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Abstract 
The fundamental frequency plays a significant part in understanding and 
perceiving the pitch of a sound. The pitch is a fundamental attribute em-
ployed in numerous speech-related works. For fundamental frequency ex-
traction, several algorithms have been developed which one to use relies on 
the signal’s characteristics and the surrounding noise. Thus, the algorithm’s 
noise resistance becomes more critical than ever for precise fundamental fre-
quency estimation. Nonetheless, numerous state-of-the-art algorithms face 
struggles in achieving satisfying outcomes when confronted with speech re-
cordings that are noisy with low signal-to-noise ratio (SNR) values. Also, most 
of the recent techniques utilize different frame lengths for pitch extraction. 
From this point of view, This research considers different frame lengths on 
male and female speech signals for fundamental frequency extraction. Also, 
analyze the frame length dependency on the speech signal analytically to un-
derstand which frame length is more suitable and effective for male and fe-
male speech signals specifically. For the validation of our idea, we have uti-
lized the conventional autocorrelation function (ACF), and state-of-the-art 
method BaNa. This study puts out a potent idea that will work better for 
speech processing applications in noisy speech. From experimental results, 
the proposed idea represents which frame length is more appropriate for male 
and female speech signals in noisy environments. 
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1. Introduction 

Speech is the expression of thoughts in spoken words, which is the main purpose 
of communication. Speech involves the production of sounds by the vocal tract, 
including the lungs, vocal cords, pharynx, mouth, and lips. Speech can be re- 
presented as silence, unvoiced, and voiced depending on whether the vocal cords 
are vibrating or not [1]. 

One of the most significant prosodic characteristics of speech is its funda-
mental frequency. In speech, the fundamental frequency (F0) is the lowest fre-
quency component of a complex sound wave produced during the vocal cords 
vibrating. The approximate frequency of the quasi-periodic structure of voiced 
speech signals is referred to as the fundamental frequency of a speech signal, 
which is sometimes indicated as (F0). Individuals have distinctive frequency 
ranges, which can be influenced by various factors, such as linguistic context, 
gender, and age. It can also be affected by intonation, stress, emotion, and ill-
ness. Everybody has a different set of fundamental frequencies depending on 
how their voice chords are shaped. Men typically have a fundamental frequency 
range of 50 [Hz] to 250 [Hz], whereas women exhibit a range of 120 [Hz] to 500 
[Hz] [2]. 

The fundamental frequency is determined by the rate at which the vocal cords 
vibrate when producing voiced speech sounds, resulting in the perception of 
pitch in speech. The fundamental frequency in the voiced speech sounds is also 
known as pitch, which is defined as our perception of a fundamental frequency. 
In speech, “pitch” refers to the perceptual characteristics that enable us to dis-
tinguish between the highness or lowness of a sound or tone as perceived by 
the ear. Accurate pitch (F0) detection of a speech signal is essential for speech 
processing applications such as speech synthesis [3] [4], speech enhancement 
[5], speech recognition [6] [7] [8] [9], emotion identification [10]. [11] enhances 
the clarity of speech over noise by implementing pitch enhancement techniques 
within the frequency domain. [5] utilizes the pitch period to construct enduring 
models for both background noise and speech in the context of enhancing 
speech quality. One study employs prosodic events, specifically pitch accents, to 
enhance the performance of a baseline automatic speech recognition (ASR) sys-
tem [6]. Another different research constructs a speech recognition system that 
is child-friendly, achieved by lowering its sensitivity to pitch variations [7]. 

Extraction of precise pitch data from the speech is essential to intensify the 
feasibility of the aforementioned applications. Nevertheless, numerous chal-
lenges persist in retrieving pitch information from speech. Detecting the precise 
F0 becomes a difficult task in the presence of noise-contaminated speech signals 
[12]. Additionally, since a clean speech waveform [13], which undergoes signifi-
cant changes in structure during vocal tract passage, pitch extraction has been 
challenging, even in a noise-free environment. 

Prior to now, techniques for determining pitch have leaned on the distinct 
attributes of speech signals, whether it be the periodic pattern in the time do-
main [14] or the harmonic structure in the spectral domain [15]. 
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Within the time domain, a diverse array of algorithms comes into play for ex-
tracting pitch from speech signals. These encompass methodologies like the Au-
tocorrelation function (ACF) [16], Average magnitude difference function (AMDF) 
[17], Average squared mean difference Function [18], Weighted autocorrelation 
function (WAF) [19], Praat [20] and YIN [21]. 

Among the array of methods for pitch detection, the autocorrelation function 
reigns supreme. The autocorrelation function (ACF) [14] assesses the resem-
blance between two sections of a speech signal and pinpoints the period that 
yields the closest separation. The AMDF [17] is a simplified version of ACF that 
computes a signal by taking the average of the magnitudes of the difference be-
tween a signal and a delayed version of itself. WAF [19] is calculated through the 
multiplication of the signal’s autocorrelation function with a designated range of 
weights. This approach weighs an autocorrelation function using AMDF’s in-
verse. The WAF [19] can be used to eliminate noise and other unwanted signals 
from a signal during signal filtering. Praat [20] selects the best F0 candidate for 
each short segment of the sound by looking at the maxima of the autocorrelation 
of the segment and applying the Viterbi algorithm to determine the least expen-
sive path through all the segments. YIN [21] directs its attention to the interplay 
between the customary ACF and the difference function, utilizing a cumulative 
average approach to the difference function. This methodology aims to curtail 
inaccuracies in pitch extraction. 

Pitch extraction methods rooted in ACF exhibit robustness in the presence of 
white noise and remain unaffected by phase irregularities in the waveform. 
Conversely, the efficacy of ACF-driven pitch extraction tends to diminish when 
clean speech encounters noise-induced influences, resulting in reduced perfor-
mance. The behavior of the autocorrelation function is also susceptible to varia-
tions in the attributes of the vocal tract. 

Within the frequency domain, a multitude of techniques for pitch extraction 
are devised to mitigate the impact of vocal tract characteristics. In this context, 
the quest for F0 entails identifying harmonic peaks within the power spectrum. 

Among the most often used methods is the cepstrum method (CEP) [22]. It 
derives the cepstrum by inverting the Fourier transform of the logarithmic mag-
nitude of the Fourier spectrum. This encapsulates the period within speech 
harmonics, leading to an evident peak aligning with the frequency period. The 
logarithmic function in the CEP aids in segregating periodic attributes from the 
speech signal’s vocal tract characteristics. The CEP yields precise outcomes 
within a noiseless environment, yet its effectiveness experiences notable degra-
dation when confronted with the complexities of noisy conditions. The modified 
CEP (MCEP), as presented in [23], introduces additional steps involving lifter-
ing and clipping onto the logarithmic spectrum. This process serves a dual pur-
pose: it eradicates vocal tract attributes while also erasing undesired spectral 
notches linked to noise in the log spectrum. Furthermore, the MCEP eliminates 
high-frequency components, thereby heightening the precision of pitch extrac-

https://doi.org/10.4236/jsip.2024.151001


M. S. Rahman et al. 
 

 

DOI: 10.4236/jsip.2024.151001 4 Journal of Signal and Information Processing 
 

tion. In the WLACF-CEP [24], the impact of noise on a noisy speech signal is 
mitigated, enabling its fusion with the CEP method to improve pitch extraction 
accuracy. The WLACF-CEP exhibits a notable capacity to withstand the chal-
lenges posed by an array of noise types. The technique known as pitch estima-
tion filter with amplitude compression (PEFAC) [25] operates within the fre-
quency domain for pitch detection. It employs sub-harmonic summations [26] 
within the logarithmic frequency domain. Additionally, PEFAC integrates a 
unique amplitude compression strategy aimed at enhancing its resilience against 
noise interference. 

In the frequency domain, the harmonics do not adhere precisely to integer 
multiples of the fundamental frequency (F0). Furthermore, the extent of drift is 
more pronounced among the higher-order harmonics compared to their low-
er-order harmonics. Consequently, it becomes necessary to establish a tolerance 
range to accommodate these variances when computing the ratios of harmonic 
frequencies. 

In recent years, numerous strategies have been developed to enhance the ef-
fectiveness of overcoming and mitigating the impacts of background noise. [27] 
employs the Radon transform and proposes an innovative approach of pitch es-
timation for speech in challenging noise environments, integrating the Viterbi 
algorithm to smooth pitch patterns and mitigating the impact of formants using 
both logarithmic and power functions. [28] relies on introducing a practical 
connection between the fundamental frequency (F0) and the instantaneous fre-
quency (Fi). It approximates the F0 contour as a smoothed envelope of remaining 
Fi values, identifying voiced or unvoiced speech regions and extracting the F0 
contour. The TAPS algorithm, as detailed in [29], involves the training of a col-
lection of peak spectrum exemplars to estimate pitch by comparing clean and 
noisy speech data temporal accumulations. Chu and Alwan’s SAFE [30] model 
aims to comprehend how noise impacts the positions and amplitudes in the 
clean speech spectrum. SPICE as described in [31] enhances pitch estimation by 
training trains constant Q transform of signals and calibrates the learned data 
for improved results. Deep F0 [32] broadens the network’s receptive range to 
encompass pitches across diverse noise levels. Harmo F0 [33] has been shown to 
perform better than Deep F0 by utilizing a variety of dilated convolutions, in-
cluding multiple rates of dilated causal convolutions, for pitch estimation. 

The BaNa [34] introduces a novel hybrid approach to pitch detection that 
amalgamates the concept of utilizing harmonic frequency ratios within prede-
fined tolerance thresholds with the Cepstrum methodology. This fusion of tech-
niques allows BaNa to effectively extract F0 from noisy signals. The utilization of 
harmonic frequency ratios alongside meticulously adjusted tolerance ranges im-
parts robustness to the algorithm against the influence of additive noise. 

From the above observation, we have investigated that most of the methods 
use different frame lengths for extracting the fundamental frequency in noisy 
environments. Like BaNa-60 [ms], RAPT-30 [ms], ACF-51.2 [ms], YIN-33 [ms], 
HMM-80 [ms], PEFAC-90 [ms] etc. However, a considerably longer frame 
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length is actively used in above state-of-the-art methods. Therefore, Speech 
harmonics have narrowing peaks when the frame length is extended. But no-
body can ensure the accurate frame length where we can easily extract the fun-
damental frequency with high extraction accuracy for both male and female 
speech in noisy environments. In this research, we stress the usage of the frame 
lengths for male and female speech signals individually in order to increase the 
accuracy of pitch extraction in noisy situations, specially at low SNRs. 

2. Methodology 

In the case of fundamental frequency extraction from speech signal, all re-
searchers have used different frame lengths with windowing technique for the 
purpose of segmentation. But, they didn’t mention, which frame length is ap-
propriate for segmentation to extract the accurate pitch peak in male and female 
speech signals. But there is also matter of consideration that there are differences 
between the male and female speech signal. Let’s assume that the clean speech 
signal and the noise are, respectively, ( )cleans k  and ( )noisev k . The noisy speech 
signal, ( )noisyy k , can therefore be expressed as follows:  

( ) ( ) ( )noisy clean noisey k s k v k= +                     (1) 

Therefore, windowing, which is the process of separating a voice signal into 
periodic segments of a frame length, is a critical component of fundamental fre-
quency extraction methods. To reduce the impact of splitting on the statistical 
properties of the signal, windowing functions can be applied to the temporal 
segments. Smoothing functions that go to zero at the borders are what window-
ing functions are. When a window function is applied to the input signal, the 
resulting segment of a frame length drops to zero at the edge, making the irre-
gularity there undetectable. The following are some regularly used window func-
tions for segmentation of a frame length, which is also represented as shown in 
Figure 1. The most basic type of window is rectangular, which achieves a similar 
effect by replacing all values in an input stream excluding N with zeros, creating 
the illusion that the signal is rapidly turning on and off. When the voice signal 
passes through this simple window, the values across the window are altered to 
zero. It is presented as follows: Hanning is one of the most commonly used ran-
dom signal window function. The Hanning window eliminates ripple, allowing 
for a more accurate depiction of the frequency spectrum of the original signal. It 
is presented as follows: 

( ) ( )( )0.5 0.5cos 2 1 0 1

0  otherwise
han

k K k K
win k

 − π − ≤ ≤ −= 


        (2) 

Utilizing the Hamming window, the structure is improved by lowering the 
largest (nearest) side lobe, giving it about one-fifth the height of the Hanning 
window. It is presented as follows: 

( ) ( )( )0.54 0.46cos 2 1 0 1

0  otherwise
ham

k K k K
win k

 − − ≤ ≤ −π= 


       (3) 
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Figure 1. Magnitude spectrum of different window functions. 
 

By utilizing the window function properties, most researchers employ differ-
ent frame lengths to derive the pitch when getting the fundamental frequency 
from speech signals. In this research, we use four frame length for the situations 
of male and female speakers individually necessary to boost the accuracy of the 
detected pitch, as opposed to BaNa approaches, which calculate all of the frame 
length. Based on the foregoing discovery, we investigated 30 [ms], 50 [ms], 60 
[ms] and 90 [ms] for pitch extraction in both male and female speakers in noisy 
situations, and we discovered more appropriate frame length for the male and 
female speakers separately.  

Figure 2 shows that more noise has less of an influence on clean speech in the 
case of 50 [ms] for male speakers. We can see that the clean speech spectrum 
and the noisy speech spectrum are almost same, and the number of harmonics is 
more accurate than the other frame length. As a result, we receive more relevant 
pitch information. Almost all harmonics are lacking to discern the pitch peak in 
the case of 30 [m], 60 [ms], 90 [ms].So we can say that 50 [ms] is the accurate 
frame length for male speaker in pitch extraction. 

On the other hand, Figure 3 shows that more noise has less of an influence on 
clean speech in the case of 30 [ms] for female speakers. We can see that the clean 
speech spectrum and the noisy speech spectrum are almost same, and the num-
ber of harmonics is more accurate than the other frame length. As a result, we 
receive more relevant pitch information. Almost all harmonics are lacking to 
discern the pitch peak in the case of 30 [ms], 60 [ms], 90 [ms]. So we can say that 
30 [ms] is the accurate frame length for female speaker in pitch extraction. 
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Figure 2. Harmonic characteristics for male speaker. 

https://doi.org/10.4236/jsip.2024.151001


M. S. Rahman et al. 
 

 

DOI: 10.4236/jsip.2024.151001 8 Journal of Signal and Information Processing 
 

 

Figure 3. Harmonic characteristics for female speaker. 

https://doi.org/10.4236/jsip.2024.151001


M. S. Rahman et al. 
 

 

DOI: 10.4236/jsip.2024.151001 9 Journal of Signal and Information Processing 
 

3. Experimental Results and Discussion  

To assess the performance of the proposed method for detecting fundamental 
frequency in a noisy speech environment for selecting the more accurate frame 
length in male and female speech signals, separately, where experiments were 
conducted by utilizing speech signals.  

3.1. Experimental Conditions  

Speech samples captured from the KEELE database [35] are used to develop the 
proposed pitch detection method. Speech signals from the KEELE database were 
uttered by five male and five female speakers. The total length of the ten speak-
ers’ speeches is around 6 [m]. They were sampled at a rate of 16 [kHz]. We add-
ed several sorts of noise to the speech signals to make noisy speech signals. A 
computer generated white noise with a zero mean and unit variance, which was 
then added to the voice signals with amplitude modification. Pink noise, babble 
noise, and train noise, which were all noise extracted from the NOISEX-92 da-
tabase [36] at a sampling rate of 20 [kHz]. When these noises were introduced to 
the speech data in the KEELE database, they were resampled using a sampling 
frequency of 16 [kHz]. The SNR was set to −10, −5, 0, 5, 10, 20 [dB] and the 
other experimental conditions for fundamental frequency extraction were: 

Frame length: 30 [ms] to 90 [ms] for both BaNa and ACF; 
Frame shift: 10 ms; 
Window function: Hanning for both BaNa and ACF; 
DFT (IDFT) length: 2048 points. 

3.2. Evaluation Standards  

If the detected F0 deviates more than 10% from the ground truth value in noisy 
speech data, it is regarded as a gross pitch error. Otherwise, it is regarded as a 
fine-pitch error [16]. The fraction of wrongly identified F0 values in spoken 
speech segments is referred to as the gross pitch error (GPE) rate. The GPE rate 
has frequently been used as an error measurement parameter for F0 detec-
tion.Because the F0 of human speech is typically higher than 50 [Hz] and can 
reach 600 [Hz] for children or female voices, we set the lower limit and the up-
per limit for F0 of human speech to be F0min = 50 [Hz] and F0max = 600 [Hz] 
respectively. We employ widely used noise database with four types of common 
wide band noise to investigate the parameter sensitivity of the BaNa and ACF 
methods.  

3.3. Comparing Results and Performance  

For the validation of our proposed idea, the effectiveness of pitch extraction in 
noisy situations was assessed between the ACF and BaNa [34]. In [12], nine me-
thods were tested, and BaNa was shown to be the top pitch extractor in noisy 
situations. Here, we consider four forms of noise, namely White, Pink, Babble, 
and Train noises. According to [34], the frame duration for BaNa was configured  
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Figure 4. Average GPE comparison of different frame length for male speakers using ACF me-
thod in KEELE database. 
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Figure 5. Average GPE comparison of different frame length for female speakers using ACF me-
thod in KEELE database. 
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Figure 6. Average GPE comparison of different frame length for male speakers using BaNa method 
in KEELE database. 
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Figure 7. Average GPE comparison of different frame length for female speakers using BaNa 
method in KEELE database. 
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to 60 [ms], and 216 points were used for the DFT (IDFT) points. This environ-
ment is ideal for BaNa. BaNa was implemented using source code from [37]. For 
the validation of our proposed idea, we have also utilized the source code of Ba-
Na [37]. 

Figures 4-7 display the average GPE rate for different frame length at male 
and female speakers, respectively in KEELE database with various forms of 
noise. We have utilized the ACF and BaNa for the investigation of our proposed 
idea. 

In the case of male speaker for ACF and BaNa methods in Figure 4 and Fig-
ure 6, we have investigated that frame length 50 [ms] provides the lower GPE 
rate than that of other frame lengths at low SNRs (−10 [dB] to 5 [dB]) almost all 
noise cases. On the contrary, frame length 50 [ms] is highly competitive with 
frame length 40 [ms] at high SNRs (10 [dB] to 20 [dB]). 

On the other hand, In the case of female speaker for ACF and BaNa methods 
in Figure 5 and Figure 7, we have investigated that frame length 30 [ms] pro-
vides the lower GPE rate than that of other frame lengths at almost all SNRs in 
every noise cases. 

4. Conclusion  

The accuracy of fundamental frequency extraction methods varies for different 
speaker types due to the inherent differences in the characteristics of male and 
female speech signals. As a result, the impacts of different frame length vary 
across different speakers. In this paper, different frame length applied to male 
and female speakers have been analytically and experimentally examined. The 
observations above indicate that our proposed idea offers a superior way to ex-
tract more accurate pitch information from speech that has been affected by 
noise. We conducted experimental evaluations for validation of our proposed 
idea at ACF and BaNa methods in KEELE database. The experimental results 
show that the proposed idea acquires the lowest gross pitch error (GPE) rate 
while taking frame length 50 [ms] for male speakers and frame length 30 [ms] 
for female speakers for all kinds of noise and SNR levels investigated. 
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