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Abstract 
Structural development defects essentially refer to code structure that violates 
object-oriented design principles. They make program maintenance challeng-
ing and deteriorate software quality over time. Various detection approaches, 
ranging from traditional heuristic algorithms to machine learning methods, are 
used to identify these defects. Ensemble learning methods have strengthened 
the detection of these defects. However, existing approaches do not simulta-
neously exploit the capabilities of extracting relevant features from pre-trained 
models and the performance of neural networks for the classification task. 
Therefore, our goal has been to design a model that combines a pre-trained 
model to extract relevant features from code excerpts through transfer learning 
and a bagging method with a base estimator, a dense neural network, for defect 
classification. To achieve this, we composed multiple samples of the same size 
with replacements from the imbalanced dataset MLCQ1. For all the samples, 
we used the CodeT5-small variant to extract features and trained a bagging 
method with the neural network Roberta Classification Head to classify defects 
based on these features. We then compared this model to RandomForest, one 
of the ensemble methods that yields good results. Our experiments showed that 
the number of base estimators to use for bagging depends on the defect to be 
detected. Next, we observed that it was not necessary to use a data balancing 
technique with our model when the imbalance rate was 23%. Finally, for blob 
detection, RandomForest had a median MCC value of 0.36 compared to 0.12 
for our method. However, our method was predominant in Long Method de-
tection with a median MCC value of 0.53 compared to 0.42 for RandomForest. 
These results suggest that the performance of ensemble methods in detecting 
structural development defects is dependent on specific defects. 
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1. Introduction 

Object-oriented programming is a paradigm used by a significant number of 
developers in the design, development, and implementation of software systems. 
It facilitates the maintenance phase of developed applications. Unfortunately, 
this phase is increasingly jeopardized by developers introducing development 
defects that negatively impact software quality [1]. Poor maintenance hinders 
system evolution, the ease of changes that software engineers could make, pro-
gram understanding, and increases the tendency for errors. In summary, poor 
maintenance leads to the deterioration of software quality [2] and reduces the li-
fespan of systems [3]. These anomalies, which are not bugs or technically incor-
rect codes and do not immediately disrupt program operation, indicate weak-
nesses in design and can slow development or increase the risk of bugs or fail-
ures in the future [4]. They are identifiable based on the taxonomy of detection 
approaches presented by Hadj-Kacem et al. [5] from four sources of information: 
structural, semantic, behavioral, and historical. Structural defects essentially refer 
to code structure that violates object-oriented design principles, such as modulari-
ty, encapsulation, data abstraction, etc. [6]. Blob and Long Method are two struc-
tural defects that align with this assertion and are widespread in source code. 

They are classified according to several abstractions [4] [7] which we group 
into two categories: traditional heuristic approaches and machine learning-based 
approaches. Due to the challenges of finding threshold values for metric identi-
fication, the lack of consistency between different identification techniques, the 
subjectivity of developers in defining defects, and the difficulty of manually con-
structing optimal heuristics [8], research has shifted towards machine learning 
[9]. These models are mathematical techniques that use historical data to auto-
matically identify complex patterns and make informed and intelligent decisions 
[10]. However, this new paradigm is mainly built by learning models taken indi-
vidually, putting aside the adage that there is strength in numbers and rarely 
takes into account the imbalance of data in the context of source codes [10]. 

Knowing that pre-trained models have the ability to extract nuanced features 
and contextual information, they could enable better discrimination between 
minority and majority classes in the context of imbalanced datasets. 

What machine learning method is suitable for imbalanced datasets in the 
context of structural development defect detection? 

Our main objective is therefore to build a model based on ensemble learning 
whose basic estimator is composed of a pre-trained model having the capacity to 
contribute to the balance of classes and a classifier. 

Underlying questions arise based on the above objective. 
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RQ1: What is the optimal number of base estimators for a model? 
RQ2: Do pre-trained models alleviate class imbalance? 
RQ3: Is an ensemble learning method using a pre-trained model for vector 

representations incorporating a deep learning classifier the state-of-the-art for 
ensemble methods? 

To address these concerns, we organize this article as follows: In the second 
section, we present a literature review on detection approaches and on ensemble 
learning methods. Section 3 presents our approach. In Section 4, we present and 
discuss our results, and finally, we conclude the article. 

2. Related Works 

In the field of structural development defect detection approaches, several classi-
fications have been defined [5] [11] [12]. In this work, we summarize the classi-
fication into two groups, as indicated by Yue et al. [13]: traditional heuristic ap-
proaches and those based on machine learning. 

2.1. Traditional Heuristic Approaches 

The process of heuristic approaches generally unfolds in two steps. A set of me-
trics associated or not with specific indicators on code instances is calculated, 
characterizing the considered defect. Then, thresholds are applied to these me-
trics [14]. Following this framework, Peldszus et al. [15] proposed a model that 
associates software metrics and various indicators of code smells to allow the 
system not to deteriorate as it evolves. However, the subjectivity of code smell 
indicators can render detection tools unusable in certain contexts. 

Chen et al. [16] simultaneously implemented the Pysmell tool, whose detec-
tion strategy involved applying a set of metrics associated with parameterized 
thresholds to relevant code excerpts. Similarly, Hammad et al. [17] designed a 
plugin named JFly (Java Fly) integrated into the Eclipse environment based on a 
set of rules characterizing the defects to be detected, including software metrics 
associated with thresholds. All these approaches use threshold values, posing the 
recurring problem of the subjectivity of optimal choice. 

Traditional heuristic approaches are increasingly abandoned in defect detec-
tion methods due, among other reasons, to the subjectivity in defining threshold 
values, steering research towards machine learning [9]. 

2.2. Machine Learning-Based Approaches 

Machine learning is a field of study in artificial intelligence that aims to give ma-
chines the ability to “learn” from data through mathematical models [18]. Two me-
thods of using machine learning algorithms represent the state of the art in research. 

2.2.1. Individual Model Cases 
Hamdy et al. [19] experimented with two recurrent neural networks, LSTM 
(Long short term memory) and GRU (Gated recurrent unit), and a convolution-
al neural network CNN to detect blob. They concluded that neural networks 
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outperform commonly used machine learning models like Naïve Bayes, Random 
Forests, and Decision Trees. 

Although adding the lexical and syntactic features of the source code to the 
software metrics has provided a set of relevant information to the training data, 
these features do not take into account the semantics of the code. 

Kacem et al. [20] conducted a study using a hybrid method, coupling an un-
supervised learning phase using a deep autoencoder whose purpose is to trans-
form code snippets into vector representations of reduced dimensions and su-
pervised learning (artificial neural network ) to classify these codes based on 
their vector characterizations. 

Sharma et al. [11] compared three types of models: Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), and autoencoders with hidden 
layers composed of dense neural networks (DNN), CNN, and RNN. The authors 
used the open-source Tokenizer tool to generate vector representations of code. 

In these two aforementioned works, the process of vector representation of 
code snippets does not take into account the context of the code, which defines 
its meaning. 

To take into account the semantics of the source code, Kacem et al. [20] de-
signed an approach that generates vector representations from abstract syntax 
trees from code excerpts used as input parameters for a variational autoencoder 
(VAE) whose produce semantic information through learning Finally a logistic 
regression classifier is applied to this semantic information to determine wheth-
er a code snippet is a defect or not. The limitation of this work lies in the proce-
dure for extracting representative vectors from code snippets, which involves 
several steps, potentially making the entire system more comple. 

In the search for relevant feature definitions, Škipina et al. [21] recommended 
the use of pre-trained models derived from natural language processing algo-
rithms for source code in defining vector representations of code snippets, as 
opposed to metric extraction tools that take a considerable amount of time for 
extraction, become quickly obsolete due to the rapid evolution of language con-
cepts, and yield inconsistent results, even for well-established code metrics. They 
established that the state-of-the-art in pre-trained models for vector representa-
tions in the context of code snippets is the CodeT5 model. 

The use of machine learning algorithms requires transforming code snippets 
into vector representations. Several approaches are employed to define these re-
presentations. They range from the use of contextual and less generalizable metric 
extraction tools, tokenization methods that do not consider the semantic aspects of 
the code, vectorization from abstract syntax trees combined with machine learn-
ing, making the entire system complex, and pre-trained models. Advancements in 
natural language processing tasks, from which source code processing is derived 
through deep learning, have led researchers to utilize these methods. 

2.2.2. Ensemble Learning Methods 
Ensemble learning methods are meta-learning methods that combine multiple 
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models to obtain a global and robust model. They are obtained either by using dif-
ferent learning algorithms, by using the same algorithm but with different para-
meters or initializations, or by using different training subsets with the same algo-
rithm [22]. The most well-known ones are bagging, boosting, and stacking [23]. 

Khleel et al. [10] combined the random oversampling technique SMOTE with 
five machine learning models, including an XGBoost ensemble algorithm, which 
achieved better accuracy with both balanced and unbalanced data. Similarly, 
Madeyski and Lewowski [24] evaluated the performance of seven learning algo-
rithms and an ensemble learning method to detect four structural defects. The 
authors concluded that, overall, the Random Forests ensemble method exhibited 
better performance. 

The interest of these studies lies in the predominance of ensemble learning 
methods over individual machine learning algorithms. However, for a more 
thorough evaluation, a comparison between ensemble learning methods would 
be appropriate. 

Dewangan et al. [25] experimented with five ensemble learning techniques 
and two neural networks (Dense Neural Network and Convolutional Neural 
Network) to assess the impact of metrics on the detection of development de-
fects In the preprocessing phase, the authors applied the SMOTE class balancing 
technique to balance each class in each dataset and showed, among other things, 
that ensemble methods combined with the Chi-square technique, a relevant fea-
ture extraction method, improve the performance of code smell detection. 

Mamatha et al. [26] empirically validated the effect of homogeneous ensemble 
methods on the prediction performance of software defect detection models. 
They observed a significant improvement in model performance. 

To validate the best data balancing technique, Liu et al. [8] experimented with 
31 balancing methods to detect structural defects. The authors concluded that 
ensemble learning techniques like DeepForest substantially improved classifier 
performance. 

Ensemble learning techniques have proven their effectiveness in detecting 
structural development defects. They mitigate the class imbalance problem in 
certain contexts and have become the state-of-the-art methods in machine 
learning. However, like any machine learning algorithm, they become ineffective 
when the extracted features are not relevant. To the best of our knowledge, there 
is no approach that combines pre-trained models for relevant feature definitions 
and ensemble learning methods for the detection of structural defects 

3. Presentation of Our Approach 

In this section, we describe the targeted defects, datasets, predictors, ensemble 
method defining our model, algorithm, experiment parameters, and perfor-
mance metrics used to evaluate our model. 

3.1. Targeted Development Defects 

In this article, we choose to detect the anti-pattern Blob and the code smell Long 
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Method. The selection of these defects is not arbitrary. Blob and Long Method 
are two widely prevalent structural defects in software. Code affected by these 
defects tends to have errors, negatively impacting software quality [2]. Given 
that Blob represents an anti-pattern and Long Method signifies a code smell, 
they can be considered representative of structural defects. Additionally, most 
existing datasets support these two development defects [27]. 

3.2. Acquisition and Processing of Training Data 

In the quest for development defect detection approaches, the lack of communi-
ty-validated reference data poses a challenge in validating obtained results [2]. 
To address this gap in reference datasets, several datasets have been proposed [1] 
[2] [13] [28] [29]. 

Lewowski and Madeyski [30] introduced MLCQ, an extensive industrial-type 
database annotated and validated by experienced experts. 

The severity labeling of data, with a multitude of code instances, meaning a da-
tabase containing both defect and non-defect instances, advocate for the MLCQ 
dataset. Consequently, we choose the MLCQ dataset based on the aforementioned 
considerations. We define two classes, expressed as [31] as follows: 

( ){ }0 / "none"i iC x severity x= =
 

( ) { }{ }1 / minor,major,criticali iC x severity x= ∈
 

where ix  is a code snippet at the class or method level. 
In this study, we will use two reduced MLCQ datasets, one balanced and anoth-

er imbalanced, to account for real proportions for a proper evaluation of our mod-
el. Table 1 and Table 2 provide the distributions of these two datasets. 

3.3. Vector Representation and Class Imbalance Management 

We employ the pre-trained CodeT5 model in the context of this work for gene-
rating code vector representations. This choice is based on its state-of-the-art  

 
Table 1. Dataset containing Blob. 

Development 
defects 

Number of 
blobs 

Blob rate 
Number of 
Instances 
negatives 

Instances 
negatives 

rate 
Total 

Balanced set 104 50% 104 50% 208 

Unbalanced set 104 23% 348 77% 452 
 

Table 2. Dataset containing long method. 

Development 
defects 

Number of 
Long Method 

Long 
Method 

rate 

Number of 
Instances 
negatives 

Instances 
negatives rate 

Total 

Balanced set 140 50% 140 50% 280 

Unbalanced set 140 23% 460 77% 600 
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Figure 1. The bagging technique. 

 
performance, and it captures the semantic nuances necessary for detecting code 
smells [21]. Leveraging the pre-training of this model, we address the imbalance 
issue within our dataset. 

3.4. Ensemble Learning Methods 

The bagging model is formalized as follows: Let ( ) ( ){ }1 1, , , ,n nZ x y x y=   be 

the initial sample, where ix  is a code snippet, and { }0;1iy ∈ . Let B be boot-

strap samples of n observations: ( ) ( ){ }1 1, , , ,b b b b b
n nZ x y x y=  , 1, ,b B= 

. 

Let ( )ˆ . _b b bf DNN MOD PRE= ° , where ( )ˆ .bf  is the model trained with 
bootstrap sample b, composed of the pre-trained model MOD_PRE followed by 
a DNN. 

The ensemble model is defined as:  

( ) ( ){ }1
ˆ ˆ. .B

i bf argmax f==                      (1) 

In our work, we experiment with CodeT5 as a pre-trained model and Roberta 
Classification Head for the DNN. The bagging technique is illustrated in the 
Figure 1. 

3.5. Our Algorithm 
3.5.1. Description of Our Algorithm 
( ),e eX Y , and ( ),t tX Y  are respectively the training and test data, ListMod is the 
container for the trained base estimators andn_boostcorresponds to the number 
of base estimators to train. For each iteration i of n_boost, we select a sample 

( ),
ii eD Y  with replacement using the Random_replace function of the same size 

as the initial dataset eX . We extract the features [ ]iX  from the code snippets 
using the pre-trained CodeT5 model, the first component of our model. This 
vector representation [ ]iX  is used as input to train our base estimator, which is 
the dense neural network iDNN .  
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ACC is the function that evaluates the accuracy of the base estimator.Once all 
the base estimators are trained, each is associated with an accuracy. We obtain a 
list of pairs ( iDNN , iACC ) that will be subjected to a Majority Voting procedure. 
This is the task of the vote function. It returns the final model that will be used 
for classification. Model evaluation is performed using the Matthews Correlation 
Coefficient (MCC) metric adapted for imbalanced data.We illustrate our algo-
rithm with the diagram below. 
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3.5.2. Explanation of the Algorithm 
( ),e eX Y  and ( ),t tX Y  are respectively the training and test data, ListMod is the 
container for the trained base estimators and n_boost corresponds to the num-
ber of base estimators to train. For each iteration i of n_boost, we select a sample 

( ),
ii eD Y  with replacement using the Random_replace function of the same size 

as the initial dataset eX . We extract the features [ ]iX  from the code snippets 
using the pre-trained CodeT5 model, the first component of our model. This 
vector representation [ ]iX  is used as input to train our base estimator, which is 
the dense neural network iDNN . 

ACC is the function that evaluates the accuracy of the base estimator. 
Once all the base estimators are trained, each is associated with an accuracy. 

We obtain a list of pairs ( iDNN , iACC ) that will be subjected to a Majority 
Voting procedure. This is the task of the vote function. It returns the final model 
that will be used for classification. Model evaluation is performed using the 
Matthews Correlation Coefficient (MCC) metric adapted for imbalanced data. 

3.6. Performance Evaluation Metrics 

The usual model evaluation metrics that we will present subsequently are deduced 
from the confusion matrix defined by Table 3 for a binary classification. 

Accuracy is the proportion of correctly predicted instances compared to all 
instances 

TP TNAccuracy
TP TN FN FP

+
=

+ + +
                  (2) 

Precision, also called positive predictive value, is the ratio of the number of 
true positives to the total number of positive predictions. 

TPPrecision
TP FP

=
+

                      (3) 

Recall or sensitivity or true positive rate is the proportion of positive instances 
actually predicted by the model among all truly positive instances 

TPRecall
TP FN

=
+

                       (4) 

The F1-score is the harmonic mean of precision and recall 

2F1-score P R
P R
∗ ∗

=
+

                      (5) 

Mattheus Correlation Coefficient (MCC) measures the quality of a classification 
by comparing the model's predictions with the true class labels. It is particularly  

 
Table 3. Confusion matrix for binary classification. 

 Positive predicted Negative predicted 

Real positive True Positive (TP) False Negative (FN) 

Real negative False Positive (FP) True Negative (TN) 
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useful in scenarios where classes are unbalanced [32]. 

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
∗ − ∗

=
+ + + +

         (6) 

4. Results and Discussion 
4.1. Results 

This section presents the results of our experiments in accordance with our re-
search questions. In section 4.1.1, we will evaluate the impact of the number of base 
estimators in ensemble methods. Section 4.1.2 will justify the necessity or otherwise 
of class balancing through additional techniques. Section 4.1.3 will compare our 
method to RandomForest, and finally, section 3.4.2 will discuss our results. 

4.1.1. Evaluation of the Number of Base Estimators in Ensemble Models 
To better understand the impact of the number of base estimators in ensemble 
methods, we compare our model and RandomForest by varying the number of 
base estimators on two types of datasets. One balanced and the other imbalanced. 
Table 4 and Table 5, depicted by Figure 2 and Figure 3, respectively, show a 
comparison of the average accuracies between our model and RandomForest on  

 
Table 4. Comparative table of average Accuracies between our model and RandomForest 
in the detection of Blob on the balanced dataset. 

Number of estimators 
Number of trials 

2 4 6 8 10 

RandomForest 0.63 0.63 0.64 0.64 0.63 

Our model 0.59 0.64 0.65 0.65 0.67 

 

 
Figure 2. Comparison of accuracies in Blob detection on the balanced dataset. 
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Table 5. Comparative table of average Accuracies between our model and RandomForest 
in the detection of LongMethod on the balanced dataset. 

Number of estimators 
Number of trials 

2 4 6 8 10 

RandomForest 0.61 0.61 0.67 0.6 0.59 

Our model 0.63 0.61 0.60 0.61 0.60 

 

 
Figure 3. Comparison of accuracies in Blob detection on the balanced dataset. 

 
Table 6. Comparative table of average MCCs between our model and RandomForest in 
the detection of LongMethod on the unbalanced dataset. 

Number of estimators 
Number of trials 

2 4 6 8 10 

RandomForest 0.42 0.47 0.50 0.51 0.52 

Our model 0.49 0.52 0.53 0.54 0.53 

 
the balanced dataset. Meanwhile, Table 6 and Table 7, illustrated by Figure 4 
and Figure 5, present the average MCCs between our model and RandomForest 
on the imbalanced dataset. 

4.1.2. Class Balancing 
Can the use of pre-trained models adjust to minority classes? To address this 
concern, we evaluated our model with and without the SMOTE technique. On 
average, we achieved 87% accuracy, whether we associated the SMOTE tech-
nique with our model or not, with a very slight increase of 3% in MCC in favor 
of the balancing technique in the first eight trials. These empirical results suggest 
the unnecessary use of balancing techniques when pre-trained models are com-
ponents of the model. 
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Figure 4. Comparison of MCCs in LongMethod detection on the unbalanced dataset. 

 
Table 7. Comparative table of average MCCs between our model and RandomForest in 
the detection of blob on the unbalanced dataset. 

Number of estimators 
Number of trials 

2 4 6 8 10 

RandomForest 0.20 0.21 0.22 0.24 0.22 

Our model 0.13 0.16 0.21 0.13 0.10 

 

 
Figure 5. Comparison of MCCs in Blob detection on the unbalanced dataset. 
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4.1.3. Comparison of Our Model and RandomForest 
Our approach is compared to that of [24], specifically to the RandomForest al-
gorithm, which showed better performance according to the authors. Our 20 
experiments rely on 10 base estimators trained on imbalanced datasets. We ag-
gregated precision and recall by the mean, F1-score using equation (5), and ac-
curacy and MCC by the median. 

We summarize the results obtained in Table 8 and Table 9 with the asso-
ciated graphical representations in Figure 6 and Figure 7, respectively. 

4.2. Discussion 

We posed questions for which experiments were undertaken to empirically con-
firm or refute assertions. 

RQ1: How many basic estimators are needed for an optimal model? 
To determine this number, we compared our model to RandomForest by va-

rying the number of estimators. We observed that for a number of estimators 
 

Table 8. Evaluation of our model and RandomForest in the detection of Long Method. 

 Precision Recall F1-score Accuracy MCC 

RandomForest 0.75 0.68 0.71 0.77 0.42 

Our Model 0.80 0.73 0.76 0.87 0.53 
 

 
Figure 6. Evaluation of our model and RandomForest in the detection of Long Method. 

 
Table 9. Evaluation of our model and RandomForest in the detection of Blob. 

 Precision Recall F1-score Accuracy MCC 

RandomForest 0.68 0.69 0.68 0.73 0.36 

Our Model 0.59 0.56 0.57 0.68 0.12 
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Figure 7. Evaluation of our model and RandomForest in the detection of Blob. 

 
less than or equal to 20 for balanced datasets with a maximum size of 140, our 
model performed well in terms of accuracy. However, when data classes became 
imbalanced with a maximum size of 600, the number of estimators allowed by 
our experimental conditions became less than or equal to 10. In this context, we 
observed that RandomForest better detects the Blob anti-pattern from 7 estima-
tors, while our model becomes effective from 10 estimators in detecting the 
LongMethod. These results need verification for larger numbers of estimators 
and larger datasets. We observed that when the imbalance is significant, both 
models tend to overfit. This observation could be verified by reconsidering the 
data and base estimator sizes. 

RQ2: Do pre-trained models mitigate class imbalance? 
From the experiments, it is not necessary to use additional class balancing tech-

niques when pre-trained models are used to transform code snippets into vector 
representations. However, the question remains open when the imbalance is sig-
nificant. We only used 8 experiments, as we noted that beyond this point, the vari-
ation in accuracy became low. This observation needs further justification. 

RQ3: Is an ensemble method using a pre-trained model for vector representa-
tions and incorporating a deep learning classifier the state of the art in ensemble 
methods? 

Since we use an unbalanced set, the preferred metric is MCC. 
In Blob detection, the median MCC of our method is almost 20% lower than 

that of RandomForest. The F1-score and other performance metrics confirm the 
predominance of RandomForest over our model (See graph 4). However, our 
model outperforms RandomForest in LongMethod detection with a median 
MCC equal to 0.53 compared to 0.42 for RandomForest (See graph 3). These re-
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sults suggest that ensemble learning methods based on deep learning estimators 
are not inherently more dominant in defect detection. However, the work of [19] 
has shown that neural networks outperform non-deep learning methods. Our un-
derperformance in Blob detection could be explained by the small size of our da-
taset, as neural networks typically perform better when trained on large datasets. 

5. Conclusions 

Structural defects have a negative impact on software quality, making software 
maintenance challenging. Existing approaches do not integrate pre-trained 
models, which have the ability to define vector representations that consider the 
code semantics, and neural networks, which are highly effective in classification 
tasks. Therefore, we designed a bagging approach with CodeT5 and a dense 
neural network as the base estimator to detect Blob and LongMethod. We aimed 
to determine the optimal number of base estimators, but due to hardware re-
source limitations, we couldn’t establish a threshold for the number of estima-
tors. In this study, we demonstrated that pre-trained models could, to some ex-
tent, address the issue of class imbalance in data. We compared our model with 
RandomForest, a reference model. Our results suggested that the choice of me-
thods for detecting structural defects depended on the type of defects. However, 
we can confirm, based on the work of [18], that the size of the data used biased 
the results. 

For future work, we will use larger datasets and a greater number of estima-
tors to evaluate our model. We will also examine the complexity of our model to 
reduce execution time compared to RandomForest. 
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