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cosmic microwave background (CMB) is calculated with a new own code.

1. Introduction

The Lambda-CDM model is widely accepted as the valid description of universe
on large scales and its evolution history. It is based on General Relativity and
consists of two parts:

- Background part with the ansatz Robertson-Walker (RW) metric, based on
Friedmann equations and equations-of-state for the different component par-
ticles. It describes the evolution of scale factor and density without perturbations,
ILe. without local structure (like galaxies and galaxy groups);

- Perturbation part with the ansatz perturbed RW-metric and locally per-
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turbed density, velocity, and pressure of the component particles. It describes the
time-evolution and (quasi-random perturbed spatial distribution) of density,
velocity, and pressure, ie. the actual structure of the universe on inter-galactic
scale.

The parameters of the perturbed model are fitted in chap. 10 with the CMB
spatial spectrum measured by Planck.

We present here in chap. 2-5 the background part with Friedmann equations
and equations-of-state for the components with two notable extensions: explicit
temperature dependence and classical gas as baryon eos. From this follows a new
solution and own calculation in chap. 5, which offers an explanation for the ap-
parent experimental discrepancy concerning the Hubble parameter.

Based on the improved background calculation, we present the perturbation
part in chap. 6-10, with the derivation of the CMB spectrum, and new calcula-

tion of it.

2. Friedmann Equations

In this chapter, we present in concise form the basic equations (Friedmann equ-
ations) and equations of state (eos) for density and pressure with their different
components radiation y, neutrinos v, electrons e, protons p, neutrons 2 (re-
spectively baryons b), cold-dark-matter cdm d. The presentation relies basically
on the four monographies [1] [2] [3] [4], with two notable extensions.

-Temperature

The eos depend explicitly on temperature 7, resp. thermal energy E, =Kk.T,
and thermal energy is introduced as a function of time E,(t), as all other
variables, and has to be calculated.

-Baryon eos

The baryons are modeled as classical gas, and not as dust with zero pressure.
We shall see in the background calculation in chap. 5, that this model increases
the value of the Hubble parameter, which basically solves the Hubble-discrepancy
problem.

2.1. Friedmann Equations and Metric

The metric which fulfills the conditions of space homogeneity and isotropy is the
Robertson-Walker (RW) metric [1] [2] [3] [4]:

2
ds? =—c*dt® +a*(t) %4— r2dQ? (1)
1—kr?/R2

with Hubble radius R, =HL=1.37><1026m (Planck value), and scale factor

0
a(t).
The Einstein equations [1] [5] [6] [7] [8] for this metric are the two original

. . . . da . .
Friedmann equations a and b (with a= m ) and two derived equations c (acce-

leration eq.) and d (density equation):
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(iszrL—A—E c’ (2a)
ac) & 3 377

2o . \2

2_a2+(ij +L2—A=—KP, (2b)
ac ac) a

.. 2
i—EAz—g(P +%J derived from a, b (2¢)

%a + a'(iz—i- pj =0 derived: density equation (2d)
C

with dimensionless variables using Planck-values: Hubble constant

H,=67.74km-s™-Mpc™, normalized Hubble constant h=0.6774,

. . 8nG 2 _ PerH .
Einstein constant x=——, kC“ P, = R_2 , relative pressure

c* M
P P 2 . . 2
P == = = PxR};, relative cosmological constant A; = AR, rela-
C Paurito Peerito
tive density Q= P with critical density today
pcrit,O
— 2 —
PEcrito = c Prit,0 _W >
H
3 3H§ _ 26 3 _ 5'0mp 26\3
Pas = (77 = G - 0.862x10° kg-m _?(1.37 x10%)

m
=13.0x10" —2 = 5.0 nucleon/m®
RH
pcrH = KCZ Rli pcrit,O = 3
GeV GeV

=4.81 ,
m?® m®

Peeito =5.0%0.963

Hubble radius R, = HL =1.37x10%m

0
The Friedmann equations can be reformulated dimensionless with X, =tc,

da

a=—, PerH =3

dx,

a la) a R, R}
pr—+a‘(Pr +p,)=0
3
. a
rescaled with — — a
H
A
(a')2+k—?1a2—pra2:0 sF1 (3a)
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2
a"a—il\la2 __ s P+20| sp (3b)
3 2 3
a“a+2(a‘)2+2k—Ala2+§(P,—p,)aZ:O sF3 (3¢)
p’Ta+a'(Pr +p,)=0 sF4 (3d)
density eq
with

2 2
Prae + 0 H 3(H
er =~ rad > er :er,o (_] > QEcrit :_(_ >
pEcrit,O HO K\ C

AfcY cY
QA :E(ﬁj 5 Qk =_k(ﬁj Rg

Conformal Friedmann equations
. dt . . . .
In conformal time 7, dz =—, with comoving distance in 7:
a

Sodt % . . 1 L odz
;((77) = Cj—: den, or with redshift z=—-1: ;((Z) = CI—, follow the
pat) H

a 2 H(2)

Friedmann conformal dimensionless equations [2] [3] [4] after rescaling 2 —a,
H

¢ =1, conformal Friedmann equations:

.2 kcfa?  Ac’at 8iG
(@) + e a
H

2 2,3
ans K€ azﬁ(pcz—SP)aHAc a

RZ 3’

and rescaled conformal:

A 4 a' 2 A 2
(a.)z +ka? :1Ta+chera4 scF1 ( 2) -k +1Ta+ ,Dc?:H paz (4a)
a

3

a"+ka =1 (p-3p)a’ + A13a scF2 (4b)

Friedmann radial equation

It is convenient to reformulate the first Friedmann equation in the form of
velocity-potential equation, which we call here Friedmann radial equation [1] [2]
(3] [4] [9].

We get the Friedmann radial equation

(a)z—ﬁ—ﬁ—%aﬁk:o (5)

a? a

.2
it follows the potential form a_z +V(a)=—k withc=1
c
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with Planck data we have

K, =0423x10%m, K, =1.01x10“m?, A=1.1x10%m?

dimensionless

K =K, /Ry =Q,,=0.309
Ka=K/Ri =Qpg0=0Q,,+Q,,=054x10"* +0.0012 = 0.00125
A, =AR/ =1.1x1.37°=2.06

from this we get the dimensionless Friedmann radial equation

(a)z——ﬂ——m—%auk:o (52)

2.2. Relative Density and Pressure (Relative to ¢’ Prito)

In the following, we present the eos for the components radiation y, neutrinos
v, electrons ¢, protons p, neutrons 1, cdm d[2] [3] [4] [10] [11].

Relative density & pressure baryons b, CDM ¢, matter density p,, . de-
pendent (Eth independent variable)

ml
3
a

With thermal energy E, =kgT matter density o, = , b =baryon, c=

cdm (cold dark matter)

Qb,O
Qb,o + QC,O

QC,O

> Pe (pm,r)= Pm.r m

pm,r (a) :pb +pc > pb(pm,r):pm'r

we have for the pressure before (1) and after (2) nucleosynthesis

E
ﬁ , BEn>E,, idealgas, E  =mc’=0938GeV,
p

R (va E ) =P

using today’s He-H-ratio Y, ,,, = Pre _ AMe _ ¢ 5 , Pre _ e _ .25

H nH pH nH
1+Y /4 E E
P - H,He th_—-0.85p —"  E <E. _, E. _=100keV,
b1 1+YH'He b mpCZ Lh mp02 th c,ns ¢,ns

with the soft-1-0-step function for state-transition at ns = nucleosynthesis with

transition energy E_ . =100keV (see chap. 9) we get the pressure
R (pb' = ) =R, (pb’ En ) + ( R (va En ) -R. (va = ))91-0 (Eth +Ecns100Ec ns ) >
6, =0.1,
Pc(pc'Eth):O'

Relative density & pressure neutrinos
We have for neutrino density and pressure before (1) and after (2) neutrino
decoupling [12] with threshold energy E , =1MeV:

=
o e By
P (va = ) = =Q,p0, 7> N, =Q,n
Pcm,o mpc
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E
2oz (P B ) = Q0000 ﬁ » By > E.,, in thermal equilibrium,
p

-3
Po1( Py Ey ) =Q.,0, EC'vz [hj » By <E, decreasewith ~ a’

m,c”\ Ey

P(p)= %p‘, , parameters today Q ,~10°, T, ,=195K,

LK 10,0266V =1.69x10 eV, it follows
300 K

Eth,vO =Rglyvo

No Q. Mc  10° 0.938GeV

Qp=—= = ——=1.13x10°.
TNy Qo kgT,, 0.0491.69x107 eV
Relative density & pressure photons
The Stefan-Boltzmann law gives
a6 MeV 4rky
p(T)=aT*®, a=756x10" AT a=51.903—hsB (6)

p(Eth ) =dg E:Itw

L _2076n_a _ 756x10" 1
TN ki (L3sx0®) Yem’

2.08x107® 1
(6.24x10" )3 ev®-m

1 1
7 = gy 0856 x10"

1
3 =0.856X1020m
Gev 1
m®  eVv*

ag, = 0.856 x10% 0.178x10" pegr o

8 _ 1 0178x100,

p Ecrit,0 ev

8spp =

Before photon decoupling the photon energy density is
1
P, (Eth ) = aSBOEt?w > P}/ (Py) = Ep;/

after photon decoupling at By =E ,, E ,=025eV, Planck z, =1090, it

becomes

1 1

4
_ 3t ) 1
p,(aEy)=2g [Ec,dc a J » Bn <EBoae a(tc,dc) ~7 41 1001

at e-pair production and above photons lose energy and keep a mean energy
E>mc?, E,=~2mc’
at p-pair production and above photons lose energy and keep a mean energy
E>m.c?, E,=~2m_c*.
Temperature jumps at phase transitions
At recombination Ey =E ., E . =0.29eV temperature goes up due to free

electrons forming atoms with baryons,

before recombination:
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at. )

1 1
5 t — =T
“* a(t) (ter) z,+1 1271

z,, =1270, t,, =1.16x10"

n=n,+n,=2n,, n,=n,, E,=E

after recombination: Saha equation:

n, n, —1+1+4f(E,)
X.(En)= ==

n+n, n, 2 (Ey)

(7)

n=n,+n,=n,(1+X,(E,)), Ey.=136eV

2 E 3/2 E E 3/2 E
f(Ey)=4<(3 /— —th | axp| = |=2.26x107%| —th exp| —Hre |
( th) 4( ) nn[mech p( Eth J [meCZ] p( Eth

The equation for E,, after reccombination with E, =Ey, ., E = m,c? is:

dE_m__ Eino dX, df dE, dEth [1+ E dxe df jz_%

da  a® "™ df da da da e gf da a’

with solution E, (@) [13] shown in Figure 1.
Eya (1) = Epo =0.000663eV, E, ,(a, =1/(z,+1))=0.2842eV ~E_ ..
At nucleo-synthesis E, =E_, E =100keV temperature goes up due to

helium synthesis with energy released E,, =12MeV, thermal energy beha-
vior is analogously for E;, <E; <E. ., Z,=4x10°

-3/
a(t E, .a(t
E, ~E, . ()l 1 0 01 (— (°*“S)J exp( Erend(t) J

a(t) m,c%a(t) 2, ()

C,ns
-3/4
Ec nsa(tc ns ) / EHe nsa<tHe ns )
— 2— exp - ~ 7
mpC a(tHe,ns) 2Ec,nsa(tc,ns)
where the baryon temperature depends on the photon temperature
8m, da

a' P,
T,'=-2—T, +———Lano, (T, -T, ith a'=— [14].
b a P 3m, B, eT(y b) w1 dn [14]

Etha(a) temp.recombination

0.100
0.050 H

0.010¢+
0.005¢

0.001+}

1 L 1 1 1 " L L 1 1 " L L

0.2 0.4 0.6 0.8 1.0

Figure 1. Temperature after recombination E , (a) ineV.
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Density electrons
The density of electrons is described by the Peebles equation with the para-
meters
A, +A
C, (T) #)
AZ;/ + Aa + ﬂa
27 H(T
A =128 3 o 7 fa :ﬂ(T)EXp( 3kEI j
£(3) (1- X, )(ny/n, ) (koT/E}) 4kgT
E, =13.6eV = hydrogen ionization energy, 1s ionization rate, n, ~ (1 X )nb,

8nhic
=nn,, 4,= 3

A,, =8227s,

Lyman wavelength,

a

a(T)zg.s(miz)z (&) ool [ &

we get the Peebles equation ([4] 3.153) for the hydrogen ionization percentage

dXx mckT

E
e C (1-Xx =
dz ) 1+z e)exp( kBTJ

8)

where

= JO, H, (1+ 2)3/2(1+11+Z J H, ~1.5x10* eV
+Z

eq

T =(1+2)0.235¢eV.

We get for the electron density before (1) and after (2) recombination

E
pe,l(pb’ Eth ) = pb m t;z > E < Ec,ep 4 Ec,ep = mecz = 511 keV
p

2 2 2 2 .
n ~ n_b017a[ Eth2 j — n_b( Eth2 j 12 X1073 , nb — Qb’o pCI’It,O
n m.C

e+
m,C n, m,

V4 e

No &Es, N -3
My _ Tho 03 "‘3*0 :ﬁ:%:wo scale-independent
n, n,ak, n, 041x10°m"

4

2 2
follows ~=- ~ %0174 (E j:(E JO?OS

n, n m,c’ m,c?

2n., \E, +m.c’
pe,z(Pb’Eth):pb(l"‘n_:jtmTze’ E>Ec,9p

due to Saha equation
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c,re

=Py (a(tcvre))%exp[EH'm (EL_E%D

p c,re

1 1
o) sl <>>p[(——ﬂ
th

alternatively
m,c’

N, :nbxe(Eth)’ Pe :prxe(Eth)
p

E< Ec,re > Ec,re =0.29¢eV > Po (tc,re’ Ec,re) = Qb,OZre 4

Q,,=00486, 7, 1270, a(t,,)=— 1:%71.
' Z,+

Fermi pressure electrons
The pressure of electrons is the Fermi pressure P, of a (spin_1/2) fermion gas

Pe (pe’ Eth ) = PFe (pe’ Eth)
with low- and high-density limits P, = %onc » B :%nEF .
Fermi energy E. = (pFC)2 +(mec2 )2 » PeC= hc(3n2n)l/3

P (0.E) =P, () +(R(p)=P:(p))Ows (E, meczlé‘omecz) (%)

Por = Pait o€ =0.77x107°J-m™ =0.484x10° MeV - m®

o) 3 .m=3
o= Pito ’ bo _ 0.484x10° MeV -m~™ x0.047 00242 m"
' m,c 0.938 GeV

hc=1.96x10"°GeV-m=1.96x10"eV-m

P, rit, Czp m —
= Loior Fe _py P p, =0.0242m"p,39.0x10° = 943.8,

n, =n,
m,c? P, m,
n m
E = P P, =339055.6p, .
np,O Qb,ome

For electrons we get the expressions

_lnpec _1{nQy, | pec _1(m, peCc _1(M, 201.78(pe)1/3
n m,c® 5(m,"°)mc* 5\ m Pe m,c’

5 pcrit,O 5

2
_2 nE; _1[ﬂeQb’oJ E- 1(mppj (ch)2+ mec2)
- = =l T FPe

R
e e

p.0

2
m,c 5

R,

S pcrit,o S m,C

= 2
npvo me p

peC = hC(3TE2ne,O)1/3(pe )*33.91
=1.96x10"°eV-m(3n°0.947x10°m™* )m 33.91(p,)"
=201.78(p,)"* eV
p-C=201.78(p, )" eV .
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State transitions radiation y, neutrinos v, electrons e, protons p, neutrons z,
cdm d
Generally, the density state transition from p, to p, at transition temper-

ature 7, (transition thermal energy E_ =K,T, ) has the form
P(E)=p2+(p=p,)01s (E,E.\OE,),
with soft-0-1-step function O, (E,E,,JE,)=

1 =c

1
E —

1+ exp( ;E J
E

1+ exp[— EEC J
with soft-1-0-step function ©, ,(E, E,,JE,)=——F—%

e E-E, )
1+exp
oE,

m

where OE; is the standard deviation of E,.

oE, :%z&, where (measured in CMB)

(o c 0

We can set approximately

AT
Mo Ao  S0MK ) 1105,
TO

T T 272K

7.0

2.3. Transition Thermal Energies and Eos

-neutrino decoupling E ., =1MeV, t  =1s, p . =p, (tc,v),

4
a
Py (Elh ) = Eth > Pay (Eth ) a) = Prcy [m} >

-e-p-annihilation
E.., =0.5MeV, t, =65, n =agE; for all £ a=7.56x10"J/m’-K*,
Ankg

c’h?

a=>51.9

pl,e = (nb + ne+ (tc,ep )) me > p2,e = nbme with

n? E. Y n(E Y
n.. z—b0.17a[—mj =—b(—mj 1.2x107%;

2 2
n, m,c n,{ mc

-photon recombination

Ec,re =0.29eV 4 tc,re =290 ky 4 IOZC,re = plc,re + nb (tc,re ) E

c,re

1 E, —E,.
Pre =My, p,, = Epl,e eXp(ﬁ}

-photon decoupling
E,, =025eV, t=370ky, p., =p,(t,)

aft

C,y

4
a
'01’7(E‘h): Ea> p217(Eth’a):p1c,7 {ﬁ} ;

-nucleo-synthesis helium
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E...=100keV , t . =3min, 4p"+2e” —He* , ratio Pre 025 , eos
Py
. L = L
transition 1—2 with ideal gas P, =nyE, :pbm—, t<t.,, with ideal gas
P

E
P, =n,,(0.75+0.25/4)E, =n, ,0.81E, =0.81p,—, t<t
\ ' m

p

c,ns *

3. Parameters

The simple ACDM model is based on seven parameters: physical baryon density
parameter Q,/; physical matter density parameter Q,/’; the age of the universe
t,; scalar spectral index ng curvature fluctuation amplitude A, and reionization
optical depth 7, dark energy density Q,.

The parameters of the ACDM are given in the following table (Table 1).

11 independent parameters: Q, /2, Q, t,, n, AL, 1, Q, w; Sm,, N V), A;

7 fixed parameters r, dn/d Ink, Hy, Q,, Q, Q,, Qu;

5 calculated parameters p.;» Gy Zseor Lieor Zeos

13 total parameters Q,, Q, &, n, A, 7, Q,, w; 2m,, N(Vv), r, dn/dk H;

derived parameters o, Gy, Zuwo Lioor Zer Wy = Qults W, = Q17

Table 1. Planck Collaboration Cosmological parameters [15].

Description Symbol Value
Physical baryon density parameter Q7 0.02230 + 0.00014
Physical dark matter density parameter Q7 0.1188 +0.0010
Independent Age of the universe t 13.799 + 0.021 x 10° years
pararlrieters Scalar spectral index n, 0.9667 + 0.0040
Curvature fluctuation amplitude, &, = 0.002 Mpc™* A? 2.441 + 0.088 — 0.092 x 10~°
Reionization optical depth T 0.066 £ 0.012
Total density parameter Q. 1
Equation of state of dark energy w -1
. Sum of three neutrino masses Ym, 0.06 eV/Z
par:rifeet‘irs ; Effective number of relativistic degrees of freedom N, 3.046
Scalar amplitude A (2.215 +£0.13)
Tensor/scalar ratio r 0
Running of spectral index dn/dlnk 0
Hubble constant H, 67.74 £ 0.46 km-s™"-Mpc™*
Baryon density parameter Q, 0.0486 + 0.0010
Dark matter density parameter Q, 0.2589 + 0.0057
Matter density parameter Q,, 0.3089 + 0.0062
Calculated Dark energy density parameter Q, 0.6911 + 0.0062
values 5 Critical density P (8.62 £ 0.12) x 10 kg/m’®
Fluctuation amplitude at 8 &#~' Mpc Gy 0.8159 + 0.0086
Redshift at decoupling z 1089.90 + 0.23
Age at decoupling t. 377,700 + 3200 y
Redshift of reionization (with uniform prior) Z, 85+1.0-1.1

DOI: 10.4236/jmp.2024.152011 203

Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.152011

J. Helm

The additional parameters of the extended ACDM are given in the second ta-
ble (Table 2).

Some specifications

The amplitude A, is determined by the CMB power spectrum

ng—1
A% (K*)=A (kﬁ] , ky ~0.05Mpc™.
0
. . H,
The relative current Hubble parameter is h= 100"
The fluctuation amplitude is defined by o = o' (Pya R)R:Bh’lMpc , Where

0 (PparsR) =5tdev(p,, ) smoothed by distance R ([2]).
Key cosmological events
Key cosmological events calculated from the ACDM model with temperature,

energy scale and cosmic time are given below [4] [16] in Table 3.

Table 2. Extended model parameters [15].

Description Symbol Value
Total density parameter Q. 1.0023 + 0.0056 — 0.0054
Equation of state of dark energy w —0.980 + 0.053
Tensor-to-scalar ratio r <0.11, &, = 0.002 Mpc™* (20)

Running of the spectral index dn/dlnk  -0.022 + 0.020, &, = 0.002 Mpc™
Physical neutrino density parameter Q7 <0.0062

Sum of three neutrino masses rm, <0.58 eV/J (20)

Table 3. Key cosmological events ([4], chap. 2).

Event Temperature Energy Time
Inflation ends 10K 10" GeV 107%s
CDM decouples, GUT scale 10 K 10”° GeV 107 s
Baryons form 10K 1 TeV? 1075
El-weak force 10° K 100 GeV 10"s
Hadrons form 102K 150 MeV 107°s
Neutrinos decouple 10K 1 MeV s
Nuclei form 10°K 100 keV 200s
Atoms form 3460 K 0.29 eV 290 ky
Photons decouple 2970 K 0.25eV 370 ky
First stars 50K 4 meV 100 My
First galaxies 12K 1 meV 400 My
Dark energy domination 3.8K 0.33 meV 9 Gy
Now 2.7K 0.24 meV 13.8 Gy
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4. Inflation

The “naive” so called Hot-Big-Bang model has several aspects, which are in dis-
agreement with cosmological observations.

Hot Big-bang problems

- the observed homogeneity of the present universe (distances > 200 Mly)
should arise from arbitrary initial conditions: horizon problem;

- the observed curvature is small: flatness problem;

- the observed correlation regions in the CMB have supraluminal distance:
superhorizon correlations.

Cosmological inflation

In the approximation that the expansion is exactly exponential, the horizon is

L a . . . .. .
static, Ze. H =—=~const, and we have an inflating universe [17]. This inflating
a

universe can be described by the de-Sitter metric [1] [2] [3] [5]
ds? = —(1- Ar?)c%dt? + ——dr? + r’dQ? (10a)
1-Ar

For the case of exponential expansion, the equation of state is P =—p, with

R(t)=R, exp{ct\E] (10b)

The expansion generates an almost-flat and large-scale-homogeneous un-

world radius

iverse, as it is observed today.

Furthermore, horizon R, =4~ :(Ha)fl reaches a minimum at the end of
inflation, and then rises again, this explains superluminal correlations in the
present universe.

Inflation in Ashtekar-Kodama quantum gravity [18]

Inflation takes place between r =1 =1.61x10%"m and R, =r, =3.1x10°m

with expansion factor f, = exp[rinf \/gj =1.9x10%, r,=2x10"m,
_ hc _1.96x107° GeV
"y 2x10%m
Ry =107m.
Inflation with standard assumptions ([4], chap. 4)

r=3x10"%m, t,=10"s, f =10, a, =107, R, =3x10"m,

A log (. )Y
f . =exp|r . |—| A=3 9w ) | _q 4x10% m2,
inf inf 3 r
inf

H =\/§=M=6.9X1029 m*,

rinf

=0.98x10°GeV, t,, =1 —0.66x10*s,
C

Assessment of the inflation factor ([3], chap. 4),
f= end inflation, 7 = start inflation, eq = matter-radiation-equality, 0 = today,

ER = f= expansion rate
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a(t T T
( f):expN , N> Iog[T—fJ+llog[ﬂ],

a(ty,) w ) 2 T,

T, =10 GeV, T, =1eV, T, =10"eV

2
N>60, At> 60 :60/ 3 To ~10¥s.
H<tf) 871G peg | T

Inflaton model ¢(t,x) with GR-action
The action is ([3], chap. 4)

S =[d'xy-g (Len +L,)
with the Einstein-Hilbert action of GR
R-2A
SEH = _..( 25 j\/‘gdAX

_R-2A
2K

I‘EH

and the inflaton action
nc
S, = [a'x"a 29 0,00.6-V (9)

L ="24"0,60.6-V (9

with energy-momentum T, =7c0,40,4—-4,, (h_zc 90,40, -V ((/5))

Ty = hc%erV (¢), T)=-5 (hc(%z—v (¢)) .

12
For RW-metric the actionis S = ‘[d4x\/§(hc[—%+2—;2(v¢)2j—V (¢)J

1.4dv(¢)

with eom = Klein-Gordon equation ¢ +3H ¢+ W =0

which represents an oscillator with Hubble-friction 3H¢
i2
and energy density p; = hc% +V(9),

12
and pressure P¢:hc¢?— (¢) (4.50).

1, ¢’
If E,, Ezqﬁz <En=V(¢), Ea =hc? <E,=V(¢), we have P,x—p,
Le. equation-of-state of dark energy (), generating temporary inflation.

We get the Friedmann equations (radiation-matter density p,,, added)

12
H2 =X o =X ne? v (4)+ 11
e[SV (90 (112
H-_X p T T PP 11b
__E(p,p"' ¢~ Pm — rm)__E hC¢ _gprm ( )
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and the Klein-Gordon equation

. . av
¢+3H¢+i—(¢)=0 (11c)
hc dg¢
We get dimensionless 2 equations in Planck-units I, =1.62x10*m,
3,. ¢
=—H"-—-V
Pm =g H =5V (9)
Friedmann H =—4n| ¢ _4 in —ﬁ— (9) | |=—4n %—H—Zﬁv (#)
3(8n 2 2 2n 3 '
. .odv
Klein-Gordon ¢ +3H¢+ dfj) =0.
Slow-roll approximation
If E,, E%¢52 <E,=V(¢) or g, <1, &, E—% (slow-roll parameter
1), and almost constant velocity, 7, = _Hi¢f <1 (slow-roll parameter 2), we

have persisting slow-roll condition ¢, <1, 7, <1 (slow-roll approxima-

tion), which yields approximate fundamental equations with approximations
. ; 2

; H v’ 1 (V'

3Hg~-V' and 3H?=~8rGV and ¢, =——2=——£= — | and

H 2VH 16nG\V

Ny = _L = v = L(V_j and for the scale factor
H¢ 3H® 8rG\V

in

a(t)=a(t, )expﬁ H (t)dtj =a(t;, )exp[—&rGj%dqﬁJ .

Square potential
We use the square potential V (¢)=c, +¢, (4 —d, )2 , ¢, =1.16x10"*, slow-roll

condition: ¢, < ¢, with the minimum value V (¢;)=c, = A _116x10™ and
K

= 2x107°m, we get the following relations:

a(t)=a(t;, )exp(j H (t)dtJ =a(t, )exp[—8n} \%dqﬁ]

tin tin

%
a(t)za(tin)EXp(4n£(¢—¢o)d¢J=a(tin)exp(2n¢§)
¢ = %log(a?(t?n))J = \/% =331

: :L(\L’T:L 2 N
"o16n\V ) 16r| ¢ _ 4 (p—g, )
rersaal
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:i(\/_"J:i 202 N 1 1
™ 8n\V ) 8r G v, (p-h) ) A% (p—h)
3 #°

Prm =§H _?_ (¢)

for t >0, (15=5C1<<1, H=H,, 6—>¢,, prm:(SiHOZ_cl)ZO,
b

i . 3
so condition for convergence is: ¢, = o HZ.
n

The fundamental equations become

Friedmann H = —4n[¢fz —% —

. .odv
Klein-Gordon ¢ +3H¢+ # =0;

slow-roll H ~-6n¢’;
3 boundary conditions for t=I, =1: H(1)=H,, ¢(1)=4¢, ¢(1)=4;
with 3 potential parameters C,, C,, ¢.
Example: oc, =0.05, H,=5, ¢, =23, ¢ =3, ¢c,=1 [13].
Below in Figure 2 and Figure 3 are inflaton amplitude and Hubble parameter.

5. Background Calculations

There are basically two possible ways for background calculation:

-numerical solution of two Friedmann equations in two variables, calculating
backward from boundary conditions at present time x;;

-analytical solution, where the second equation is solved analytically, and in-
serted into the first, which gives an integral, which is calculated numerically.

The numerical solution encounters the problem of limited convergence: it
stops at some time x_.

The analytical solution avoids the convergence problem, and this solution

scheme is used in the calculation of results presented below.

o(t)

23

2.0

1.0 1.5 2.0 2.5 3.0 3.5

Figure 2. Inflaton amplitude 4(t).
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H(t)

541

5.2¢

5.0f

4.8

4.6H 1 1 1 1 t
10 15 2.0 25 3.0

Figure 3. Hubble parameter H (t).

5.1. Numerical Solution

We solve for dimensionless function variables a, p, , in dimensionless relative time

. tc .. . . .
variable Xx=—, limits 0<X< X, =0.96, where the upper limit is the relative
H

t R
cosmic time today X, = ;—0 = R_O =0.96, from Planck data t,=13.9x10°y,

H H
with boundary conditions: p, (X))=Qp0+Qao> a(X)=1, a'(X)=1 (be-
cause H(X))=Ry) from a'(x,)=1 follows k, =-0.0042 which is compati-
ble with Planck data

(a‘)erko—%az—pra\2 =0 sF1 (3a)
a"a—%Ala2 = —az’%(ﬂ +%] sF2 (3b)
a“a+2(a')2+2k—A1a2+pCT’“(Pr—pr)a2=0 sF3 (3c)
pr"'J‘+a'(Pr+pr):o SF4 (3d)

The two independent (3¢ and 3d is derived) Equations (3a, 3d) are non-linear
second-order differential equations quadratic in the variables a, p, .
Alternatively, one can solve for function variables a, E, =kgT , the latter with

5 matt-

¢p baryon density p, = p, &
K,+K,a " PO+,

S m

thermal energy E, =kgT, photon density p, =ag, E,., P, ( py) :% )

ter density p,, =0, + 0. =

Qc,o

cold-dark-matter (cdm) densit = R —
(cdm) Y Pe= Pra Q..+ 0,

E
Pb(meth):pb_mz'

m,C
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The additional equation for pressure is the equation-of-state (eos) for the
pressure P.: P =P(a,p,).

Solution 1

One solves numerically [9] [13] [19] (3ac) with boundary conditions
a(%,)=1, a'(x))=1 as algebraic-differential equations for function variables a,
E,, =kgT . The solution exists until x,, =0.14, where numerical integration stops
converging.

Solution 2

One solves numerically [9] [13] [19] (3ad) with boundary conditions
a(X))=1, a'(x))=1 as differential equations for function variables a, p, . The
solution exists until X, =0.0196, where numerical integration stops converg-
ing.

Plot a(x) is shown below [13] in Figure 4.

The solution limit x,, =0.0196 indicates the transition from matter-domi-
nated to the radiation-dominated regime, which happens approximately at pho-
ton decoupling time t, =370ky, x, =0.000026. For x<x, solution is con-
tinued by pure radiation density ([13]).

Solution 3

One solves numerically [13] (3a) with boundary conditions a(xo) =1,

a'(X,)=1 as differential equation for function variable a, with ansatz for
K

K
P =— +a—2’ . This is the usual solution method for background functions, used

a
in CAMB [20] and in CMBquick ([21] [22]).

The solution exists until x,, =0.0055, where numerical integration stops con-
verging, and the solution becomes complex (i.e. Im(a) =0).

Plot a(x) is shown below [13] in Figure 5.

The solution limit X, =0.0055 indicates the transition from matter-domi-
nated to the radiation-dominated regime, which happens approximately at pho-
ton decoupling time t, =370ky, x,=0.000026. For x<x, solution is con-
tinued by pure radiation density ([13] [20] [22]).

a(x)

1.0f
0.8}
06"
04f
0.2}

0.0 s s . . X
0.2 0.4 0.6 0.8

Figure 4. The scale factor a(x) in dependence of relative time

tc . .
X = — , numerical solution 2.
H
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0.001+

108}

005  0.10 0.50 1%

Figure 5. The scale factor a(x) in dependence of relative time
tc . .
X =——, numerical solution 3.

H

5.2. Analytic Solution

The analytic solution scheme transforms the two basic equations into a parame-

terized integral x(a) , which is the inverted scale factor a(x) .
In order to calculate the thermal energy, we apply an iteration, we calculate

K
the temperature E, (a) from p,4 =p, +p, =———>—p, , using the solution
K, +K,a

a(x) in the next iteration: EJ™ =E\" (a(”) (X)) , as shown in the schematic in
chap. 11.

The zero iteration is the “naive” thermal energy Et(ho) =Epo/a.

The variables are scale factor and density a, p, .

The boundary conditions are p, (X,)=Q o+ Q0> a(%)=1, a'(x)=1,
from a'(x,)=1 follows k =—-0.0042 which is compatible with Planck data

(a‘)2+ko—%a2—pra2 =0 sF1 (3a)
p'Ta+a'(P, +p,)=0 sF4 (3d)

The two Equations (3ad) are non-linear first-order differential equations qua-
dratic in the variables a, p, .

The third equation is the equation-of-state (eos) for the pressure P :
P =P(a,p,).

The density and pressure have the form: relative energy density

Pr =P, TP, + P+ P +p, for baryons, photons, dark matter, free electrons,

neutrinos, relative pressure B, =B +P +PF +P, +P,, where radiation pressure

P, +p,

Paa =P, +P, = , and matter pressure (neglecting electrons) is the ba-

. kT
ryon ideal gas pressure P, =P =p,—2—, for under-nuclear temperature
m,c

kgT <<m,c?=0.94GeV the baryon matter is dust-like, ie. pressure is almost

Z€ro.
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The densities have the form
pr = pmat + prad

K a

Prat = Py T Pe Zmpr» Prad =Py TP, :KS+—i<ma'Dr
PREPILL LI L LI
c mat Qb,o +Qc,o ’ b mat vao +Qc,0
4 v,0
P, =8soEy> o, =—
a
We calculate the temperature Ey(a) from p,4 = p,+p, :K5+—i(ma o
(12a)
ya
1 K Q,,
ie E,(a)=—r|—2—p (a)-—2 (12al)
»(3) ajs/go[Ks+Kmap( ) a® j
and all the pressure becomes a function of a,
K K Q Ey(a
Pr(alpr)zprad +Pmat = > + ma L th(z) pr (12b)
Ki+Kpa Ki+KaQ,+Q., mc

K, +Kpa K +KaQ +Q., mc’

(a):{ K, Kea O Em(a>]

then we can integrate (3d) in a:
' a 3+P
log(p, (a)) =prTa+ a'(R, +pr):-fda(+Tp@)J+cl (12¢)
0

and then can integrate (3a) in a:

x(a)=[daa /%+pr(a)—%+c2, (12d)
0

where ¢, and c, are set to fulfill the boundary conditions

P
pcrit,O

pr(XO):Qm,O +Q0> a(xo)zl) Q=

5.3. Background Results

Results for density and relative time in dependence of scale factor p, (a),
x(a) , are shown below [13].

Relative density in p,; o units is shown over scale factor a, in double-loga-
rithmic plot Figure 6.

There is a critical point a; ~0.5x10™*, where the density changes its beha-
vior, it coincides roughly with the critical point in temperature. The corres-
ponding time is X; ~107°, thermal energy E, ~1eV .

The analytic solution yields directly the inverse scale factor function x(a) , it

shown in Figure 7.
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10%
1o

10%

dens. mat+rad Qm

100} :

100

107 0.001
scalef a

Figure 6. The density p, (a) in dependence of scale factor a,

analytic solution.

0.01F

scalef a

10 104 10+
t/tH

. o tc .
Figure 7. Relative time x=—— and scale factor a, analytic solu-
H

tion.

There is a critical point at photon decoupling, a,,, =0.9x107,
Xgee = 0.3x107* £370Ky, redshift z,_ =1090, thermal energy E, =0.25eV .

The scale factor changes its power-law dependence on time:

X, X>X
a(X);{ > dec

2
X7, X < Xy

It is useful to compare the result for X(@) from the analytical solution and
the standard CAMB solution ([13] [20]) Figure 8. The two curves separate
roughly at a,, =0.9x107, the CAMB curve continues approximately linearly,
whereas in the analytical solution time decreases quadratically, x(a)=a’.

The plots of density p, (a) (blue) and radiation density (@) are shown
in comparison below ([13]) in Figure 9. As expected, we have radiation domin-
ance roughly for a <a,,, and matter dominance for a>a, .

The Hubble parameter is approximately linear in x, as it should be. However,
there is a small deviation at critical point X, ~107°, scale factor a,, ~0.5x10™*,
redshift z,, ~1/a~20000.

This is apparently responsible for the small correction of the present Hubble
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constant A, compared to CAMB solution.
The plot of the Hubble parameter is shown in Figure 10.

10-10 E

10%

time t/tH

1090 F

1070

10%0

102 10 10+

. o tc .
Figure 8. Relative time x=—— in dependence of scale factor
H

a, analytic solution (blue), CAMB-solution (orange).

o) 160
g 10
(o]
'g 10162
(@]
+
g 1080
c
>
& 10% 4
c
[}
o
1 =
1024 10" 104
scalef a

Figure 9. The density p, (a) (blue) and radiation density

Prad (a) (orange), in dependence of scale factor a, analytic

solution.

103" ’ ' ' ]

)
=5
o

N
L

Hubble H(t

10!

1 1 1

10 10+

t/tH

T

Figure 10. The Hubble parameter H (X) , in dependence of

o tc . .
relative time X =——, analytic solution.
H
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The “naive” temperature Et(hO)(a) from (12a) is compared to the iterated

temperature E{(a) calculated from the first analytic solution in (12al) is
shown in Figure 11. The point of deviation is @, ~0.5x10™, the corresponding
time is X ~107°, thermal energy E, ~1eV . This point coincides roughly with
the critical point in density Figure 6.

Hubble parameter

Baryon pressure correction

Baryon pressure correction yields t,, =t;/1.043t,, so H,, =1.043H,, the cor-
rected Planck-valueis Hgp, = Hyp x1.043=70.6£0.4;

H,z =69.8+1.7 Red-Giants Freedmann 09/21;

H,s =73.04£1.04 Cepheids-SNIa SHOES 12/21;

H,, =67.66+0.42 Planck 07/18.

H,z Red-Giants is in agreement with corrected Planck within error margin.

Assessed correction of the Cepheids-SNIa-measurement
Cepheids-SNIa-measurement based on time-brightness calibration for small

redshift z peak power P ~T ('[Cr ) ~ M, , with average nucleus mass M, per-
centage of higher-mass nuclei at present: r(0)=1.04%, r(C)=0.46%, so
P (2>1)

max

P (2 <1)

max

73.04/1.015=72. Hye =H,s/1.015=72.£1., which is at error margin.

~(1+r(0)+r(C))=1.015 so z-corrected Cepheids-SNIa becomes

6. Relativistic Perturbations and the Perturbed
Lambda-CDM Model

The Lambda-CDM model is locally homogeneous, but during inflation the
quantum fluctuations are “blown-up”, and the universe becomes inhomogene-
ous on small (galactic) scales and remains homogeneous on large scales. These
local inhomogeneities generate structure, which we observe today.

In order to reproduce these local inhomogeneities in the perturbed Lamb-
da-CDM model, we introduce small perturbations in the metric and in the den-
sity distribution. These perturbations are functions of conformal time 7 (defined

dt . i .
by dr=-—), and space location vector X', and are not random variables.
a

The randomness is introduced by initial conditions for perturbations (see
chap. 8).
We introduce metric perturbations A, B;, Eij in the RW-metric [2] [3] [4]

ds” =a’ (i7)(—(1+ 2A)dn” + 2B,dx'dy + (& + 2E; )dx'cx!) (13)

and split-up in scalar, vector, tensor parts:
scalar A

B =0,B+ I.3>i , scalar B, vector éi

E; =Co; +0,0,E +(6iéj —ajéi)+ Eij , scalar C E, vector éi , tensor Eij ,
where Y E/ =3C

Furthérmore, we form the gauge-invariant Bardeen variables with 8 = 1scalar
(A) + 3vector (B) + 4tensor (£;) degrees-of-freedom (dof’s)
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10° 1 N\ ]
104 h 1

100 | N 1

(naive, oorr.) temp./eV

0.01 1

104 E

107 0.001

scalef ax

Figure 11. The naive temperature Et‘h")(a) compared to the iterated

temperature Et(hl) (@), in dependence of scale factor a, analytic solution.

¥=A+H(B-E)+(B-EY, (D:—C+%V2E—H(B—E'),

O, = Bi - Eil > Eij
Since we have 6 Einstein equations, we can remove the 8 — 6 = 2 dof’s by
gauge-fixing.
= Newtonian gauge B=E=0
ds? =a? (77)(—(1+ 2¥)dn® +(1- 2(1))5ijdxidx1)
A=Y, C=-0 (6.30)

= Spatially flat gauge C= E£=0

= Synchronous gauge A= B=0

From now on, we use the Newtonian gauge.
We get for the energy-density tensor

19 =~(7+5p)
T, =—(p+P)V
T! =—(ﬁ+5P)5} +11,, T} =0 Vi (14)

The relativistic Euler equation is

pe’ +p ! a A +0 p+;d—pv =0
I-(vey Jei—(viey dt\Ji-(viey | e\ 1-(ve) 9t
The Euler equation in the RW metric becomes
, P 1 -
Vi == H+—— v, —=——(0,0P +0'IT;; ) - 0,¥ (6.76)
P+p P+p
where II; is the anisotropic stress with the decomposition
I, = 0,0, + (8,11, 0,11, ) + T, (6.39)
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Finally, we get 10 fundamental equations:
6 Einstein equations
[4]
V0 -3H (®'+HY)=nGa’dp

@'+ HY = nGa? -2

’

0,0, (®-¥)=8rGa’l;;, i< j

ij?
"+ H‘P’+2HCD’+%V2(CD—‘P)+(2H'+ H?)¥ =Ga’sP  (15a-d)

4 conservation equations: continuity +Euler

[4]

p o P
, P 1 i
Vi =—| H+=——|v,—=——=(8i6P+ 0TI, ) -3, ¥ (15ef)
P+p P+p
qi:(,B—i- IS)Vi, 5257'0 decelaration conformal q:—?—, T’ =04,
D a'ft

for 10 variables 4 scalar ®,¥,5,5P, 3 vector V', 3 tensor l_[ij ;
initial conditions 6
® 2¢, ¥ lc V' 3¢, (5,5P) Oc;

background parameters

71{:1) q:_
a

"
a'H

Fundamental equations in k-space ([14] Ma)

)a’ ﬁ) P‘

In the following, we transform the fundamental equations via Fourier-transform

into k-space.

We use Newtonian gauge, conformal time 77, a' =:—a , the metric in New-
tonian gauge reduces to
ds? = a(n)(—(1+ 2¥)dn® +(1-20)dx'dx, )
We get 4 Einstein equations in k-space
k*®—3H (®'+HY)=nGa’sp
k*(®'+HW)=nGa*(P+7)0
k*(®-¥)=12nGa*(P+p)o
O+ H (P + 2d>’)+%k2 (@-¥)+(2H'+H?)W =4nGa’sP  (16a-d)
and 2 continuity-Euler equs in k-space

5= -[1+2j(9-3q>') ~3H (f—P—Ejé density equ
p pd p
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P’ 5P
9'=—(H + = j@—_—_kz —k?o +k?¥ velocity equ (16ef)
P+p

P+p
~n O
5 6% )n,
§=2L g=ikivi, o=~ "2

D P+

with the definitions

>

ol

~ K ‘
where K =E is the k-unit-vector, IT anisotropic stress

and the relations
T =—(p+dp), T'=(p+P)V, T/ =(P+5P)s|+I1}, 5:@”:——
2]
I =0,i=123, I, =T, - T}
9=iklv,, (p+P)o=ikisT}, (,5+|3)a=—[|2‘|21—%5ijJn‘j.

We have here 6 variables ®,¥,0,5,0,6P, 0P =5Tii, 5p=5T00, which are
functions of (k,7).

7. Evolution of Distribution Momenta

We introduce here density distribution momenta for density components radia-
tion y, neutrinos Vv, electrons e, baryons b, cold-dark-matter d. The densities
acquire their random nature from random initial conditions, and have therefore
a (Gaussian) probability distribution. These distribution momenta are used in
the calculation of CMB spectrum in chap. 10.

Evolution of distribution function momenta (Ma [14])
da

dn

ds? = a(n)(—(1+ 2¥)dn® +(1-20)dx'dx, ) )

We have for Newtonian gauge, conformal time 77, a'=

Phase space distribution

With phase space element dx"dx*dx*dPdP,dP,

dN = f (X', P;,77)dx'dx’dx*dP,dP,dP, particle number in element (32)
P= a(l— <I>) p; co-moving disturbed momentum

density distribution for matter fermions (Fermi-Dirac distribution +), density

distribution for radiation bosons (Bose-Einstein distribution -)

9 1
(e = —F
exp| — |1
)

energy &= a\/p2 +m? = \/P2 +a’m? , temperature 7, today temperature 7.

(17)

We change variables: x' P, to x'q i » and get the expressions:

scaled momentum (; =ap; =Qn;, unit momentum vector N with n‘ni =1

energy &=+/q° +a’m’;
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change distribution f (Xi P ,77) to f (Xi .0, ,77).
Finally we get for the neutrino distribution perturbation function (Xi ,q,N; ,77)
(not equal to the metric perturbation ¥)

f (x‘,P.,n)z fo(g,T)(1+y/(x‘,q,nj,77)) (35)
for the distribution of energy tensor
T) = a_AqudQ q’efy(e,T)(1+y)
T =a*[dgdQan, f, (£,T)(1+y)

.,q

-4

fo(e,T)(1+y)

i of
Boltzmann equation in (X' ,a,N; ,77) , with collision term a—c becomes

n
Df _of oxof ogof on of ot
d77 on onox onoq omon,  On

u°
GR geodesic equation P° ddP +I0,P° P/ =0 gives

dg —=qd-¢(q,7)no¥ (39)

dn
and Boltzmann equation becomes
Y%A (ijlrng)[db—ig(ﬁ-ﬁ) ] + % 19)
with fluid equations cdm
5l =—0,+30", 0 = —%'ec LKW (192)

Component evolution equations

In the following we present the evolution equations for ~momenta in &-space
for important components.

Evolution equations massive neutrinos

We have for (average) background density, pressure
p,=a*[dgdQg’ef,(e,T), R a“‘J'dqu q2 q fo(e,T)
the perturbations
,=a*[dod ?e 1, (s,T )y, SR, =—a’4ququ2q STy
T, =a™*[dgdQ an, f, (&, )w
ST1,, :ga"‘J'dqu qzq?(ninj —%5”.] fo (e, )y

distribution perturbation function are developed in Legendre polynomials of the
angle (IZ . ﬁ)

M

l//(lz,ﬁ,q,n): (—i)I (21 +1)y, (lz,q,n)P, (lzﬁ) (54)

Il
o
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2
dp, =4na [dg e fy (£, )wy » O, = a"‘_qu qzq?fo(g,T)z//o
(ph+P )6? 4nka‘4jdqq fo(e.T)w, s

(20 +R))o, =4?na‘4_[dq qzq? fo(&,T)w,

Boltzmann equation yields for evolution of perturbation momenta

. gk dinfy . gk gk, dln f,
= —— —CD—, 2 __\P
Vo= g ding” "' 735 3. Vo202 3q  ding
i ==Ky, —(1+)p,), 122 (19b)
(21+1)e 7" ’

truncating order | .

2
Wi+l = (

max

Evolution equations photons
Weassume y—e Thomson scattering with the Thomson cross-section

2
49 35, LS 0 s —0.665x10% cm?
dQ 16n
with F, (k,f,7) distribution total intensity
with G, (k, i, 77) distribution difference polarization components
with collision terms

[%)C:aneq( F,+Fo+4(A-V,)~(F,,+G,+G,)P,)

oG 1
[ yj =an,o; [—Gy +E(F72+Gyo+Gy2)(l— Pz)j
C

on

with expansion

oF 4i 1 1 S
(_7] =an,o; [?(ay -6, ) P+ (9@ _EGN —EGyzj P, - Z(_,)' (21+1)F,R ]

on c 1=3

[?,;];aneo{;(F £G,048,,)(1-P), ~S(-1) (241G, |

1=0

Resulting fluid equations are then

4 , 1
S :_597 +40', 0, = kz[zﬁy _07j+ k*¥ +an,o; (Gb —497) (19¢1)

14

and momenta evolution becomes
8

: 9
F,=20= 1549y——kF 5an80'T0'7(97—9b)

1
15800y (0,-6,)(G,,+G,,)
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k
F =
ST

. k
Gyl = 2| +1(IG;/(|71) _(I +1)G;/(|+1))

1 1)
+an,o; (—Gy, +E(F}/2 +G o+ Gyz)(d,o +%D

(IF oy ~(1+1)F, ) —anoFy, 123 (19¢2)

(19¢3)

Evolution equations baryons
We have the fluid equations

: .o @ 4p,
5, =—0,+30", 6, :—E0b+cszk25b—ﬁaneq (6,-0,)+k*¥ (19d1)

with sound speed c¢? = KeTy (1_1 dnT,

7 3dlna

The temperature equation becomes

J > M Inean baryon mass.

T, =—25T, +——;aneaT (T,-T,)

Before recombination tight-coupling y —b, we have

6,-0, =rc[¢97' —kz(%éy —ayj—kz‘ljj (19d2)
7. (8 . d
O-;/ :3 567 —100'}/ —3kF}/3 (].9 3)

0, = —%@[eb' +24, —cszab}r K [%57 - 0'7]+[1+%&]k2‘1’ (19d4)
a

Py

8. Initial Conditions

Initial conditions in k-space for density components (radiation y, neutrinos v,
electrons ¢ baryons b, cold-dark-matter ¢) and metric perturbations ¥ ,® gen-
erate the random (Gaussian distributed) inhomogeneities required for structure
formation.

Initial conditions k-space

For Newtonian gauge in conformal time 77, initial conditions are chosen in

such a way, that only the largest order in k7 is present (Ma [14])

5 =€ __ oy
7 3(P+p)
3. 3
6c:5b :Z5vzz57
2
0 =0V=9b=90=&(k2 )=k—’7qf
’ 15+4R, 2

k 2
o 4C (kn)2=( 7 .
3(15+4R)) 15
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w-2€ o_[1:2R |w
15+ 4R, 5
with neutrino density ratio R, =— By —
p}/ +pV

9. Structure Formation

In the following, we present in concise form cross sections, reaction rates and
densities for important cosmological particle processes [2] [3] [4] [11] [23]. They
are used in the background eos equations in chap. 2, and in the evolution equa-
tions of density distribution momenta in chap. 7.

Cosmic neutrino background

The reactionis v, +V, <>€" +€, € +V,>€ +¥,
with reaction rate T'=nov=GZT®, G, ~1.2x10°GeV? (3.58)

3
and corresponding Hubbble rate H = i , r ~ (Lj ,
My, H (1MeV

neutrinos decouple at T,, =1MeV, t ; =1s,

v
q b
—+1
ool 1 41]

The gamma-pair production reactionis y+A—>e"+e + A [24] [25]

the number density n, o a’s_[dgq

with T,ca™ for T,>T, ;.

Gamma pair production

with the cross-section o = arEZZZP(E, Z) , where Z = atomic number of materi-

al A4, k= E—y , a fine-structure-constant, and
e

3
P(E,z)zz—;(wj . 2<k<4,

E
P(E,Z)z%ln(Zk)—%=3.11In{2E—’J—8.07, k>4,

e
wih reaction rate T'=noc.
Electron-positron annihilation
The ep-annihilation reactionis € +e” — y+y shown in Figure 12.

wih the cross-section

0. (0,)= (14—%)0‘0 (5) _ﬁ[_ﬂmg (ﬂj _1] log [2£J0° (B) [24]

s 25 1-p @,
pl —p——r A~~~ P3 pl —»— p3
\d + \

P2 —t— A~~~ pi P2 —e— p4

Figure 12. e-p annihilation.
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where o, ()= 7150;: [—3_/?4 Iog[itﬁj—Z(Z—ﬁz)J Born cross-section, and

Mandelstamm variables s=(p, + pz)z, t:(pl—ps)z, U—(pl—p4)2,where
B 212 _1+p
ﬁ_,/1—4(mc ) /s, Z‘ﬁ

@, soft cut-off, v= 1 2p 5 relative velocity, dof number

PTRANELES S

g5 = 8 2 with photons decoupling at T,; =0.5MeV,
2 T<m,
. a’ -18
t,q =65, duration At,, = o =10""s

e

3
4
T, = [ﬁ) T,, t>t,, after ep-annihilation,so T, ,=2.73K, T, ,=1.95K.
Planck data yield ) m,; <0.13eV, Q, <0.003.

General photon eos
For T> T,,in pair-production regime, we have in equilibrium (relativistic)

2na’ v,
O-o(ﬂ)— s > ﬂ—?
2322
[y, =20, Vo ~ 2ne+ﬂcM[l+ ﬂj
B

e 4

E
r?3.1In|
nt . E. , N, o e
L, =T ¢ results n =—-E; , Le. n ~—nkEi~E;,

eey — T yee n ac
Y
* 4nah’c? (1+ j o

E n
I, =2nCo~2ncar’Z} [3.1In[E—’J—8.1] with Z =1n—b, s=4E;

Ve

with thermal energy E, =kgT .
In the black-body regime we have the Stefan-Boltzmann relation n, =agEy .
The positron density n,, results from equality of both N, from pair-pro-

duction-annihilation and Stefan-Boltzmann

n? E.Y n(E Y
n,, z—b0.17a(—thzj =—b(—‘“2J 12x10°°.
n m,c n, \ mc

7

Thomson scattering ([26] Hu)
We get density of free electrons

— YP 2 3 . P .
n, = [l——j X N, # Q,h?(1+2)" x10™° cm™, ionization fraction X, =1,
2

where Yp ~0.24 Helium mass fraction.

d
The optical depth 7 results from the Thomson equation d—T:neaTa,
n
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8na’

2 =
e

electron scattering.

where o7 = 6.65x10°cm® is the Thomson cross-section in photon-

Photons and neutrinos

After photon decoupling we have the relation for neutrino and photon tem-

4\
T :(ﬁj T (3.62)

Hydrogen recombination ([4], chap. 2)

perature

For hydrogen recombination we have the reaction ¢ +p" >H +7,

32
and number density n_,; _[2m exp Eion. ’
n m,T T

e e
with ionization energy E,, =m +m,—m, =13.6eV, E,  =13.6¢eV
n n

and free electron fraction X,=———=—=%

n,+ny, n

The free electron fraction obeys Saha equation

/2
1-X, 2¢(3)( 2x Y E,
&= exp| = | (3.78 3)=1.202
X2 2 \mT) TP (3.78) ¢(3)
n -3
where By _Tho _ % =0.59x10"°, and baryon-photon ratio
nn, 041x10°m

n=6x107".

-1+ 1+4f(E,)

2f (Ey)

2 E 3/2 E E 3/2 E
f(E,)=44(3 /— —_ | exp| /" |=2.26x107°| —- | exp| —= |,
(Bn)=409) “n(meczj "\, J [mec2] p( Ei

with limits

>

The solutionis X, =

f>»1, X, x——, n,=n,, —-xl1

f <1, X,=~1, n,=n,, n, =0,

and recombination temperature T, ~0.32eV=3760K, t, ~290ky.
Photon decoupling
The photon decoupling reactionis € +y <>€ +y , with reaction rate

I, ~no;, op =2 x107* MeV~?, and decoupling temperature

~0.25eV =2970K

2 H,JQ
T (T )2 H(Te) > X (T ) T vb—0Nm 7
y( dec) ( dec) e( dec) dec Zé’(g) UGTTOS/Z dec

for t,. ~370ky.

dec
P o

The Boltzmann equation is %+ Vi +F. e C(f), for reaction
P
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1+2>3+4 collision term is C; [{nj }J =—ann, +a.f.nn,, where a,= <O‘V>

mn,

thermally averaged cross-section, S, :( J detailed balanced coefficient.
g

nyn,

From this follows cosmic Boltzmann equation with collision term

1 d(na%)
;T:—(av)(nln2 - A.n;n,) (3.96)
where the particle number is N, Eﬁoc nia3, M:_Q 1— NN, % ,
s d(loga) H N3N, Joy NiN,

where I', =n, <O'V> (1,2) interaction rate.

Dark matter cdm decoupling
The reaction for cdm particle X, light particle 2 X + X «<>1+1 with
3
1 d(nya
Boltzmann equation ¥%=—(JV>(H§ —(ny )zq) » with Y, z?—é particles

. . M dx
in co-moving volume, and reduced mass x = TX, e

r(My) Mg (ov)

Using A= = , we get the Riccati equation
H(My)  H(My)
dY i 2 2
o).

X
The asympotic valueis Yy , =~ 7f with X; reduced mass at freeze-out.

0% 10°GeVv™
\/gs (M X ) <GV>
\ /<O'V> ~10%GeV? ~ 0.1, |G (=weak interaction).

Baryo-genesis

with reaction rate

The cdm density is €y ~

In the following we present important cosmological processes of nuclei, with
density evolution equation, cross-section, and charasteristic (freeze-out) time.

Neutron-proton decay

The reaction here is N+v, <> p" +€, n+e" <> p' +v, with density ratio

E n
{n—”J :exp(— i J E,, =(m,—m, )¢’ =1.30MeV, and with X,=—"
eq

np kBT n, + np
relative n-abundance.

For X, we getthe equation

d;<tn =T, (><)[Xn ~(1- xn)exp(_z_n;n

25512 + 6% + x° E
I(X)=—"=—"——F—, Xx=—2, 7,=886.7+0.85 neutron lifetime.
T x° kT "

n

With freeze-out abundance X, =0.15 itbecomes X, (t)=X,, exp[—ij .
T

n
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Deuterium

n

D
Ny

» 5 \32 e
The density ratio is = Enn e w exp| —2 |, with
, 4 7 metkgT )

Epp =(M, +m, —m, )c? =2.22MeV and temperature T, =0.06MeV at

Np 0.1 MeV

Ny

2
j (T =T, ) =1, the corresponding time is t,,, = [ J 120s~330s.
&

nuc

Helium
The reactions are

D+p' o He+y, H+p' o He*+n
D+DeoH+p', H'+Do He' +p*
D+D<« He®+n, He* + Do He' + p*

helium-hydrogen ratio is then
g, _4ng  2X, (L)

_ e
Yo =

Ny n, ~1—Xn(tnuc)

Lithium beryllium

~0.25, which is observed.

The reactions are

Be' +n«> Li" +p*, Li'+p" <> He'+He', Be'+e & Li' +v,

He’ +He' & Be' +y, H +He' o Li' +7.

Hydrogen recombination

The process of hydrogen recombination is shown in Figure 13.

We have the Peebles equation for free electron density X, with an improved

calculation in redshift z [27]

X,  C(T) [(mekT)” E,
F__H(Z)(].-FZ)[{ 21 J(l_xe)eXp{_kB_T]

(20)
n 24 (3 3
a2 oy x|
e+p continuum |
\‘\
\ excited states
2s 2p
2y Lya
- ground state

Figure 13. Hydrogen recombination state diagram [4].
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with
A A
GM=3 f; B
2y a a
27 H(T)
A, = 7
128¢(3) (1= X, )(my/m, ) (keT /E,)
A, =822757,
A, = 837120 Lyman wavelength, g, =/ (T)eXp{43kEB,T j)

@ (V' (E
a(T)~9.8 - 2[_k'II'J Iog(_k_'r}
(mc?) \Ks 5

H (2) = JO, Ho (14 2)" [1+1+—ZJ,

1+z,,

H,~15x10%eVv, T :(1+ 2)0.235 eV.

10. CMB Spectrum

In this chapter, we present first in concise way the contributions to the temper-
ature anisotropy of the cosmic microwave background CMB.

Then we describe the scheme for the calculation of the CMB spectrum coeffi-
cients C,

The schematic of the calculation is shown in chap. 11.

Finally, we present the self-calculated results and a comparison with data.

10.1. CMB Spectrum Theory

CMB spectrum today

CMB as measured today has the parameters [28]:
temperature T,,=2.7255+0.0006 K.

CMB dipole is around 3.3621 + 0.0010 mK
relative density Q, =6x10°°
AT%O N 30 uK
T 272K

7.0

temperature anisotropy AT ,~30pK, so =1.1x10".

Temperature anisotropy
The temperature anisotropy of the CMB has the following contributions:

é;TT(ﬁ) :(swz(%@ +\1/D+(Dop :—(ﬁ~\7b)*)+(ISW:.f;"dn(fb’#{”)) (7.29)

at conformal time 7 =17, =7, .

= SW The first term is the so-called Sachs-Wolfe term. It represents the in-
trinsic temperature fluctuations associated to the photon density fluctuations
g, / 4 and the metric perturbation ¥ at last scattering.

* Doppler The second term is the Doppler term RA-V, caused by local veloc-
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ity, this contribution is small on large scales.
= ISW The last term describes the additional gravitational redshift

j "dn (®'+W¥') due to the evolution of the metric.
™

The temperature anisotropy has the form
TT A)= J' exp(iIZ~ﬁct(n*))(F(n*,IZ)+i(IZ~ﬁ)G(77*,IZ)),

F(Z

where F(n*,IZ)z(%§y+‘Pj, G(I]*,IZ)zvb, * (

0k)’
G.(k)= M and R(I] =0, IZ) are the initial curvature anisotropies.
R(7=0,k)

We get for the anisotropy the series in Legendre polynomials

o (i)=Y (2I+1)J'(gnl()3®(k) (0.K)R (K1)

with the transfer function including ISW
0, (k) =0 (k) = (F- (k) J; (k) = . (K) I} (2K)) + [ " dn (@ + ) y (et (m)k),

with g =ct(n.).

The two-point temperature correlation (scalar TT-correlation) spectrum meas-
ured in CMB is C(H) = <®(ﬁ)®(ﬁ')> , with directions A,A’, angle cos@=n-A",
and the series in Legendre polynomials

c(0)=32*1c B (cost)
| An
with series coefficients C,
o :2nfld(cos9)c(e)P, (cos@):4nj%®,2(k)A§(k) (7.6)

ng—1
where A% (k)=A (k—j is the power amplitude, and where sound horizon is
0

e f——37
7] 3(1+R(n))

Weinberg semi-analytic solution [29]

, with curvature R (77) .

Weinberg proposed a semi-analytic solution for photon density perturbations

_AR(n=0k sk cos(kr, + —(1+ K
5, =R(n=0k (1+R(77,|z))1/4 (kr, +0(k))—(1+3R (K )T (k)

with Weinberg semi-analytic transfer functions for SW and Doppler with

F*(k):% exp( K ]( S(k) ]/4cos(krs*+¢9(k))—3R(77*,IZ)T(k)

kow’ ) (14 R(n..K))
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G.(k)= —?exp(— k':; ]( > (k)a 7sin(kr. +0(k)) where

1+ R(n*,k)>
kox =8.8 Mpc

and the resulting CMB power spectrum

'('zzl)cl_ofﬂ jL[ ('ﬂ] i ['XﬂDAZ('fj with

2 =ct(n.)

where

2 4 62
S (x)= 1+(1.209x)" +(0.5611x )" ++/5(0.1567)
1+(0.9459x)° +(0.4249x )" +(0.167x)’

 log(1+(0.124x)° ) (14 (12575 + (0.4452«)" +(0.2297x)° |
(0.124x)" | 1+(1.606x)" +(0.8568k)" +(0.3927x)’

(x) (1.1547x)" +(0.5986x)" ++/5(0.2578«)° "
K)= .
1+(1.723x)° +(0.8707x)" +(0.4581x)° +(0.2204x )’

Calculation of CMB spectrum coefficients C,;([30] Hu)
The temperature and photon polarization Stokes parameters anisotropy are

expanded in a series in angular momentum (/, m),

2
O(n,%,0)= j v Z 0,,G,, (21a)
1=0 m=-2
A d3k &, &
(Q=iU)(n.%,A)=[—5> > (En B, )G,
(2n) iom—
with temperature (/, m)-moments
e" = [dny,, ()e(n) (21b)

and with temperature basis functions

47

Gy =(-i) mY,m(ﬁ)exp(iIZ-x):Zl“(—i)'«/4n(2l+1) il (kr)Y,o (6.90)
:IZ(_i)' A (20 +1) jy (KF)Yin (6,00) 5
where
exp(nz.)z)zlz(-i)' 4n(21+1)j (kr)Y,e (6,0).

In this representation, the spectrum coefficients C,are

(0.0 =[dne4"e[" =6,6,,C (210)

where the power spectrum on the angular momentum /is

I(1+1
AT(h)= (2; )C,Tz in pK* (21d)
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We use the variables:

8nG 8nG
dna'sP, V'(n,k)=-———a’sP
kazg.; g (7.K) Ko

averaged pressure V (77',k)=—

y
optical depth r(n’)zaTjdnnea, 7'(7)=n,oqa.
0

The temperature (J, m)-moments are calculated from the evolution equations

m m
Kol Ko

@, = k(—@ -

211 Im 2l +3®I+lm]_f®lm +Slm (218)

with sources

S0 =70 — D', S;p =7V +k¥, Sy =7y, +V’
1, 1,
Sy :ET (920 _\/EEZO) > Sy :ET (®21 _‘/gEzl) >
1, ,
Sy :ET (®22 _\/gEzz)_q)
s :ir'(® ~6E ) s =ir'(® ~BE,,),
0779 20 20 2770 21 21

Sy = %T'(®22 - \/EEzz ) -’

% = ,jf dnexp(—r)gs.fm (1) jim (k(”o _’7))

and j,,, are spherical Bessel functions

Jioo (X)= 0 (%) e (X)= 3 (%) Jiao (%) :%(3jlll(x)+ ii(x))

s (X) = |(|2+1) i E(X)) s (X) = 3I(I2+1)%( i E(x)])
. 3(1+2)! ji(x)
J|22(X): 8(|—2)! 2

10.2. CMB Calculation Results

The metric perturbations W,® in k-space for k=5 are shown in Figure 14, as
a function of relative scale factor a/ 8y, , where a,, =a,, =0.9x10° at photon
decoupling. Note the transition from high to low amplitude at decoupling.
Density fluctuations for baryons, radiation, cdm J,, d,, J,, for k=5 are shown
in Figure 15, as a function of relative scale factor a/ 8y, - The matter fluctua-
tions decay before or after decoupling, whereas radiation fluctuation stabilizes at

a higher level.
The calculated normalized scalar TT-correlation power spectrum of CMB,
2 |(|+1) 2, N . ) .
AT (1) =2—C,T , is shown in Figure 16, in £K* over multipole order / cal-
T

culated for the original Planck Hubble value H,, =67.74km-s*-Mpc. Note
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the characteristic decrease from the first to the second maximum and from the

third to the following maxima.

) (blue) W (orange), k=5

oY

1.2

1.0+

0.8f

0.6F

0.4+

0.2F

0.0+

- y=alaeq

0010 0100 1 10 100

Figure 14. Metric perturbations, ¥, k=5 [31].

ob(blue), or(orange), oc(green), k=5

ob, or, oc

0 1

i y=a/aeq

0.010 0.100== 700

Figure 15. Density fluctuations J,, J,, J, k=5 [31], double loga-
rithmic plot.
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Figure 16. Temperature scalar TT-correlation spectrum

y=T?

!%ggq,[ﬂ=uK% x=1 [31].
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The background Hubble parameter H, influences the CMB spectrum, but the
deviation & = 1.3% caused by the calculated correction from chap. 5 is within

measurement error.
The plot in Figure 17 shows the difference between the power spectrum for

) I(1+1) .,
Planck-Hubble-parameter Ag (I, HOIP)=2—C|T , and for the background-
T
I(1+1
(1+1) C,T?, where
T

corrected Hubble-parameter A? (I, HO‘PC) =

Hope = Hgp x1.043=70.6+0.4, with maximum deviation of §=1.3%.

In Figure 18 is shown the scalar TT-correlation power spectrum from Figure

16, together with measurement data and its error bars.

(T RI(1+1) (Cyy G )(21) K

50/ i Py .
o VAN

50} V 1
o 500 1000 1500 2000

Figure 17. Power TT spectrum Hubble correction, max rel.dev. d = 1.3%

[31].
(T,PI(1+1) C/(2m) uK?
6000, 90" 45 10 2 05 02 _
5000} CBI09 -
[ Planck I
4000} ACBARO08 -
[ WMAP7
3000}
2000}
1000F
0' L L AT L1

2 5 10 50 100
|

500 1000

Figure 18. Temperature scalar TT-correlation power spectrum with
measured data [22] [31], for measurements Planck, WMAP, ACBAR,
CBI, and BOOMERANG.
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11. Concise Presentation

In the following, we present the fundamental equations, the solution process and

results in form of schematic diagrams for the background calculation and for the
CMB calculation.

Lambda-CDM background calculation:

Friedmann equations
(a')2 -I—k—%az —pa’ =0

1

p_a +a'(P+p)=0
eos P=P(p,E,) N
1 soluti
photons £, (,’37 ) =p,/3 Sc‘l[ei)a(l)sz)xl;tml; . (a)
neutrinos ), (PV ) =p, /3 0 ’
p=p"(a)
baryons id. gas ‘l)b(pbi’Eh):pbﬁ > 0]

Y - £as. ! f”’lﬁC‘2 Eth :Erh (Cl)
pP=p,+p,+p,+p, bound.cond: x,, = x," , k=k"
P=F+P +F,
temperature
E,=E," (p.a)
t<t, E"=(p/ag)"
> trec Elh(()) = Erh,o /a
bound. cond. today
X, =X, =cl,/ R, iteration
a (x,m) =1
a'(xbc)/a(xhc) =1=H,/R,
p(x.)=p./ 1., !

step 2 solution
a=a" (x)
p=p’(a)
E,=E, (a)

X, = xo(z) , k=K%
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Lambda-CDM CMB calculation:

perturbations Einstein equations k-space
ds* =a(n)(—(1+2%)dn’ +(1-2d)dx'dy,) kK*®-3H (®'+ HY) = nGa’Sp
®,¥,0,0,6,6P perturbations K (@'+ HY) =nGa’ (P+p)0
oF pressure K (®-¥)=121Ga’(P+p)o

0 =ik’v.  velocity 1

y " ' ' 2
§=06p/p relative density Q"+ H(¥'+20 )+§k (©-Y)
c

:_(]gxlé,r_lé‘ )H’ /(ﬁ'i'F) stress +(2H’+H2)‘l’:4ﬂGa25P
L J
o g thermodynamiC' density+Euler
p,P,a,E,, T background B SP P
s' =1+ 2030 3u[ 2L L5
P ps p

0'= —(H+ 1_)P JG - (}_?Pf)kz —-kKPo+ kY
initial conditions bk P

®,¥,0,6,6,0P = variables &

éi (a = 0) = 5;',1

CMB power spectrum coef C;

O %i)=] 3 13 3.0.6.

(6,.0,") =[dn©%"6," =5,65,,C
n
®," = [dny, ' (i1)©(i)

" " measured, calculated coef C;
’[m = o ®[m - o ®I+lm ,®lm + Slm N . <Tu)2|<1+1) CTT/(ZT[) K2 N .
20-1 20+3 600029 48 10 z 05 02
5000 CBI09 éf

4000} A(;BAROS i %
WMAP7? HJ.»’

measurement temperature correlations 3000} CT e

C(0)=(e(7)e(i") 2000k

C(0)= 22]+1 P,(cos6) 1000}

0

2 5 10 50 100 500 1000
[

13 fitted parameters

Q,.0.0, 1, H, A n,t,w,Sm, Nv,r,,“;;
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12. Conclusions

The results for the background part are presented in schematic form in chap. 11
Lambda-CDM background calculation.
We start with the Friedmann equations

(a’)’ nLk—%a2 —pa’=0

pT'a +a'(P+p)=0
with the variables in dependence of the scale factor a (inverting the scalefactor-
time relation a=a(Xx),

x(a) time,

o) (a) density of component

E, (a) temperature,
for components radiation p, neutrinos Vv, electrons e, protons p, neutrons n,
cdm d, where the pressure P,(a) is eliminated using the component eos
P :Pi(pi’Eth)'

In difference to the conventional ansatz,

-the temperature resp. thermal energy is introduced as explicit function of
time E,(t);

-we use the ideal gas eos for baryons, instead of the usual setting B =0
(dust eos).

As we show in chap. 5, this leads to a correction of 4.3% for the present value
of Hubble parameter H, =1.043H,, which brings it into agreement with the
measured Red-Giant-result, and within error margin with the Cepheids-SNIa-
measurement.

We carry out an iterated calculation with two steps /=1 and 7 = 2, the results
are shown graphically in chap. 10.2.

Note the deviation of the temperature from the conventional linear behavior
(brown) to the calculated first-iteration-value (blue) for later times. This pro-
duces also a slight “bump” for the Hubble parameter H(a), and there is a
slight “kink” in  x(a).

The results for the perturbation part are presented in schematic form in chap.
11 Lambda-CDM CMB calculation.

We start with the perturbed metric

ds® =a(n)(-(1+2%)dn’ +(1- 20)dx'dx; )
perturbations ®,¥,0,0,5,5P , where
OP pressure
6 =ik J'Vj velocity
S=30p/p relative density

az—(lzilzj —%é‘ijjﬂij/(,6+ P) stress

p,P,a,E, are background functions calculated already in the background
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part.

And 7 = reionization optical depth is a parameter used for the CMB calcula-
tion.

The perturbations result from (random) initial conditions and represent the
random nature of structure formation.

The resulting fundamental equations are transformed to k-space (ie. Fourier
transformed), and consist of two parts.

The Einstein equations in &-space resulting from the perturbed metric ansatz
k*® —3H (®'+HY)=nGa’sp
k?(®'+HW)=nGa’(P+7)0
k?(®-¥)=12nGa*(P +p)o

®"+H (\V'+2®’)+%k2(®—‘P)+(2H’+ H?)¥ = 4nGa’sP

and the thermodynamic: density and Euler (relativistic fluid) equation, resulting

from the relativistic Boltzmann transport equation

5':-[1+5J(9-3®')—3H (ﬁ-Eja

p pé p

R - .9-_5—'3_|<2 — k2o + k¥
P+p P+p

The CMB power spectrum coefficients C;depend on the angular moments of
temperature correlation ®,,, which obey the iterative differential equation in
k-space

" Km Km+
o Im = k[ZI_(il@Im _ZIO—_li_ISGHlmJ_ zJ®Im + SIm

with parameters, which are calculated from the fundamental equations.

The actual numerical calculation is performed in program [31], based on a
function library from [22].

Then a fit is carried out between the calculated parameterized coefficients
C,(p;) and tthe measured values C

The 13 fitted parameters

lexp *

p; :[Qb,QC,QA,tO, Hy, AN, 7,w,2m N, rt,ziks] are calculated by the Plan-
ck collaboration [32], and are not recalculated here.

The fitted [32] and measured coefficients C,are shown in a plot.
Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-

per.

References

[1] Fliessbach, T. (1990) Allgemeine Relativitatstheorie. Bibliographisches Institut, Leipzig.

DOI: 10.4236/jmp.2024.152011

236 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.152011

J. Helm

(2]
(3]

(5]

(6]
(7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]
(18]

(19]

(20]

(21]

(22]

(23]
(24]
(25]

[26]
(27]

(28]

Dodelson, S. and Schmidt, F. (2021) Modern Cosmology. Academic Press, Cambridge.

Vittorio, N. (2018) Cosmology. CRC Press, Boca Raton.
https://doi.org/10.1201/b22176

Baumann, D. (2022) Cosmology. Cambridge University Press, Cambridge.
https://doi.org/10.1017/9781108937092

Ciufolini, I. and Wheeler, A. (1996) Gravitation and Inertia. Princeton University
Press, Princeton. https://doi.org/10.1515/9780691190198

Soff, G. (1993) Allgemeine Relativititstheorie. Univ. Frankfurt/M, Frankfurt.

Blau, M. (2000) Lecture Notes on General Relativity. Bern University, Bern.

Stefani, H., et al (2003) Exact Solutions of Einstein’s Field Equations. Cambridge
University Press, Cambridge.

Steiner, F. (2008) Solution of the Friedmann Equation Determining the Time Evo-
lution. Ulm University, Ulm.

Armendariz-Picon, C. and Neelakanta, J. (2014) Journal of Cosmology and Astropar-
ticle Physics, 3, 49. https://doi.org/10.1088/1475-7516/2014/03/049

Particle Data Group (2022).
https://pdg.Ibl.gov/2011/reviews/rpp2011-rev-cosmological-parameters.pdf

Shaw, J.R. and Lewis, A. (2010) Physical Review D, 81, Article ID: 043517.
https://doi.org/10.1103/PhysRevD.81.043517

Helm, J. (2023) LamCDM.nb Mathematica Program.
https://www.researchgate.net/profile/Jan-Helm/publications

Ma, C.-H. and Bertschinger, E. (1995) Cosmological Perturbation Theory.

Planck Collaboration (2022).
https://www.cosmos.esa.int/web/planck/planck-collaboration

Aydiner, E. (2022) The European Physical Journal, 82, 39.
https://doi.org/10.1140/epjc/s10052-022-09996-2

Davis, T.M. and Lineweaver, C.H. (2003) Expanding Confusion.

Helm, J. (2018) A Covariant Formulation of the Ashtekar-Kodama Quantum Grav-
ity and Its Solutions. https://www.researchgate.net

Crevecoeur, G.U. (2016) Evolution of the Distance Scale Factor and the Hubble Pa-
rameter.

Lewis, A. and Challinor, A. (2013) Code for Anisotropies in the Microwave Back-
ground CAMB Fortran-Python Code.

Bernardeau, F., Pitrou, C. and Uzan, J.-P. (2010) CMB Spectra and Bispectra Calcu-
lations: Making the Flat-Sky Approximation Rigorous. arXiv: astro-ph/1012.2652.

Pitrou, C. (2018) CMBquick Mathematica Program.
https://www?2.iap.fr/users/pitrou

Croswell, K. (1996) Alchemy of the Heavens. Anchor, New York.
Lee, R. (2020) Nuclear Physics B, 860, Article ID: 115200.

Maximon, L.C. (1968) Journal of Research of the National Bureau of Standards B,
72, 79-88. https://doi.org/10.6028/jres.072B.011

Hu, W. (2017) CMB. Lecture, University of Chicago, Chicago.

Peebles, P.J.E. (1968) The Astrophysical Journal, 153, 1.
https://doi.org/10.1086/149628

Hu, W. (2001) Cosmic Microwave Background. University of Chicago, Chicago.
https://background.uchicago.edu

DOI: 10.4236/jmp.2024.152011

237 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.152011
https://doi.org/10.1201/b22176
https://doi.org/10.1017/9781108937092
https://doi.org/10.1515/9780691190198
https://doi.org/10.1088/1475-7516/2014/03/049
https://pdg.lbl.gov/2011/reviews/rpp2011-rev-cosmological-parameters.pdf
https://doi.org/10.1103/PhysRevD.81.043517
https://www.researchgate.net/profile/Jan-Helm/publications
https://www.cosmos.esa.int/web/planck/planck-collaboration
https://doi.org/10.1140/epjc/s10052-022-09996-2
https://www.researchgate.net/
https://www2.iap.fr/users/pitrou
https://doi.org/10.6028/jres.072B.011
https://doi.org/10.1086/149628
https://background.uchicago.edu/

J. Helm

(29]

(30]

(31]

(32]

Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
https://doi.org/10.1093/0s0/9780198526827.001.0001

Hu, W. and White, M. (1997) CMB Anisotropies: Total Angular Momentum Me-
thod.

Helm, J. (2023) LamCDMcmb.nb Mahematica Program.
https://www.researchgate.net/profile/Jan-Helm/publications

Planck Collaboration (2016) Astronomy & Astrophysics, 594, A13.

DOI: 10.4236/jmp.2024.152011

238 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.152011
https://doi.org/10.1093/oso/9780198526827.001.0001
https://www.researchgate.net/profile/Jan-Helm/publications

	A New Version of the Lambda-CDM Cosmological Model, with Extensions and New Calculations
	Abstract
	Keywords
	1. Introduction
	2. Friedmann Equations
	2.1. Friedmann Equations and Metric
	2.2. Relative Density and Pressure (Relative to )
	2.3. Transition Thermal Energies and Eos

	3. Parameters
	4. Inflation
	5. Background Calculations
	5.1. Numerical Solution
	5.2. Analytic Solution 
	5.3. Background Results

	6. Relativistic Perturbations and the Perturbed Lambda-CDM Model
	7. Evolution of Distribution Momenta
	8. Initial Conditions 
	9. Structure Formation 
	10. CMB Spectrum
	10.1. CMB Spectrum Theory
	10.2. CMB Calculation Results

	11. Concise Presentation 
	12. Conclusions
	Conflicts of Interest
	References

