
Open Journal of Applied Sciences, 2024, 14, 494-510
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2024.142036 Feb. 29, 2024 494 Open Journal of Applied Sciences

An Approach to Detect Structural Development
Defects in Object-Oriented Programs

Maxime Seraphin Gnagne1, Mouhamadou Dosso1, Mamadou Diarra1, Souleymane Oumtanaga2

1Department of Mathematics and Computer Science, University Félix HOUPHOUËT-BOIGNY, Abidjan, Côte d’Ivoire
2Research and Innovation Unit in Mathematics and Digital Sciences, National Polytechnic Institute Félix
HOUPHOUËT-BOIGNY, Yamoussoukro, Côte d’Ivoire

Abstract
Structural development defects essentially refer to code structure that violates
object-oriented design principles. They make program maintenance challeng-
ing and deteriorate software quality over time. Various detection approaches,
ranging from traditional heuristic algorithms to machine learning methods, are
used to identify these defects. Ensemble learning methods have strengthened
the detection of these defects. However, existing approaches do not simulta-
neously exploit the capabilities of extracting relevant features from pre-trained
models and the performance of neural networks for the classification task.
Therefore, our goal has been to design a model that combines a pre-trained
model to extract relevant features from code excerpts through transfer learning
and a bagging method with a base estimator, a dense neural network, for defect
classification. To achieve this, we composed multiple samples of the same size
with replacements from the imbalanced dataset MLCQ1. For all the samples,
we used the CodeT5-small variant to extract features and trained a bagging
method with the neural network Roberta Classification Head to classify defects
based on these features. We then compared this model to RandomForest, one
of the ensemble methods that yields good results. Our experiments showed that
the number of base estimators to use for bagging depends on the defect to be
detected. Next, we observed that it was not necessary to use a data balancing
technique with our model when the imbalance rate was 23%. Finally, for blob
detection, RandomForest had a median MCC value of 0.36 compared to 0.12
for our method. However, our method was predominant in Long Method de-
tection with a median MCC value of 0.53 compared to 0.42 for RandomForest.
These results suggest that the performance of ensemble methods in detecting
structural development defects is dependent on specific defects.

Keywords
Object-Oriented Programming, Structural Development Defect Detection,

How to cite this paper: Gnagne, M.S.,
Dosso, M., Diarra, M. and Oumtanaga, S.
(2024) An Approach to Detect Structural
Development Defects in Object-Oriented
Programs. Open Journal of Applied Sciences,
14, 494-510.
https://doi.org/10.4236/ojapps.2024.142036

Received: January 5, 2024
Accepted: February 26, 2024
Published: February 29, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2024.142036
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2024.142036
http://creativecommons.org/licenses/by/4.0/

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 495 Open Journal of Applied Sciences

Software Maintenance, Pre-Trained Models, Features Extraction, Bagging,
Neural Network

1. Introduction

Object-oriented programming is a paradigm used by a significant number of
developers in the design, development, and implementation of software systems.
It facilitates the maintenance phase of developed applications. Unfortunately,
this phase is increasingly jeopardized by developers introducing development
defects that negatively impact software quality [1]. Poor maintenance hinders
system evolution, the ease of changes that software engineers could make, pro-
gram understanding, and increases the tendency for errors. In summary, poor
maintenance leads to the deterioration of software quality [2] and reduces the li-
fespan of systems [3]. These anomalies, which are not bugs or technically incor-
rect codes and do not immediately disrupt program operation, indicate weak-
nesses in design and can slow development or increase the risk of bugs or fail-
ures in the future [4]. They are identifiable based on the taxonomy of detection
approaches presented by Hadj-Kacem et al. [5] from four sources of information:
structural, semantic, behavioral, and historical. Structural defects essentially refer
to code structure that violates object-oriented design principles, such as modulari-
ty, encapsulation, data abstraction, etc. [6]. Blob and Long Method are two struc-
tural defects that align with this assertion and are widespread in source code.

They are classified according to several abstractions [4] [7] which we group
into two categories: traditional heuristic approaches and machine learning-based
approaches. Due to the challenges of finding threshold values for metric identi-
fication, the lack of consistency between different identification techniques, the
subjectivity of developers in defining defects, and the difficulty of manually con-
structing optimal heuristics [8], research has shifted towards machine learning
[9]. These models are mathematical techniques that use historical data to auto-
matically identify complex patterns and make informed and intelligent decisions
[10]. However, this new paradigm is mainly built by learning models taken indi-
vidually, putting aside the adage that there is strength in numbers and rarely
takes into account the imbalance of data in the context of source codes [10].

Knowing that pre-trained models have the ability to extract nuanced features
and contextual information, they could enable better discrimination between
minority and majority classes in the context of imbalanced datasets.

What machine learning method is suitable for imbalanced datasets in the
context of structural development defect detection?

Our main objective is therefore to build a model based on ensemble learning
whose basic estimator is composed of a pre-trained model having the capacity to
contribute to the balance of classes and a classifier.

Underlying questions arise based on the above objective.

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 496 Open Journal of Applied Sciences

RQ1: What is the optimal number of base estimators for a model?
RQ2: Do pre-trained models alleviate class imbalance?
RQ3: Is an ensemble learning method using a pre-trained model for vector

representations incorporating a deep learning classifier the state-of-the-art for
ensemble methods?

To address these concerns, we organize this article as follows: In the second
section, we present a literature review on detection approaches and on ensemble
learning methods. Section 3 presents our approach. In Section 4, we present and
discuss our results, and finally, we conclude the article.

2. Related Works

In the field of structural development defect detection approaches, several classi-
fications have been defined [5] [11] [12]. In this work, we summarize the classi-
fication into two groups, as indicated by Yue et al. [13]: traditional heuristic ap-
proaches and those based on machine learning.

2.1. Traditional Heuristic Approaches

The process of heuristic approaches generally unfolds in two steps. A set of me-
trics associated or not with specific indicators on code instances is calculated,
characterizing the considered defect. Then, thresholds are applied to these me-
trics [14]. Following this framework, Peldszus et al. [15] proposed a model that
associates software metrics and various indicators of code smells to allow the
system not to deteriorate as it evolves. However, the subjectivity of code smell
indicators can render detection tools unusable in certain contexts.

Chen et al. [16] simultaneously implemented the Pysmell tool, whose detec-
tion strategy involved applying a set of metrics associated with parameterized
thresholds to relevant code excerpts. Similarly, Hammad et al. [17] designed a
plugin named JFly (Java Fly) integrated into the Eclipse environment based on a
set of rules characterizing the defects to be detected, including software metrics
associated with thresholds. All these approaches use threshold values, posing the
recurring problem of the subjectivity of optimal choice.

Traditional heuristic approaches are increasingly abandoned in defect detec-
tion methods due, among other reasons, to the subjectivity in defining threshold
values, steering research towards machine learning [9].

2.2. Machine Learning-Based Approaches

Machine learning is a field of study in artificial intelligence that aims to give ma-
chines the ability to “learn” from data through mathematical models [18]. Two me-
thods of using machine learning algorithms represent the state of the art in research.

2.2.1. Individual Model Cases
Hamdy et al. [19] experimented with two recurrent neural networks, LSTM
(Long short term memory) and GRU (Gated recurrent unit), and a convolution-
al neural network CNN to detect blob. They concluded that neural networks

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 497 Open Journal of Applied Sciences

outperform commonly used machine learning models like Naïve Bayes, Random
Forests, and Decision Trees.

Although adding the lexical and syntactic features of the source code to the
software metrics has provided a set of relevant information to the training data,
these features do not take into account the semantics of the code.

Kacem et al. [20] conducted a study using a hybrid method, coupling an un-
supervised learning phase using a deep autoencoder whose purpose is to trans-
form code snippets into vector representations of reduced dimensions and su-
pervised learning (artificial neural network) to classify these codes based on
their vector characterizations.

Sharma et al. [11] compared three types of models: Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), and autoencoders with hidden
layers composed of dense neural networks (DNN), CNN, and RNN. The authors
used the open-source Tokenizer tool to generate vector representations of code.

In these two aforementioned works, the process of vector representation of
code snippets does not take into account the context of the code, which defines
its meaning.

To take into account the semantics of the source code, Kacem et al. [20] de-
signed an approach that generates vector representations from abstract syntax
trees from code excerpts used as input parameters for a variational autoencoder
(VAE) whose produce semantic information through learning Finally a logistic
regression classifier is applied to this semantic information to determine wheth-
er a code snippet is a defect or not. The limitation of this work lies in the proce-
dure for extracting representative vectors from code snippets, which involves
several steps, potentially making the entire system more comple.

In the search for relevant feature definitions, Škipina et al. [21] recommended
the use of pre-trained models derived from natural language processing algo-
rithms for source code in defining vector representations of code snippets, as
opposed to metric extraction tools that take a considerable amount of time for
extraction, become quickly obsolete due to the rapid evolution of language con-
cepts, and yield inconsistent results, even for well-established code metrics. They
established that the state-of-the-art in pre-trained models for vector representa-
tions in the context of code snippets is the CodeT5 model.

The use of machine learning algorithms requires transforming code snippets
into vector representations. Several approaches are employed to define these re-
presentations. They range from the use of contextual and less generalizable metric
extraction tools, tokenization methods that do not consider the semantic aspects of
the code, vectorization from abstract syntax trees combined with machine learn-
ing, making the entire system complex, and pre-trained models. Advancements in
natural language processing tasks, from which source code processing is derived
through deep learning, have led researchers to utilize these methods.

2.2.2. Ensemble Learning Methods
Ensemble learning methods are meta-learning methods that combine multiple

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 498 Open Journal of Applied Sciences

models to obtain a global and robust model. They are obtained either by using dif-
ferent learning algorithms, by using the same algorithm but with different para-
meters or initializations, or by using different training subsets with the same algo-
rithm [22]. The most well-known ones are bagging, boosting, and stacking [23].

Khleel et al. [10] combined the random oversampling technique SMOTE with
five machine learning models, including an XGBoost ensemble algorithm, which
achieved better accuracy with both balanced and unbalanced data. Similarly,
Madeyski and Lewowski [24] evaluated the performance of seven learning algo-
rithms and an ensemble learning method to detect four structural defects. The
authors concluded that, overall, the Random Forests ensemble method exhibited
better performance.

The interest of these studies lies in the predominance of ensemble learning
methods over individual machine learning algorithms. However, for a more
thorough evaluation, a comparison between ensemble learning methods would
be appropriate.

Dewangan et al. [25] experimented with five ensemble learning techniques
and two neural networks (Dense Neural Network and Convolutional Neural
Network) to assess the impact of metrics on the detection of development de-
fects In the preprocessing phase, the authors applied the SMOTE class balancing
technique to balance each class in each dataset and showed, among other things,
that ensemble methods combined with the Chi-square technique, a relevant fea-
ture extraction method, improve the performance of code smell detection.

Mamatha et al. [26] empirically validated the effect of homogeneous ensemble
methods on the prediction performance of software defect detection models.
They observed a significant improvement in model performance.

To validate the best data balancing technique, Liu et al. [8] experimented with
31 balancing methods to detect structural defects. The authors concluded that
ensemble learning techniques like DeepForest substantially improved classifier
performance.

Ensemble learning techniques have proven their effectiveness in detecting
structural development defects. They mitigate the class imbalance problem in
certain contexts and have become the state-of-the-art methods in machine
learning. However, like any machine learning algorithm, they become ineffective
when the extracted features are not relevant. To the best of our knowledge, there
is no approach that combines pre-trained models for relevant feature definitions
and ensemble learning methods for the detection of structural defects

3. Presentation of Our Approach

In this section, we describe the targeted defects, datasets, predictors, ensemble
method defining our model, algorithm, experiment parameters, and perfor-
mance metrics used to evaluate our model.

3.1. Targeted Development Defects

In this article, we choose to detect the anti-pattern Blob and the code smell Long

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 499 Open Journal of Applied Sciences

Method. The selection of these defects is not arbitrary. Blob and Long Method
are two widely prevalent structural defects in software. Code affected by these
defects tends to have errors, negatively impacting software quality [2]. Given
that Blob represents an anti-pattern and Long Method signifies a code smell,
they can be considered representative of structural defects. Additionally, most
existing datasets support these two development defects [27].

3.2. Acquisition and Processing of Training Data

In the quest for development defect detection approaches, the lack of communi-
ty-validated reference data poses a challenge in validating obtained results [2].
To address this gap in reference datasets, several datasets have been proposed [1]
[2] [13] [28] [29].

Lewowski and Madeyski [30] introduced MLCQ, an extensive industrial-type
database annotated and validated by experienced experts.

The severity labeling of data, with a multitude of code instances, meaning a da-
tabase containing both defect and non-defect instances, advocate for the MLCQ
dataset. Consequently, we choose the MLCQ dataset based on the aforementioned
considerations. We define two classes, expressed as [31] as follows:

(){ }0 / "none"i iC x severity x= =

() { }{ }1 / minor,major,criticali iC x severity x= ∈

where ix is a code snippet at the class or method level.
In this study, we will use two reduced MLCQ datasets, one balanced and anoth-

er imbalanced, to account for real proportions for a proper evaluation of our mod-
el. Table 1 and Table 2 provide the distributions of these two datasets.

3.3. Vector Representation and Class Imbalance Management

We employ the pre-trained CodeT5 model in the context of this work for gene-
rating code vector representations. This choice is based on its state-of-the-art

Table 1. Dataset containing Blob.

Development
defects

Number of
blobs

Blob rate
Number of
Instances
negatives

Instances
negatives

rate
Total

Balanced set 104 50% 104 50% 208

Unbalanced set 104 23% 348 77% 452

Table 2. Dataset containing long method.

Development
defects

Number of
Long Method

Long
Method

rate

Number of
Instances
negatives

Instances
negatives rate

Total

Balanced set 140 50% 140 50% 280

Unbalanced set 140 23% 460 77% 600

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 500 Open Journal of Applied Sciences

Figure 1. The bagging technique.

performance, and it captures the semantic nuances necessary for detecting code
smells [21]. Leveraging the pre-training of this model, we address the imbalance
issue within our dataset.

3.4. Ensemble Learning Methods

The bagging model is formalized as follows: Let () (){ }1 1, , , ,n nZ x y x y=  be

the initial sample, where ix is a code snippet, and { }0;1iy ∈ . Let B be boot-

strap samples of n observations: () (){ }1 1, , , ,b b b b b
n nZ x y x y=  , 1, ,b B= 

.

Let ()ˆ . _b b bf DNN MOD PRE= ° , where ()ˆ .bf is the model trained with
bootstrap sample b, composed of the pre-trained model MOD_PRE followed by
a DNN.

The ensemble model is defined as:

() (){ }1
ˆ ˆ. .B

i bf argmax f== (1)

In our work, we experiment with CodeT5 as a pre-trained model and Roberta
Classification Head for the DNN. The bagging technique is illustrated in the
Figure 1.

3.5. Our Algorithm
3.5.1. Description of Our Algorithm
(),e eX Y , and (),t tX Y are respectively the training and test data, ListMod is the
container for the trained base estimators andn_boostcorresponds to the number
of base estimators to train. For each iteration i of n_boost, we select a sample

(),
ii eD Y with replacement using the Random_replace function of the same size

as the initial dataset eX . We extract the features []iX from the code snippets
using the pre-trained CodeT5 model, the first component of our model. This
vector representation []iX is used as input to train our base estimator, which is
the dense neural network iDNN .

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 501 Open Journal of Applied Sciences

ACC is the function that evaluates the accuracy of the base estimator.Once all
the base estimators are trained, each is associated with an accuracy. We obtain a
list of pairs (iDNN , iACC) that will be subjected to a Majority Voting procedure.
This is the task of the vote function. It returns the final model that will be used
for classification. Model evaluation is performed using the Matthews Correlation
Coefficient (MCC) metric adapted for imbalanced data.We illustrate our algo-
rithm with the diagram below.

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 502 Open Journal of Applied Sciences

3.5.2. Explanation of the Algorithm
(),e eX Y and (),t tX Y are respectively the training and test data, ListMod is the
container for the trained base estimators and n_boost corresponds to the num-
ber of base estimators to train. For each iteration i of n_boost, we select a sample

(),
ii eD Y with replacement using the Random_replace function of the same size

as the initial dataset eX . We extract the features []iX from the code snippets
using the pre-trained CodeT5 model, the first component of our model. This
vector representation []iX is used as input to train our base estimator, which is
the dense neural network iDNN .

ACC is the function that evaluates the accuracy of the base estimator.
Once all the base estimators are trained, each is associated with an accuracy.

We obtain a list of pairs (iDNN , iACC) that will be subjected to a Majority
Voting procedure. This is the task of the vote function. It returns the final model
that will be used for classification. Model evaluation is performed using the
Matthews Correlation Coefficient (MCC) metric adapted for imbalanced data.

3.6. Performance Evaluation Metrics

The usual model evaluation metrics that we will present subsequently are deduced
from the confusion matrix defined by Table 3 for a binary classification.

Accuracy is the proportion of correctly predicted instances compared to all
instances

TP TNAccuracy
TP TN FN FP

+
=

+ + +
 (2)

Precision, also called positive predictive value, is the ratio of the number of
true positives to the total number of positive predictions.

TPPrecision
TP FP

=
+

 (3)

Recall or sensitivity or true positive rate is the proportion of positive instances
actually predicted by the model among all truly positive instances

TPRecall
TP FN

=
+

 (4)

The F1-score is the harmonic mean of precision and recall

2F1-score P R
P R
∗ ∗

=
+

 (5)

Mattheus Correlation Coefficient (MCC) measures the quality of a classification
by comparing the model's predictions with the true class labels. It is particularly

Table 3. Confusion matrix for binary classification.

 Positive predicted Negative predicted

Real positive True Positive (TP) False Negative (FN)

Real negative False Positive (FP) True Negative (TN)

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 503 Open Journal of Applied Sciences

useful in scenarios where classes are unbalanced [32].

()()()()
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
∗ − ∗

=
+ + + +

 (6)

4. Results and Discussion
4.1. Results

This section presents the results of our experiments in accordance with our re-
search questions. In section 4.1.1, we will evaluate the impact of the number of base
estimators in ensemble methods. Section 4.1.2 will justify the necessity or otherwise
of class balancing through additional techniques. Section 4.1.3 will compare our
method to RandomForest, and finally, section 3.4.2 will discuss our results.

4.1.1. Evaluation of the Number of Base Estimators in Ensemble Models
To better understand the impact of the number of base estimators in ensemble
methods, we compare our model and RandomForest by varying the number of
base estimators on two types of datasets. One balanced and the other imbalanced.
Table 4 and Table 5, depicted by Figure 2 and Figure 3, respectively, show a
comparison of the average accuracies between our model and RandomForest on

Table 4. Comparative table of average Accuracies between our model and RandomForest
in the detection of Blob on the balanced dataset.

Number of estimators
Number of trials

2 4 6 8 10

RandomForest 0.63 0.63 0.64 0.64 0.63

Our model 0.59 0.64 0.65 0.65 0.67

Figure 2. Comparison of accuracies in Blob detection on the balanced dataset.

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 504 Open Journal of Applied Sciences

Table 5. Comparative table of average Accuracies between our model and RandomForest
in the detection of LongMethod on the balanced dataset.

Number of estimators
Number of trials

2 4 6 8 10

RandomForest 0.61 0.61 0.67 0.6 0.59

Our model 0.63 0.61 0.60 0.61 0.60

Figure 3. Comparison of accuracies in Blob detection on the balanced dataset.

Table 6. Comparative table of average MCCs between our model and RandomForest in
the detection of LongMethod on the unbalanced dataset.

Number of estimators
Number of trials

2 4 6 8 10

RandomForest 0.42 0.47 0.50 0.51 0.52

Our model 0.49 0.52 0.53 0.54 0.53

the balanced dataset. Meanwhile, Table 6 and Table 7, illustrated by Figure 4
and Figure 5, present the average MCCs between our model and RandomForest
on the imbalanced dataset.

4.1.2. Class Balancing
Can the use of pre-trained models adjust to minority classes? To address this
concern, we evaluated our model with and without the SMOTE technique. On
average, we achieved 87% accuracy, whether we associated the SMOTE tech-
nique with our model or not, with a very slight increase of 3% in MCC in favor
of the balancing technique in the first eight trials. These empirical results suggest
the unnecessary use of balancing techniques when pre-trained models are com-
ponents of the model.

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 505 Open Journal of Applied Sciences

Figure 4. Comparison of MCCs in LongMethod detection on the unbalanced dataset.

Table 7. Comparative table of average MCCs between our model and RandomForest in
the detection of blob on the unbalanced dataset.

Number of estimators
Number of trials

2 4 6 8 10

RandomForest 0.20 0.21 0.22 0.24 0.22

Our model 0.13 0.16 0.21 0.13 0.10

Figure 5. Comparison of MCCs in Blob detection on the unbalanced dataset.

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 506 Open Journal of Applied Sciences

4.1.3. Comparison of Our Model and RandomForest
Our approach is compared to that of [24], specifically to the RandomForest al-
gorithm, which showed better performance according to the authors. Our 20
experiments rely on 10 base estimators trained on imbalanced datasets. We ag-
gregated precision and recall by the mean, F1-score using equation (5), and ac-
curacy and MCC by the median.

We summarize the results obtained in Table 8 and Table 9 with the asso-
ciated graphical representations in Figure 6 and Figure 7, respectively.

4.2. Discussion

We posed questions for which experiments were undertaken to empirically con-
firm or refute assertions.

RQ1: How many basic estimators are needed for an optimal model?
To determine this number, we compared our model to RandomForest by va-

rying the number of estimators. We observed that for a number of estimators

Table 8. Evaluation of our model and RandomForest in the detection of Long Method.

 Precision Recall F1-score Accuracy MCC

RandomForest 0.75 0.68 0.71 0.77 0.42

Our Model 0.80 0.73 0.76 0.87 0.53

Figure 6. Evaluation of our model and RandomForest in the detection of Long Method.

Table 9. Evaluation of our model and RandomForest in the detection of Blob.

 Precision Recall F1-score Accuracy MCC

RandomForest 0.68 0.69 0.68 0.73 0.36

Our Model 0.59 0.56 0.57 0.68 0.12

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 507 Open Journal of Applied Sciences

Figure 7. Evaluation of our model and RandomForest in the detection of Blob.

less than or equal to 20 for balanced datasets with a maximum size of 140, our
model performed well in terms of accuracy. However, when data classes became
imbalanced with a maximum size of 600, the number of estimators allowed by
our experimental conditions became less than or equal to 10. In this context, we
observed that RandomForest better detects the Blob anti-pattern from 7 estima-
tors, while our model becomes effective from 10 estimators in detecting the
LongMethod. These results need verification for larger numbers of estimators
and larger datasets. We observed that when the imbalance is significant, both
models tend to overfit. This observation could be verified by reconsidering the
data and base estimator sizes.

RQ2: Do pre-trained models mitigate class imbalance?
From the experiments, it is not necessary to use additional class balancing tech-

niques when pre-trained models are used to transform code snippets into vector
representations. However, the question remains open when the imbalance is sig-
nificant. We only used 8 experiments, as we noted that beyond this point, the vari-
ation in accuracy became low. This observation needs further justification.

RQ3: Is an ensemble method using a pre-trained model for vector representa-
tions and incorporating a deep learning classifier the state of the art in ensemble
methods?

Since we use an unbalanced set, the preferred metric is MCC.
In Blob detection, the median MCC of our method is almost 20% lower than

that of RandomForest. The F1-score and other performance metrics confirm the
predominance of RandomForest over our model (See graph 4). However, our
model outperforms RandomForest in LongMethod detection with a median
MCC equal to 0.53 compared to 0.42 for RandomForest (See graph 3). These re-

https://doi.org/10.4236/ojapps.2024.142036

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 508 Open Journal of Applied Sciences

sults suggest that ensemble learning methods based on deep learning estimators
are not inherently more dominant in defect detection. However, the work of [19]
has shown that neural networks outperform non-deep learning methods. Our un-
derperformance in Blob detection could be explained by the small size of our da-
taset, as neural networks typically perform better when trained on large datasets.

5. Conclusions

Structural defects have a negative impact on software quality, making software
maintenance challenging. Existing approaches do not integrate pre-trained
models, which have the ability to define vector representations that consider the
code semantics, and neural networks, which are highly effective in classification
tasks. Therefore, we designed a bagging approach with CodeT5 and a dense
neural network as the base estimator to detect Blob and LongMethod. We aimed
to determine the optimal number of base estimators, but due to hardware re-
source limitations, we couldn’t establish a threshold for the number of estima-
tors. In this study, we demonstrated that pre-trained models could, to some ex-
tent, address the issue of class imbalance in data. We compared our model with
RandomForest, a reference model. Our results suggested that the choice of me-
thods for detecting structural defects depended on the type of defects. However,
we can confirm, based on the work of [18], that the size of the data used biased
the results.

For future work, we will use larger datasets and a greater number of estima-
tors to evaluate our model. We will also examine the complexity of our model to
reduce execution time compared to RandomForest.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Sharma, T. and Kessentini, M. (2021) Qscored: A Large Dataset of Code Smells and

Quality Metrics. 2021 IEEE/ACM 18th International Conference on Mining Soft-
ware Repositories (MSR), Madrid, 17-19 May 2021, 590-594.
https://doi.org/10.1109/MSR52588.2021.00080

[2] Kovačević, A., et al. (2022) Automatic Detection of Long Method and God Class
Code Smells through Neural Source Code Embeddings. Expert Systems with Appli-
cations, 204, Article ID: 117607. https://doi.org/10.1016/j.eswa.2022.117607

[3] Mhawish, M.Y. and Gupta, M. (2020) Predicting Code Smells and Analysis of Pre-
dictions: Using Machine Learning Techniques and Software Metrics. Journal of
Computer Science and Technology, 35, 1428-1445.
https://doi.org/10.1007/s11390-020-0323-7

[4] Velioğlu, S. and Selçuk, Y.E. (2017) An Automated Code Smell and Anti-Pattern
Detection Approach. 2017 IEEE 15th International Conference on Software Engi-
neering Research, Management and Applications (SERA), London, 7-9 June 2017,
271-275. https://doi.org/10.1109/SERA.2017.7965737

https://doi.org/10.4236/ojapps.2024.142036
https://doi.org/10.1109/MSR52588.2021.00080
https://doi.org/10.1016/j.eswa.2022.117607
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1109/SERA.2017.7965737

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 509 Open Journal of Applied Sciences

[5] Hadj-Kacem, M. and Bouassida, N. (2018) Towards a Taxonomy of Bad Smells De-
tection Approaches. Proceedings of the 13th International Conference on Software
Technologies, Vol. 1, 164-175. https://doi.org/10.5220/0006869201980209

[6] Gupta, A., Suri, B. and Misra, S. (2017) A Systematic Literature Review: Code Bad
Smells in Java Source Code. In: Gervasi, O., Murgante, B., Misra, S., et al., Éds.,
Computational Science and Its Applications—ICCSA 2017, Lecture Notes in Com-
puter Science, Vol. 10408, Springer International Publishing, Cham, 665-682.
https://doi.org/10.1007/978-3-319-62404-4_49

[7] Sharma, T. and Spinellis, D. (2018) A Survey on Software Smells. Journal of Systems
and Software, 138, 158-173. https://doi.org/10.1016/j.jss.2017.12.034

[8] Liu, H., Jin, J., Xu, Z., Zou, Y., Bu, Y. and Zhang, L. (2019) Deep Learning Based
Code Smell Detection. IEEE Transactions on Software Engineering, 47, 1811-1837.

[9] Hadj-Kacem, M. and Bouassida, N. (2018) A Hybrid Approach to Detect Code
Smells Using Deep Learning. Proceedings of the 13th International Conference on
Evaluation of Novel Approaches to Software Engineering ENASE, 1, 137-146.
https://doi.org/10.5220/0006709801370146

[10] Khleel, N.A.A. and Nehéz, K. (2023) Detection of Code Smells Using Machine
Learning Techniques Combined with Data-Balancing Methods. International Jour-
nal of Advances in Intelligent Informatics, 9, 402-417.
https://doi.org/10.26555/ijain.v9i3.981

[11] Sharma, T., Efstathiou, V., Louridas, P. and Spinellis, D. (2021) Code Smell Detec-
tion by Deep Direct-Learning and Transfer-Learning. Journal of Systems and Soft-
ware, 176, Article ID: 110936. https://doi.org/10.1016/j.jss.2021.110936

[12] Alazba, A. and Aljamaan, H. (2021) Code Smell Detection Using Feature Selection
and Stacking Ensemble: An Empirical Investigation. Information and Software
Technology, 138, Article ID: 106648. https://doi.org/10.1016/j.infsof.2021.106648

[13] Yu, X., Li, F., Zou, K., Keung, J., Feng, S. and Xiao, Y. (2023) On the Relative Value
of Imbalanced Learning for Code Smell Detection.
https://doi.org/10.22541/au.167338512.23766841/v1

[14] Azeem, M.I., Palomba, F., Shi, L. and Wang, Q. (2019) Machine Learning Tech-
niques for Code Smell Detection: A Systematic Literature Review and Meta-Analysis.
Information and Software Technology, 108, 115-138.
https://doi.org/10.1016/j.infsof.2018.12.009

[15] Peldszus, S., Kulcsár, G., Lochau, M. and Schulze, S. (2016) Continuous Detection
of Design Flaws in Evolving Object-Oriented Programs Using Incremental Mul-
ti-Pattern Matching. Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, Singapore, 3-7 September 2016, 578-589.
https://doi.org/10.1145/2970276.2970338

[16] Chen, Z., Chen, L., Ma, W. and Xu, B. (2016) Detecting Code Smells in Python
Programs. 2016 IEEE International Conference on Software Analysis, Testing and
Evolution (SATE), Kunming, 3-4 November 2016, 18-23.
https://doi.org/10.1109/SATE.2016.10

[17] Hammad, M. and Labadi, A. (2016) Automatic Detection of Bad Smells from Code
Changes. International Review on Computers and Software, 11, 1016-1027.
https://doi.org/10.15866/irecos.v11i11.10590

[18] Apprentissage Automatique.
https://www.cnil.fr/fr/definition/apprentissage-automatique

[19] Hamdy, A. and Tazy, M. (2020) Deep Hybrid Features for Code Smells Detection.
Journal of Theoretical and Applied Information Technology, 98, 2684-2696.

https://doi.org/10.4236/ojapps.2024.142036
https://doi.org/10.5220/0006869201980209
https://doi.org/10.1007/978-3-319-62404-4_49
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.5220/0006709801370146
https://doi.org/10.26555/ijain.v9i3.981
https://doi.org/10.1016/j.jss.2021.110936
https://doi.org/10.1016/j.infsof.2021.106648
https://doi.org/10.22541/au.167338512.23766841/v1
https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.1145/2970276.2970338
https://doi.org/10.1109/SATE.2016.10
https://doi.org/10.15866/irecos.v11i11.10590
https://www.cnil.fr/fr/definition/apprentissage-automatique

M. S. Gnagne et al.

DOI: 10.4236/ojapps.2024.142036 510 Open Journal of Applied Sciences

[20] Hadj-Kacem, M. and Bouassida, N. (2019) Deep Representation Learning for Code
Smells Detection Using Variational Auto-Encoder. 2019 International Joint Confe-
rence on Neural Networks (IJCNN), Budapest, 14-19 July 2019, 1-8.
https://doi.org/10.1109/IJCNN.2019.8851854

[21] Škipina, M., Slivka, J., Luburić, N. and Kovačević, A. (2022) Automatic Detection of
Feature Envy and Data Class Code Smells Using Machine Learning.
https://doi.org/10.36227/techrxiv.21732059.v1

[22] Dong, Y. (2013) Modélisation probabiliste de classifieurs d’ensemble pour des
problèmes à deux classes. THESE pour l’obtention du grade de DOCTEUR, Univer-
sité de Technologie Troyes, Troyes.

[23] Khan, A.A., Chaudhari, O. and Chandra, R. (2023) A Review of Ensemble Learning
and Data Augmentation Models for Class Imbalanced Problems: Combination, Im-
plementation and Evaluation. Expert Systems with Applications, 244, Article ID:
122778. https://doi.org/10.1016/j.eswa.2023.122778

[24] Madeyski, L. and Lewowski, T. (2023) Detecting Code Smells Using Industry-Relevant
Data. Information and Software Technology, 155, Article ID: 107112.
https://doi.org/10.1016/j.infsof.2022.107112

[25] Dewangan, S., Rao, R.S., Mishra, A. and Gupta, M. (2022) Code Smell Detection
Using Ensemble Machine Learning Algorithms. Applied Sciences, 12, Article No.
10321. https://doi.org/10.3390/app122010321

[26] Mamatha, R., Kumari, P.L.S. and Sharada, A. (2024) Enhanced Software Defect
Prediction through Homogeneous Ensemble Models. International Journal of Intel-
ligent Systems and Applications in Engineering, 12, 676-684.

[27] Zakeri-Nasrabadi, M., Parsa, S., Esmaili, E. and Palomba, F. (2023) A Systematic
Literature Review on the Code Smells Datasets and Validation Mechanisms. ACM
Computing Surveys, 55, Article No. 298. https://doi.org/10.1145/3596908

[28] Fontana, F.A., Ferme, V., Zanoni, M. and Roveda, R. (2015) Towards a Prioritiza-
tion of Code Debt: A Code Smell Intensity Index. 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), Bremen, 2 October 2015, 16-24.
https://doi.org/10.1109/MTD.2015.7332620

[29] Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M. and Marino, A. (2016) Comparing
and Experimenting Machine Learning Techniques for Code Smell Detection. Em-
pirical Software Engineering, 21, 1143-1191.
https://doi.org/10.1007/s10664-015-9378-4

[30] Lewowski, T. and Madeyski, L. (2022) Code Smells Detection Using Artificial Intel-
ligence Techniques: A Business-Driven Systematic Review. Developments in Infor-
mation & Knowledge Management for Business Applications, 3, 285-319.
https://doi.org/10.1007/978-3-030-77916-0_12

[31] Madeyski, L. and Lewowski, T. (2020) MLCQ: Industry-Relevant Code Smell Data
Set.

[32] Chicco, D. and Jurman, G. (2020) The Advantages of the Matthews Correlation
Coefficient (MCC) over F1 Score and Accuracy in Binary Classification Evaluation.
BMC Genomics, 21, Article No. 6. https://doi.org/10.1186/s12864-019-6413-7

https://doi.org/10.4236/ojapps.2024.142036
https://doi.org/10.1109/IJCNN.2019.8851854
https://doi.org/10.36227/techrxiv.21732059.v1
https://doi.org/10.1016/j.eswa.2023.122778
https://doi.org/10.1016/j.infsof.2022.107112
https://doi.org/10.3390/app122010321
https://doi.org/10.1145/3596908
https://doi.org/10.1109/MTD.2015.7332620
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/978-3-030-77916-0_12
https://doi.org/10.1186/s12864-019-6413-7

	An Approach to Detect Structural Development Defects in Object-Oriented Programs
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	2.1. Traditional Heuristic Approaches
	2.2. Machine Learning-Based Approaches
	2.2.1. Individual Model Cases
	2.2.2. Ensemble Learning Methods

	3. Presentation of Our Approach
	3.1. Targeted Development Defects
	3.2. Acquisition and Processing of Training Data
	3.3. Vector Representation and Class Imbalance Management
	3.4. Ensemble Learning Methods
	3.5. Our Algorithm
	3.5.1. Description of Our Algorithm
	3.5.2. Explanation of the Algorithm

	3.6. Performance Evaluation Metrics

	4. Results and Discussion
	4.1. Results
	4.1.1. Evaluation of the Number of Base Estimators in Ensemble Models
	4.1.2. Class Balancing
	4.1.3. Comparison of Our Model and RandomForest

	4.2. Discussion

	5. Conclusions
	Conflicts of Interest
	References

