that result in large part because, as we shown in Section 6, nothing useful 
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can be done with the result.  

4. Low Redshift Results 

In Figure 4, we show the correlation results obtained using the full data set with 
a primary radius of 0.03. 

There are two curves shown in the figure. The red curve is the result obtained 
using the full set of 98,240 galaxies. The green curve is the result obtained by 
removing from that set those galaxies that are primarily responsible for the cor-
relation peak. The procedure for doing this will be explained below. The results 
show no significant difference between the two curves and no sign of a peak at 
the expected correlation distance. 

The reason for this result is that over a large percentage of the sample area, the 
density of the observed galaxies is too low to reveal the underlying cosmic 
structure. There is no reason to doubt that all or almost all galaxies are part of 
the cosmic web but to expose the structure, the average intergalactic distance of 
the observed galaxies must be small compared to the characteristic dimension of 
the web. This sets a lower limit on the required density of observed galaxies in 
each region of the sky. To get around this problem, the authors of [1] restricted 
their data set to just LRGs because they had reason to believe that these do re-
flect the underlying structure. Why any particular type of galaxy should better 
expose the structure is a question left unanswered. There is no obvious physical 
reason for such a phenomenon in the grand scheme of the cosmic web so it 
seems likely that some observational consideration boosts the likelihood of iden-
tifying LRG galaxies over other galaxy types in regions where the actual galactic 
densities are higher than average.  

A technique commonly used in an attempt to alleviate the low-density prob-
lem is to boost the influence of galaxies in those regions by, in effect, multiplying 
their number by the ratio of the local density to the total average density. This, 
however, amounts to data manufacturing. There might be some justification for 
that step if the low-density galaxies were truly random but that is unlikely be-
cause their presence in the SDSS database is a consequence of choices made by  
 

 
Figure 4. Correlation results for the full galaxy data set with a primary radius of 0.03. 
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astronomers.  
We now introduce a new method for identifying a subset of the observed ga-

laxies that brings to light the underlying cosmic web structure. The idea is sim-
ple and is based on the fact that the density of galaxies will be higher in regions 
defining the backbone of the cosmic web than elsewhere.  

We start by defining a cubic grid of cells in the GS encompassing the entirety 
of the observed data set with a cell size considerably smaller than the correlation 
length. The optimal cell size depends on the particulars of the data set so some 
experimentation is needed. There is no universal value that works in all cases. 
We then assign each galaxy in the data set to the cell corresponding to its loca-
tion in space. The result is that most of the cells will be empty but the remainder 
will contain from 1 up to some maximum number of galaxies that depends on 
the chosen cell size. We now come to the essential step. To identify those galax-
ies that best reflect the backbone of the cosmic web, we simply limit the sample 
set to those galaxies found in cells with galaxy counts larger than some specified 
cutoff. This procedure brings into focus the underlying structure without any ar-
tificial restructuring being applied and it eliminates from consideration the ma-
jority of the galaxies that are in regions where their observational densities are 
too low to reveal the structure. 

Results obtained using a cell size of 0.002 are shown next. With this choice, 
there were 1,191,016 cells of which 1,169,861 were empty. Of the remainder, the 
maximum cell galaxy count was 89. Determining the filter cutoff count involved 
some trial and error. If the cutoff is too low, the peak doesn’t show and if it is too 
high, the filter data set count becomes too small for reasonable statistical results. 
In this case, we found that 26 is a reasonable compromise. With that value, the 
filtered data set contained 11,418 galaxies. (In case there is some confusion, the 
filtered data set contains just the galaxies; the cell structure that was used to gen-
erate the filtered set is dropped). 

In Figure 5, we show the results in the ES system for 4 redshifts. In each case, 
the figures show the populations of a spherical shell with the redshift indicated 
in the figure. The frame on the left displays those galaxies from the full data set 
that lie within the shell and the frame on the right shows the filtered set. 

The first observation is that the filtered data set brings out the underlying 
structure that is hidden in the full data set. The second observation is that the range 
of redshifts within which the structure is manifested is considerably smaller than 
the total redshift range of the original data set. By a redshift of 0.21z = , even 
though there are still a considerable number of galaxies in the full data set as 
shown by the frame to the left, their average spacing has become so large com-
pared to the correlation length that the underlying structure is no longer appar-
ent. Think of the Nyquist frequency. It is not that the structure isn’t there or that 
all the galaxies aren’t a part of it, the problem is that we require higher and 
higher densities of observed galaxies with increasing redshift to see it. 

Referring back to Figure 4, we can now explain the data set used to generate  
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Figure 5. Filtered data set for 4 values of redshift. 
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the “no peak” curve. To generate the filtered set, we limited the selection to those 
galaxies in cells with a minimum of, in this case, 26 galaxies. To generate the “no 
peak” set, we simply did the opposite; we selected only those galaxies that occupy 
cells that contained at least one galaxy but no more than some upper limit. In 
the case of Figure 4, we set the upper limit to be 20.  

In Figure 6, we show the distribution of both the actual and random galaxies 
in the ES for the set of redshifts shown above. In this case, the total number of 
random galaxies is 4 times the number of actual galaxies. That doesn’t appear to 
be the case in the figures, but remember that each red dot contains at least 26 
galaxies and some contain significantly more. 

One can see that the random galaxies lie within a circle containing the outer 
limit of the actual galaxies. In the last two frames, the actual filtered galaxy dis-
tribution becomes sparse so the random galaxies dominate the distribution. 

The correlation results with a random galaxy multiplier of 4 are shown in 
Figure 7. 

As we noted earlier, by sorting the galaxy list according to distance from the 
origin in the GS, it is possible to observe the correlation distance result as it de-
velops. The red curve corresponds to the stage at which the primary sum galaxy 
at index “i” of Equation (3-3) was at a distance of 0.0119 from the origin. As can 
be seen, the 0.01 correlation peak is quite prominent and there are also peaks at 
about 1/2 and twice the correlation distance. The green curve shows the result at 
the stage when galaxy “i” was at a distance of 0.0138 from the origin. The peak at 
0.01 is still visible but it is becoming less prominent and the peak at twice the  
 

 
Figure 6. Filtered and random galaxy distributions for 4 redshifts. 
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Figure 7. Correlation distance curves for 3 values of the primary galaxy center distance. 
 
distance is still visible. Finally, the blue curve corresponds to a distance of 0.0195 
and by that point, the main peak has disappeared but there is still a hint of a 
peak at twice the distance.  

The reason for this result is shown in Figure 8. We have suppressed the ran-
dom galaxies for clarity. 

These figures are results corresponding to the first two figures in Figure 6. In 
each case, the current primary radius is indicated by the smaller red circle, and 
the corresponding secondary radius is indicated by the larger red circle. In 
Frame (a), we see that both the primary and secondary circles lie largely within 
the radius of the actual galaxies. The corresponding curve in Figure 7 is the red 
curve which shows a prominent correlation peak. In Frame (b), the primary cir-
cle is still well within the actual galaxy distribution but the secondary circle is 
now enclosing a sizeable region containing only random galaxies. The result is 
the green curve of Figure 7 which still shows a peak but it is less pronounced. 
Finally, in Frame (c), the primary circle is now also penetrating regions contain-
ing only random galaxies which results in the washing out of the correlation 
peak. Frames (d)-(f) show a similar pattern but with a reduced density of galax-
ies. Keep in mind that we are showing slices through the distributions and that 
the correlation calculation is 3-dimensional with no regard to spherical shells. 

We have shown that our new method of analysis reveals the underlying cos-
mic web when a straightforward application of Equation (3-3) to the full data set 
does not and that it does so without introducing artificial biases. 

5. Higher Redshift Results 

We will now look at different data set consisting of quasars instead of normal 
galaxies. Taking our selection parameters from [2], the redshift range is from 0.8 
to 2.2 and, unlike in the previous case, without a magnitude cutoff. Our query is 
shown in Figure 9. 

We again restricted our data set to just the “North Cap”. Running this query 
results in a data set containing 281,572 quasars.  

In Figure 10 we show the distribution at 3 different redshifts. 
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Figure 8. Calculation limits for 3 values of the primary galaxy center distance and 2 values of redshift. 

 

 
Figure 9. Quasar data set SQL query. 

 

 
Figure 10. Quasar distributions for 3 values of redshift. 
 

We note that, unlike the case with the galaxies, the count of quasars increases 
with redshift. In Figure 11, we show the correlation results for the complete data 
set. As can be seen, there is no indication of a correlation peak at 0.01. 

We next applied the filtering process we introduced above. Finding a peak was 
considerably more difficult than it was in the low redshift case but with just the 
right filtering parameters, a correlation peak can be detected. This result is  
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Figure 11. Quasar correlation distribution for the full data set. 
 
consistent with the results of [2] in which they found only a weak indication of a 
peak. After some experimentation, we settled on a filter cell size of 0.006, which 
results in a maximal cell quasar count of 28. After more experimentation, we 
found that the best results were obtained with a filter cutoff of 10, a primary sum 
radius of 0.1, and a random galaxy multiplier of 6. As before, these parameters 
are peculiar to the data set. 

In Figure 12, we show the filtered data set at an intermediate value of redshift. 
By comparing with the very small correlation length indicator line at the bot-

tom of the right frame, one can see that the peak is developed within the larger 
red dots rather than between the dots. The distances between the data points are 
generally large compared to the correlation length which is an indication that 
the density of the quasars is too low to give a robust realization of the 0.01 cor-
relation peak.  

The resulting correlation curve is shown in Figure 13. The curve does show a 
peak although it is not exactly at a separation of 0.01. 

Because the correlations are a function of the comoving separations of the qu-
asars, to reveal the peak at the same level of confidence as with the galaxy data 
set considered earlier, the density of observed objects in comoving coordinate 
space must be more or less the same. The density varies as the cube of the dis-
tance from the observer and the ratio of the average of the filtered galaxy dis-
tances to that of the quasars is about 5.3 so to achieve the same resolution, the 
quasar data set would need to have a sample count on the order of 150 times 
greater than the galaxy data set count. The actual ratio is about 2.9. 

We can illustrate the same idea in a different way. We create a cubic grid to 
enclose the entire data set with the cell size this time set to the correlation length, 
0.01. We then run through the entirety of both data sets (not the filtered data 
sets) incrementing the count in each cell by the number of galaxies or quasars 
that lie in that cell. From these results, we create a distribution in which the in-
dex making up the horizontal axis is the number of cells whose galaxy/quasar 
count equals the index. For example, the value of the bin at index 10 in the total 
number of cells contains 10 galaxies or quasars. The results are shown in Figure 
14. 
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Figure 12. Filtered quasar data set at a redshift of 1.59z = . 
 

 
Figure 13. Filtered data set result. 
 

 
Figure 14. Distributions of galaxies and quasars in a cubic grid with 
a cell side dimension equal to the correlation length, 0.01. 

https://doi.org/10.4236/jmp.2024.153016


J. C. Botke 
 

 

DOI: 10.4236/jmp.2024.153016 392 Journal of Modern Physics 
 

In the galaxy case, there is a large range of cell populations with the cell con-
taining the largest count having 1506 galaxies. In the quasar case, the range of 
cell counts is very limited with a maximum of 67 and with the bulk having 
counts less than 20. Seeing the correlation peak requires a considerable number 
of cells with large populations. The galaxy data set satisfies this requirement 
whereas the quasar data does not. 

The question now arises as to whether the low density of quasars is a matter of 
observational limitations or whether it is because there just aren’t a lot of identi-
fiable quasars in comparison to the number of ordinary galaxies. If the latter, 
which we suspect is the case, then quasars will always be of lesser use in deter-
mining the correlation distance with the problem growing worse with increasing 
redshift. 

We can gain an appreciation of the quasar distributions by making a plot of 
the full sky count of quasars versus look-back time. The idea is to specify a cir-
cular region of the sky in the ES, count the number of quasars in that circle as a 
function of redshift, scale up to the full sky count, and plot the result. In Figure 
15, we show the definition of a typical circle. We have placed the circle in an 
area of greater density to minimize the effects of limited observations and made 
it small enough to avoid edge effects over the full range of redshifts. 

In Figure 16, we show the quasar counts as a function of ( ) 0t t tχ = . The 
upper horizontal line is the total count of galaxies in the observable universe 
which does not change to any appreciable degree. The starting point of the line is 
the time of galaxy formation, 1610 st ≈ . The quasar counts show a slow de-
crease with time which is presumably a consequence of the quasars running out 
of fuel and becoming normal galaxies. 

One of the predictions of our new model of cosmology [11] is that all galaxies 
began life as at least mini-quasars because if they hadn’t, they would have un-
dergone free-fall collapse and ceased to exist. We also showed in the same paper  
 

 
Figure 15. Sampling circle with an angular radius of 0.3 radians. 
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Figure 16. Full sky quasar counts as a function of look-back time. The upper hori-
zontal line is the total (constant) count of galaxies in the observable universe. 

 
that the stability of galaxy clusters demanded that the quasar phase of almost all 
galaxies must have ended by an extinction time of about 166.8 10 st = × .  

We now want to compare that idea with the observed quasar distribution. 
At this point, we don’t know how to model the extinction history of the 
mini-quasars which would depend in part on their initial supply of quasar fuel. 
To get some idea of the evolution, we calculate the decay assuming first a Gaus-
sian distribution and second, an exponential, mean lifetime distribution. In both 
cases, we know that the initial count was about 2 × 1011 and that most were 
normal galaxies by the extinction time noted earlier. We looked at two cases. In 
one, we required that 10% of the galaxies were still active at the extinction time, 
and in the other, that just 1% were still active. The results are shown in Figure 
17. 

The mean lifetime curves indicate a life span that is probably too long because 
if there were still a sizable number of galaxies in their quasar phase at late times, 
it seems likely that by now someone would have noticed. The Gaussian results 
indicate a termination within the redshift range covered by the quasar data set. 
While these curves are only guesses, they are constrained by the earlier stated 
conditions. The model does account for the rapid demise by several orders of 
magnitude of the mini-quasar action by the time range of the observed quasars.  

We also see that the decay rate of the observed quasars is not remotely com-
patible with the calculated curves. This indicates that at the time of galaxy for-
mation, a very small percentage of the newly forming galaxies came into exis-
tence with a super-size supply of quasar fuel and these are the ones that are now 
observed. The remainder underwent rapid decay after the extinction time and 
even though the Gaussian model indicates that a significant number of 
mini-quasars were still active at a redshift of 2.2, they would have been running 
down and not emitting a significant amount of radiation. These would not be 
recognized as quasars unless observers were specifically looking for that signa-
ture. This model suggests that the evolution of quasars, from mini to full  
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Figure 17. Predicted mini-quasar counts as a function of look-back time. The 
Gaussian results are shown in green and the exponential results are shown in 
blue. 

 
strength, during this epoch would be a fruitful area for investigations in the fu-
ture.  

To summarize, we have examined two data sets, one of low redshift galaxies 
and the other of intermediate redshift quasars. We found in both cases that a 
computation of the correlation function for the full sets does not reveal a peak. 
We then applied our new method and discovered peaks in both cases with the 
effect being stronger in the low redshift galaxy case. That is the good news and 
now for the bad news. While this observed correlation length may be of interest 
as a measure of the dimensions of the cosmic web, it has nothing to say about 
the parameters of cosmological models.  

6. Cosmological Model Parameters 

A great deal of effort during the past few decades has been expended on the idea 
of using the observed correlation distance to fix cosmological model parameters 
such as the Hubble parameter. We will now show that that idea doesn’t work. 
The crux of the problem is that we have no way of measuring the actual correla-
tion distance. What we measure instead is the correlation length that we our-
selves create when we pass from redshifts to comoving coordinates using some 
cosmological model. 

The 2-point correlation distance is a comoving coordinate phenomenon. 
Leaving aside peculiar velocities which are relatively small on the scales we are 
considering, all galaxies are at rest in comoving coordinate space and since their 
positions don’t change, neither do the actual 2-point correlations. Since on large 
scales, the universe is homogeneous and isotropic, it follows that measurements 
of the correlation from any observation point at any epoch will return exactly 
the same result. This means that nothing bearing on time or location can be ex-
tracted from the correlation length itself. The idea that cosmological parameters 
can be fixed by measuring correlations at different redshifts is rooted in the idea 
that there are model-independent differences in the observed correlation length 
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when viewed at different redshifts.  
All studies begin by using a fiducial model to convert the redshifts into com-

oving radial coordinates. One then extracts the correlation peak in comoving 
coordinates as we did in the previous sections and finally, reverts to redshift 
space using the same model but this time fixing adjustable model parameters 
along the way. But, all one is doing is measuring the parameters of the original 
model. 

We first use a fiducial model to convert from the measured redshifts of these 
galaxies to comoving coordinate space so 

( )1 2; , ,i ir F z p p=                       (6-1) 

where the kp  are the parameters of the model. Unless the chosen model hap-
pened to be perfectly correct, the comoving coordinates so determined will not 
match the actual coordinates of the galaxies and even if they did, we have no way 
of knowing it. Next, we do the usual analysis to determine the correlation length 
in our “user-created” comoving space with a result that will generally be differ-
ent from the actual correlation length although probably not by very much.  

The standard procedure from then on is to consider the transverse and radial 
directions separately. In the FRW formulation, any two galaxies with the same 
angular coordinates will have a separation given by [12] 

( )0

c zs
a H z

∆
=



                        (6-2) 

where s


 is discovered by analyzing a restricted data set that is narrow in angu-
lar extent. We then look for the correlation peak and use the result to fix a par-
ticular value of the LHS of the equation. Depending on the model, this separa-
tion will be larger, smaller, or even the same as the actual correlation length. We 
now pretend that we don’t know how they were placed and calculate the RHS of 
the equation for any two galaxies using a model with an unknown set of para-
meters 

( ), 1 2, ; , ,i j i jz G r r p p′ ′∆ =                     (6-3) 

and ask what set of parameters, kp′ , gives a calculated ,i jz∆  that equals the 
LHS of Equation (6-2). By construction, the LHS is 

( ) ( )1 2 1 2; , , ; , ,i j i jr r F z p p F z p p− = −              (6-4) 

so the exact solution is simply 

( ) ( ) ( )1 1
1 2 1 2 1 2, ; , , ; , , ; , ,i j i j i jG r r p p z z F r p p F r p p− −′ ′ = − = −       (6-5) 

Thus, the whole business boils down to ( )( )1
1 2 1 2; , , ; , ,i iz F F z p p p p−=    

with k kp p′ = . This is an identity and hence true for any fiducial model with any 
set of parameters. The model parameters that best match the measured “us-
er-created” correlation distance are exactly those that were used to create the 
correlation length in the first place. The actual correlation length never enters 
into the process and it makes no difference whether or not the “user created” 
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comoving coordinates match the actual coordinates. What does matter is that a 
model is used in both directions, redshift-to-comoving-to-redshift. 

In the transverse direction, the formula connecting the measured transverse 
correlation length and the model parameters is [12], 

0

1
as r

z
θ⊥ = +

.                          (6-6) 

In this case, the correlation is determined from a data set with a restricted 
range of redshifts. Of course, in reality, the two correlations must be the same. A 
model error in the initial redshift-to-coordinate conversion that increases the 
comoving radial coordinates of any two galaxies will increase the average dis-
tance between those galaxies so the result will be an increase in the measured 
correlation length. In real space, the angle cannot be measured directly because 
one does not know which two galaxies are exactly 1 correlation length apart but 
the angle can nevertheless be calculated because the redshift-to-comoving tran-
sition acts only in radial direction so any errors leave the angle unchanged. The 
situation is now the same as before. One uses a model to determine the comov-
ing distance which fixes the product rθ  for a given redshift. Reverting to red-
shift space by calculating the RHS of Equation (6-6) will return the same model 
parameters that were used in the initial step.  

In both cases, there is a possibility of a degeneracy between different parame-
ter sets but the fact remains that using the original parameters will always yield a 
perfect match. 

As noted in [12], researchers in this field are aware that the comoving data set 
depends on the model used to transform to comoving coordinate space but 
choose to ignore this issue when doing parameter estimation studies. For some 
reason, they fail to appreciate that the fiducial model is not a gateway to the ac-
tual comoving coordinates but instead, it creates the fictitious comoving coordi-
nate space where the measurements are actually made. 

We will now make another point about model dependence. Consider follow-
ing the previous analysis using first the ΛCDM model with any parameter set 
one would like and then with our new model. We first convert the observed lo-
cations of the galaxies from redshift to comoving coordinate. In both models, 
there are no off-diagonal components in the metric connecting the angular with 
the radial coordinate so there would not be any disagreement about the angular 
coordinates. We see from Figure 2 that the relationship between coordinate and 
redshift is essentially the same for redshifts less than 2 so for the galaxy data set 
considered above, the calculated comoving locations of all the galaxies will be 
essentially the same in both models and hence, so will the measured value of the 
correlation distance. We now transition back to redshift coordinates. If the 
ΛCDM model parameters are treated as adjustable which is the case in the stu-
dies, to reproduce the original redshifts, the parameters will have to be the same 
as were used in the outgoing step. Because the calculated comoving coordinates 
are the same, and from Figure 2, we see that the scaling predicted by the two 
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models are similar, one might expect that the resulting Hubble parameter would 
be the same. That, however, is not the case. In Figure 18, we show the reduced 
Hubble parameter, ( ) ( )1H z z+  for the two models. 

The red curve is the new model prediction and the 2 blue curves are the 
ΛCDM predictions for 0 67.6H =  and 73. The former is the fiducial value used 
in both [2] and [8]. The latter is the new model value. We included the ΛCDM 
curve with that value to permit a direct comparison with the new model predic-
tion. The curves show that even with identical data sets in comoving coordinate 
space, different models predict entirely different Hubble parameters. 

The orange data points are from [8] and the green data point is from [2]. In 
[8], for example, they find the same values ( )0, ,m HΛΩ Ω  as they started with 
which is the point we are making. If they had started with a different fiducial 
model, their results using the same data set would lie on a different Hubble pa-
rameter curve.  

The crux of the problem is that we have no way of determining the actual 
comoving locations of the galaxies and hence their spacing. To be useful as a 
standard ruler, one would need to be able to recover the correlation length 
without first using a model to create the comoving coordinate space. The whole 
process is circular and therefore meaningless. 

7. The Reality of BAO 

In this section, we will give arguments that show that the acoustic wave idea is 
unworkable as the explanation for the cosmic web. To get an idea of the scope of 
the problem, we will make a few simple estimates. First, we consider the total 
energy contained in the CMB anisotropies. The energy density of blackbody 
radiation is given by 4

BB SBa Tρ =  and, at present, the variance of the CMB 
spectrum has a peak value of 4

0 2 10T T −∆ = × . Earlier, at the time of recombi-
nation, the variance ratio would have been the same but the temperature was 
then 3000 KrecT = . The energy density of the anisotropies would then be 

( )( )4 4 4 5 34 4.9 10 j mT SB SB
Ta T T T a T

T
ρ − −
∆

∆
= + ∆ − ≈ = × ⋅       (7-1) 

 

 
Figure 18. Model predictions for the reduced Hubble parameter. 
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To get the total energy for a supercluster whose dimensions are the reality of the 
correlation distance, we multiply by the volume of a supercluster filament. The 
radius of a filament is about 10% of its length so we find a total of  

594.9 10 jtotalE = × . This energy could not have originated any earlier than the 
time of nucleosynthesis since there were no baryons in existence before then. If 
we chose a reference time of 1 second, causality limits the size of a source re-
gion to a value of 83 10 mct ≈ × . The radiation energy at that time was  

22 36.7 10 j mγρ
−= × ⋅ . The BAO model is based on the idea of perturbations with 

energy densities small compared to the radiation energy density so the maxi-
mum total energy released by a source cell would be considerably less than 7.5 × 
1048 j. Comparing with the needed anisotropy total energy shows that the count 
of sources would have to have been considerably larger than 1011.  

We will now approach the source cell count from a different point of view. In 
comoving coordinates, the average dimension of a supercluster is 0.01 which, for 
simplicity, we will assume is a reasonable estimate of its size at a time of 1 
second. The scaling at that time was 17

1 3.9 10 ma = ×  so the comoving dimen-
sion of a source cell was 7.7 × 10−10. The ratio is 1.3 × 107 so within the volume of 
the perturbation that became the supercluster, there would have been on the or-
der of 1021 source cells. Now, going back to the energy-based estimate, the ener-
gy density of the outgoing spherical wave would decrease at least as fast as the 
square of the distance ratio so the estimated total number of cells would now be 
greater than 1025.  

We don’t claim great accuracy for these numbers but they do indicate that the 
required number of source cells was huge and they also indicate that there was 
not enough space in the assumed initial perturbed regions to account for the to-
tal energy needed to explain the anisotropies.  

We now come to a more unsurmountable problem for the BAO model; 
namely that the spherical waves emanating from this huge number of source 
cells, which have no causal connection and hence have random phases, must 
conspire in exactly the right way across the whole of the universe to account for 
the structure of the cosmic web with its generally linear filaments. That is just 
not possible, particularly given the circumstance that all but those waves with 
the longest wavelengths are suppressed in the BAO perturbation model. 

In our new model, because of the different scaling, the radiation temperature 
at the time of nucleosynthesis was about a factor of 10 smaller than the standard 
model value, and recombination occurred about a factor of 10 sooner, 1012 s 
versus 1013 s. The consequence is that in this model, there would not have been 
sufficient time for BAO waves to reach the size of superclusters. Instead, the lim-
it of expansion would have been around 15 Mpc indicating that such waves, even 
if they did actually exist, had nothing to do with the existence of the cosmic web. 

8. New Model 

We will conclude with a few remarks concerning our new model of cosmology. 
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First, this new model makes a parameter-independent prediction that the 
present-day universe must be undergoing an exponential expansion and it does 
so without any reference to dark energy. In particular, it makes an accurate pre-
diction of the luminosity distance observations over the existing redshift range 
of observations [13]. The model also proposes a new model of matter creation 
[14]. In this model, all the matter in the universe came into existence at a time of 
about 10−5 s when a small percentage of the vacuum energy converted into neu-
tron-antineutron pairs with a very small excess of neutrons; a process that was 
regulated by an imprint established in the vacuum during an initial Planck era 
inflation. Along with the baryons and leptons, this process created the photons 
that became the CMB together with its anisotropies. Compared to this model, 
BAO had a Rube Goldberg air about it. 

We have argued above that the BAO model is unworkable so it follows that 
the BAO fit to the CMB anisotropy spectrum is meaningless. Instead, we show, 
[5] [14], that the position of the first CMB anisotropy peak was a consequence of 
the same process that created the cosmic web. Since then, we have accurately 
calculated the observed maximum temperature of the CMB anisotropy distribu-
tion [15] while showing that galaxy clusters are responsible for both that highest 
temperature and the 3rd peak in the anisotropy spectrum.  

9. Conclusion 

We have presented a new analysis of the BAO idea. We first performed an anal-
ysis of two large data sets and showed that one can extract the 2-point correla-
tion peak as a comoving separation of 0.01 using a new method which avoids 
shortcomings of the standard methods. We next explain why this measured 
length cannot be used as a standard ruler to fix cosmological models. We then 
jump back to the original origin of the BAO idea and finish with simple argu-
ments to show that the idea of BAO being responsible for the cosmic structure of 
the universe is unworkable. 
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