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Abstract 
This work leveraged predictive modeling techniques in machine learning 
(ML) to predict heart disease using a dataset sourced from the Center for 
Disease Control and Prevention in the US. The dataset was preprocessed and 
used to train five machine learning models: random forest, support vector 
machine, logistic regression, extreme gradient boosting and light gradient 
boosting. The goal was to use the best performing model to develop a web 
application capable of reliably predicting heart disease based on user-provided 
data. The extreme gradient boosting classifier provided the most reliable re-
sults with precision, recall and F1-score of 97%, 72%, and 83% respectively 
for Class 0 (no heart disease) and 21% (precision), 81% (recall) and 34% 
(F1-score) for Class 1 (heart disease). The model was further deployed as a 
web application. 
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1. Introduction 

Recently, there have been major developments in computing; both hardware and 
software technologies including robust artificial intelligence (AI) systems and 
tools. AI systems use various algorithms, especially machine learning (ML), to 
learn from data and/or experience, make predictions and improve their predic-
tion performance. This “ability” of AI has attracted wider adoption and applica-
tion of AI technologies across multiple disciplines, organisations and industries 
including the health care industry. ML has been proven beneficial in giving an 
immeasurable platform in the medical field so that health care issues can be re-
solved effortlessly and expeditiously [1] [2] [3] [4]. Health care organisations 
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depend on computer-based technology in the gathering and storage of vast 
amounts of data in electronic formats. This has provided a good platform for 
automation [5], streamlining [6] and optimization [7] of workflows with ML and 
related technologies leading to improved efficiency, productivity and deci-
sion-making [8]. For instance, natural language processing (NLP) and ML (in-
cluding deep learning) have been facilitating the development of intelligent 
chatbots like ChatGPT, digital health tools and applications that are significantly 
changing and redefining medical practice and service provision. Such technolo-
gies have established proof of concepts in some medical specialities such as radi-
ology, psychiatry, pathology, and ophthalmology. The technologies can be fur-
ther useful to assist early detection, prediction, diagnosis and management of 
different health conditions. In disease prediction, ML models are usually trained 
on a data set that contains the disease to be predicted along with all the recorded 
signs and symptoms associated with the disease. These signs and symptoms are 
termed features. Once the model has been trained and tested on how accurately 
it can predict the disease using the selected features, it can be deployed to make 
predictions on new data provided by users. Generally, the more the amount of 
data used to train the models, the better the prediction performance using new 
data. Researchers have explored the performance of different ML algorithms in 
predicting diseases. Recent publications in the literature indicate that the com-
monly used models for disease prediction include logistic regression (LR), ran-
dom forest (RF), support vector machines (SVM), decision trees (DT) and gra-
dient boosting (GB). Other models like the neural networks (deep learning), 
bayesian networks and naive bayes have been used by few. Apart from the con-
ventional models, other researchers like [9] have also implemented hybrid mod-
els, comprising several models with or without novel techniques. Most of these 
studies involved predicting diabetes e.g. [10] [11] [12], depression, e.g. [13] [14] 
[15], hypertension, e.g. [16] [17], anxiety e.g. [18] [19], and heart disease, e.g. 
[10] [20] [21] [22]. Heart disease is a prevalent health issue globally and pre-
dicting the likelihood of heart disease is quite critical. The present work consi-
dered the above cited works and especially related works from [10] [20] [22] 
[23]. [10] used a two-stage machine learning ML models (logistic regression and 
Evimp functions) model to predict the co-occurrence of Diabetic mellitus (DM) 
and cardiovascular diseases (CVD). Their data involved 2000 participants who 
were older than 40 years old and who had to undergo specific requirements for 
the purpose of testing and data collection. The results of their work showed pre-
dictive accuracy of the ML model to detect co-occurrence of DM and CVD at 
94.09%, sensitivity 93.5%, and specifcity 95.8%. [22] used five ML (LR, k-nearest 
neighbours—k-NN, Naïve Bayes, RF and Extreme Gradient Boosting) and two 
deep learning models (Multilayer perceptrons—MP and Convolutional neural 
networks—CNN) to predict eight most common chronic conditions including 
cardiovascular as defined by the Australian Government Department of Health 
(AGDoH) [24]. Their method involved a novel feature engineering technique 
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where the patient network was engineered from bipartite graphs. They con-
cluded that the extreme gradient boosting (XGBoost) produced a highest accu-
racy of 95.05%. Similarly, [20] compared the performance of four ML models 
(SVM, RF, XGBoost, and k-NN) in predicting heart disease. They mentioned 
that their dataset was sourced from Cleveland Heart Disease Dataset. This pre-
processed dataset has around 300 rows (instances) and 14 features and can be 
seen at the repository provided by [25]. Their results showed that the XGBoost 
along with SVM models exhibited the highest F1-score performance, reaching 
up to 88%. [21] used the same dataset [25] to train five machine learning models 
(naive bayes, artificial neural networks, SVM, RF and LR). Their result indicated 
an accuracy level of 97.53% accuracy from the SVM algorithm along with sensi-
tivity and specificity of 97.50% and 94.94% respectively. They further extended 
their work in developing a cloud-based application where the patients can upl-
oad the physiological data for checking the status of their cardiac health. 

The above cited works have many strengths, but there are few limitations. One 
is that the size of the dataset and the variety in the data is small. This can lead to 
models performing well during the development (training and testing) phase but 
they can perform poorly on new data. Another is the lack of clarity in the data 
preprocessing (e.g. handling of imbalanced datasets) and the subsequent selec-
tion of evaluation matrices. Usually datasets for such cases as disease prediction, 
fraud detection, etc., are imbalanced in nature where the number of positive 
cases are significantly less than that of negative cases. Appropriate methods to 
handle imbalanced data (e.g. resampling the minority class, class weighting, etc.) 
need to be implemented. In addition, the performance matrices selected should 
also take into account the performance of the model against each class as the 
overall performance such as accuracy may not provide clear insights on the 
models performance in predicting each class [26]. Finally, not many have at-
tempted extending their work into creating software applications that can be 
practically used. In the cited works, only [25] have reported the development of 
a cloud-based application. Reliable software applications that are based on ML 
technology can provide many benefits. For instance, shortcomings particularly 
in developing countries (e.g. Papua New Guinea) include shortage of doctors 
and healthcare professionals, resulting in high strain on the limited workforce 
and resources [27] [28] [29]. This has seen health professionals and doctors deal 
with demanding situations to research signs and symptoms correctly and perce-
ive illnesses at an early stage. Additionally, due to the isolation and lack of infra-
structure in many rural communities, health care service delivery is a major 
challenge requiring significant attention and funding efforts [30] [31] [32] [33]. 
Tested and reliable open-source software applications can help in such situa-
tions. 

Drawing from the above cited works and situations, the aim of this study was 
to train and test five of the commonly used ML models and to use the best per-
forming model to create and deploy a web-based application that can reliably 
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predict heart disease using user-input data. The approach for this included data 
sourcing, data pre-processing, model training, evaluation of the results, and 
model deployment on the web. Each of these steps are described accordingly in 
the following sections and subsections. A brief discussion on the results is also 
provided along with notable strengths and limitations of this work, which can be 
improved with further work extended from this study. 

2. Method 
2.1. Data Source  

The original dataset for this study was sourced from the Center for Disease Con-
trol and Prevention (CDC) [34] in the United States (U.S.). CDC collects the da-
ta through the Behavioral Risk Factor Surveillance System (BRFSS). BRFSS is a 
collaborative project between all of the states in the U.S. and participating U.S. 
territories and the CDC. BRFSS was initiated in 1984, with 15 states collecting 
surveillance data on risk behaviors through monthly telephone interviews. Over 
time, the number of states participating in the survey increased. BRFSS now col-
lects data in all 50 states as well as the District of Columbia and participating 
U.S. territories. During 2020, all 50 states, the District of Columbia, Guam, and 
Puerto Rico collected BRFSS data. BRFSS completes over 400,000 adult inter-
views each year, making it the largest continuously conducted health survey sys-
tem in the world. According to the CDC, heart disease is a leading cause of death 
for people of most races in the U.S. (African Americans, American Indians and 
Alaska Natives, and whites). About half of all Americans (47%) have at least 1 of 
3 major risk factors for heart disease: high blood pressure, high cholesterol, and 
smoking. Other key indicators include diabetes status, obesity (high BMI), not 
getting enough physical activity, or drinking too much alcohol. Identifying and 
preventing the factors that have the greatest impact on heart disease is very im-
portant in healthcare. In turn, developments in computing allow the application 
of machine learning methods to detect “patterns” in the data that can predict a 
patient’s condition. 

2.2. Data Preprocessing  

The original dataset is in SAS Transport Format and contains 401,958 rows and 
279 variables. Preprocessing of the data was done with Python 3 using pandas, 
numpy, sklearn and matplotlib modules. Preprocessing included handling of 
missing or NaN values, feature selection, encoding of categorical data, data stan-
dardization, data splitting into train and test sets, and weighting of the classes.  

Missing values (NaNs): Through the data cleansing process, missing values 
(NaNs) or rows with incomplete entries were removed, leveraging the dataset’s 
size to ensure data integrity. 

Feature selection: Most features (columns) had significant portion of the val-
ues missing and had to be removed altogether. It was ensured that the selected 
features captured the key risk factors of heart disease. These two steps resulted in 
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the selection of 17 features (Table 1) and 319,795 instances. The selected fea-
tures considered the person’s Body Mass Indix (BMI) category, if the person had 
smoked at least 100 cigarettes (approx. 5 packets) in their lifetime, if the person 
has more than 14 drinks of alcohol (men) or more than 7 (women) in a week, if 
they stroke in the past, the number of days their physical health was not good 
over the last 30 days, the number of days their mental health was not good over 
the last 30 days, if the person has difficulty walking, the persons gender, their age 
category, race, if the person is a diabetic, if the person played any sports (run-
ning, biking, etc.) in the past month (physical activity), the persons general 
health, their average sleep hours in a day, if the person has asthma, if the person 
has kidney disease, and if the person has skin cancer. 

Categorical data encoding: The majority of the gathered data comprises cate-
gorical variables, as depicted in Table 1. To facilitate ML model compatibility, 
label encoding was employed to convert non-numeric categories into corres-
ponding numerical representations. For instance, binary categorical values such 
as “Yes” and “No” were transformed into values of 1 and 0 respectively.  

Data standardization: Standardization of a dataset is a common requirement 
for many machine learning estimators: they might behave badly if the individual 
features do not more or less look like standard normally distributed data (e.g. 
Gaussian with 0 mean and unit variance). The concept of standardization and 
the associated z-score formula ([35], p. 880) has been widely used in statistics 
and mathematics. By substituting the arithmetic mean [36] and the standard 
deviation [37] formulas into the z-score formula, Equation (1) can be obtained 
and used for data standardization.  

 
Table 1. The first five rows of the data with the selected 17 features and the target variable (Heart Disease). Features 1 to 8 and in 
the top panel and 9 to 17 are in the bottom panel. 

Heart Disease BMI Category Smoking Alcohol Drinking Stroke Physical Health Mental Health Diff Walking 

No 
Underweight  
(BMI < 18.5) 

Yes No No 3.0 30.0 No 

No 
Normal weight  

(18.5 ≤ BMI < 25.0) 
No No Yes 0.0 0.0 No 

No 
Overweight  

(25.0 ≤ BMI < 30.0) 
Yes No No 20.0 30.0 No 

No 
Normal weight  

(18.5 ≤ BMI < 25.0) 
No No No 0.0 0.0 No 

No 
Normal weight  

(18.5 ≤ BMI < 25.0) 
No No No 28.0 0.0 Yes 

 

Sex Age Category Race Diabetic 
Physical  
Activity 

Gen Health 
Sleep 
Time 

Asthma 
Kidney  
Disease 

Skin Cancer 

Female 55 - 59 White Yes Yes Very good 5.0 Yes No Yes 
Female 80 or older White No Yes Very good 7.0 No No No 
Male 65 - 69 White Yes Yes Fair 8.0 Yes No No 

Female 75 - 79 White No No Good 6.0 No No Yes 
Female 40 - 44 White No Yes Very good 8.0 No No No 
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Class weighting: Class weighting is essential for imbalanced datasets to mi-
nimize model bias towards the majority class and poor prediction performance 
of the minority class. The dataset used in this study was imbalanced, where the 
total number of people who actually had heart disease was only 27,373 out of the 
total of the selected 319,795 (8.56% of the total). A good default method for de-
termining weights is the inverse-frequency class weights given by Equation (2) 
[38]:  

1

i N

ni
n

Nw
K t

=

=
∑

                           (2) 

where: N = total number of samples, K = number of classes, wi = weight for the 
class i, and tni = indicator that the nth sample belongs to the ith class.  

Note that 1
N

nin t
=∑  is the total number of samples that belong to class i. For 

binary classification ( 2K = ), where the majority of the samples belong to class 0 
(negative class) and minority of the samples belong to class 1 (positive class), 
Equation (2) can be simplified as Equation (3a).  

positive

negative

2 number of positive samples

2 number of negative samples

Nw

Nw

=
×

=
×

             (3a) 

The idea of class weighting is quite simple. For instance, in our case, the ratio 
of majority (negative) to minority (positive) class is 10.63:1; in order for the 
classifier to learn equally from both classes, the minority class should be ac-
corded a weight of 10.63. Thus, in cases where the models (e.g. gradient boost-
ing) require only the positive (minority) class weight, Equation (3b) can be used. 
These formulas are widely used by the machine learning community, e.g. [39] 
[40].  

positive
number of negative samples
number of positive samples

w =               (3b) 

Data splitting: The final step involved splitting the data into training and test-
ing sets. 80% of the data was used for training and 20% was used for testing the 
models.  
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2.3. Machine Learning Models and Training  

Five (5) machine learning models were trained on the dataset: the random forest 
(RF), support vector machine (SVM), logistic regression, light gradient boosting 
(LightGBM) and extreme gradient boosting (XGBoost). These were imple-
mented using the sklearn, lightgbm and xgboost modules in Python 3. The mod-
els were trained under two cases; Case 1 involved training the models prior to 
class weighting, and Case 2 involved training them after class weighting. In Case 
1, the rationale was to observe how the models would perform when treating all 
classes equally. This would help in understanding the baseline performance and 
identifying any bias towards the majority class, especially in the presence of im-
balanced data. In Case 2, training the models on the class-weighted dataset was 
crucial for addressing the imbalanced nature of the data. It was intended that by 
assigning higher weights to the minority class, the models would be better 
equipped to learn patterns in the minority class, potentially improving overall 
predictive performance and reducing bias towards the majority class. The com-
parison between Case 1 and Case 2 would allow for an evaluation of the impact 
of class weighting on model performance and its effectiveness in handling imba-
lanced datasets.  

2.3.1. Random Forest (RF) 
RF [41] is an ensemble algorithm that extends bootstrap aggregation (bagging) 
of decision trees for classification and regression problems. In bagging, multiple 
decision trees are created from different bootstrap samples, and predictions are 
averaged. Unlike typical decision trees, trees in the ensemble are unpruned, 
making them slightly overfit to the training data. Nevertheless, the forest predic-
tion is the majority vote in classification. RF introduces randomness by selecting 
a subset of features at each split point, enhancing diversity among trees and re-
ducing correlation in predictions. Key hyperparameters to tune include the 
number of randomly selected features at each split and the depth of decision 
trees, with a common heuristic of the square root of the total features for classi-
fication. The number of trees is increased until no further improvement is ob-
served.  

2.3.2. Support Vector Machine (SVM) 
SVM is a versatile supervised learning algorithm applicable to classification and 
regression tasks [42]. In classification, common use cases of SVM include dis-
ease prediction, text and image classification and others. Key terms in SVM in-
clude support vectors, which are data points crucial for maximizing the margin 
or separation between classes; the hyperplane, a decision boundary in multidi-
mensional space; margin, the distance between support vectors; and kernels, 
functions addressing non-linear data by mapping them into a higher-dimen- 
sional space. The optimization problem of finding the best hyperplane is crucial 
in SVM, and various kernel functions, like the RBF kernel, handle non-linear 
decision boundaries.  
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2.3.3. Logistic Regression (LR) 
Logistic regression is widely used in classification problems, from predicting 
diseases to classifying text and images. Logistic regression computes the proba-
bility of an event occurrence, offering insights like the likelihood of a customer 
making a purchase or clicking on an advertisement link. It’s particularly useful 
for binary classification tasks, providing a foundational approach for more com-
plex models. Logistic regression encompasses three main types: binary logistic 
regression for two possible outcomes, multinomial logistic regression for three 
or more nominal categories, and ordinal logistic regression for three or more 
ordinal categories [43]. The algorithm uses the logistic or sigmoid function to 
map real-valued outputs into the range [0, 1], aiding in probability-based pre-
dictions.  

2.3.4. Gradient Boosting: Extreme (XGBoost) and Light (LightGBM) 
Gradient boosting utilizes an ensemble of weak learners (often decision trees) to 
enhance model performance in terms of efficiency, accuracy, and interpretabili-
ty. Ensembles are constructed from decision tree models. Trees are added to the 
ensemble and fit to correct the prediction errors made by prior models. Extreme 
(XGBoost) and light (LightGBM) gradient boosting are two popular algorithms 
based on gradient-boosted decision tree (GBDT), each with its own strengths. 
XGBoost and LightGBM are favored in regression, classification, and ranking 
problems.  

XGBoost: Developed by [44] in 2016 as part of the Distributed Machine 
Learning Community (DMLC), XGBoost is a scalable, distributed GBDT ML li-
brary that provides parallel tree boosting. While random forest uses bagging to 
build full decision trees in parallel from random bootstrap samples of the data 
set and the final prediction is the majority vote (classification), GBDTs iterative-
ly train an ensemble of shallow decision trees, with each iteration using the error 
residuals of the previous model to fit the next model and the final prediction is a 
weighted sum of all of the tree predictions. XGBoost’s boosted tree algorithms 
are built for model performance and computational speed.  

LightGBM: Introduced by [45] in 2017, LightGBM focuses on improving 
training efficiency and scalability. Two key innovations, gradient-based one-side 
sampling (GOSS) and exclusive feature bundling (EFB), set LightGBM apart. 
GOSS optimizes the learning process by concentrating on instances with larger 
gradients, significantly reducing computational complexity. EFB, on the other 
hand, bundles sparse mutually exclusive features, such as one-hot encoded cate-
gorical variables, enhancing automatic feature selection. These innovations col-
lectively accelerate training time by up to 20 times, making LightGBM a power-
ful GBDT implementation. 

2.4. Performance Evaluation  

Evaluation metrics are computed by the models. These are helpful when eva-
luating the performances of the trained ML models. Choosing the appropriate 
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evaulation can depend on factors including the nature of the problem, data dis-
tribution, domain-specific considerations and many others. Accuracy, Precision, 
Recall and F1-score are important evaluation matrices. [46] established the rela-
tionship between the precision and recall, which contributed to the development 
of appropriate formulas as provided by [47] and given in Equations (4)-(7).  

In our case, we want to predict a class label, 1 or 0, corresponding to heart 
disease or no heart disease. This is called a deterministic classifier. To get a label 
prediction from our probabilistic classifiers, we need to choose a probability 
threshold t. The default is to predict label 1 (heart disease) if the predicted 
probability is larger than 50t = . All the following metrics implicitly use this 
default.  
• False negatives (FN) and false positives (FP) are samples that were incorrectly 

classified.  
• True negatives (TN) and true positives (TP) are samples that were correctly 

classified.  
• Accuracy is the percentage of samples correctly classified [47]: 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
                   (4) 

• Precision is the percentage of predicted positives that were correctly classified 
[47]:  

TPPrecision
TP FP

=
+

                        (5) 

• Recall is the percentage of actual positives that were correctly classified [47]:  
TPRecall

TP FN
=

+
                         (6) 

• F1-Score is a single metric that combines precision and recall into a harmon-
ic mean. It provides a balance between precision and recall. F1-score is suita-
ble for the imbalanced data, but it doesn’t consider the entire precision-recall 
trade-off. It is calculated using Equation (7) [47]:  

Precision RecallF1-Score 2
Precision Recall

×
= ×

+
                  (7) 

3. Results and Discussion  

The results from the models along with evaluation of their performances are 
presented in this section. The models were trained under two main cases; Case 1 
(base case) involved training of the models without weighting the classes and 
Case 2 involved training of the models with the weighted classes. The results are 
summarised and presented accordingly.  

Table 2 shows the performance of the models for Case 1 (unweighted classes) 
and Table 3 shows the performance for Case 2 (weighted classes). The Accuracy 
represents the overall accuracy of each of the models while the Precision, Recall 
and F1-Score reflects the performance of each class (Class 0 and Class 1) from 
the models. 
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Table 2. Summary of performance metrics for unweighted classes (Case 1). 

 CLASS 0 CLASS 1 

Algorithm Accuracy Precision Recall F1-Score Precision Recall F1-Score 

RF 91.33 91 100 95 75 1 2 

SVM 91.26 91 100 95 0 0 0 

LR 91.28 92 99 95 51 9 15 

XGBoost 91.32 91 100 95 73 1 2 

LightGBM 91.37 92 99 95 54 9 15 

 
Table 3. Summary of performance metrics for weighted classes (Case 2). 

 CLASS 0 CLASS 1 

Algorithm Accuracy Precision Recall F1-score Precision Recall F1-score 

RF 70.81 98 70 81 21 82 33 

SVM 73.12 97 73 83 21 78 34 

LG 74.25 97 74 84 22 76 34 

XGBoost 72.51 97 72 83 21 81 34 

LightGBM 74.66 97 74 84 22 78 35 

 
While Accuracy can help in the evaluation of the model, it is not a helpful 

metric for dealing with the imbalanced dataset [26]. We can have over 99% ac-
curacy by correctly predicting the majority class (Class 0) all the time. For Case 
1, while the predictions for Class 0 were almost perfect, the model performed 
very poorly in predicting Class 1. Precision is crucial when the cost of false posi-
tives is high. In imbalanced datasets, where the minority class is of interest, pre-
cision helps ensure that the predicted positive instances are more likely to be 
true positives and not false positives. In our case, the cost of predicting a nega-
tive case of heart disease as positive (false positive) is less than predicting a posi-
tive case of heart disease as negative (false negative). In fact, tolerating a bit of 
false positives in the models can help people to seek early medical attention by 
providing alert of a likely positive case of heart disease. Recall is vital when it’s 
important to avoid false negatives. In imbalanced datasets, recall ensures that the 
model identifies as many true positive (minority class) instances as possible. 
F1-Score is a balanced metric that considers both precision and recall. It is useful 
when achieving a trade-off between false positives and false negatives is essential. 
In our case, the focus was to correctly identify the positive cases of heart disease. 
Thus, our objective was to increase the Recall, without too much penalty to the 
Precision. Figures 1-5 illustrate the results in confusion matrix for the models 
under the two cases (Case 1 & Case 2). 

In the confusion matrix plots, it is seen that the predictions of Class 0 (major-
ity class) in Case 1 were almost perfect (nearly 100% true negatives) while the 
predictions of the minority class (Class 1) were very poor (up to 99% false  
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Figure 1. Confusion matrix of the RF classifier using the unweighted class (Case 1, left 
panel) and the weighted classes (Case 2, right panel). 
 

 
Figure 2. Confusion matrix of the SVM classifier using the unweighted class (Case 1, 
left panel) and the weighted classes (Case 2, right panel). 
 

 
Figure 3. Confusion matrix of the logistic regression classifier using the unweighted 
class (Case 1, left panel) and the weighted classes (Case 2, right panel). 
 
negatives). Class weighting improved the model performances by increasing the 
number of true positives significantly. For instance, class weighting in the RF 
classifier improved true positives from 1% to 82% (Figure 1) and class weighting 
in the XGBoost classifier improved true positives from 1% to 81% (Figure 4). 

3.1. Model Selection  

Looking at the class weighted case (Case 2), the results show no major differences  
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Figure 4. Confusion matrix of the XGBoost classifier using the unweighted class (Case 1, 
left panel) and the weighted classes (Case 2, right panel). 
 

 
Figure 5. Confusion matrix of the LightGBM classifier using the unweighted class (Case 
1, left panel) and the weighted classes (Case 2, right panel). 
 
in the overall performance of the models in terms of the Accuracy, Precision, 
Recall and F1-Score in each of the two classes. We are more concerned with the 
correct identification of the positive cases of heart disease while minimising false 
positives. The ideal model would have a significantly high value of Recall along 
with high values in the others. The RF model produced the highest Recall of 82% 
followed by XGBoost at 81%; however, the XGBoost generally provides a better 
trade off in terms of Precision, F1-Score and Accuracy in both Class 0 and Class 
1. Thus, the XGBoost model can provide the best results in predicting heart dis-
ease. 

The plot in Figure 6 shows the feature importance in the selected model 
(trained XGBoost classifier) with the three commonly used measures (types) of 
feature importance: the gain, cover and weight. The gain measures the average 
improvement in (training set) loss brought by a feature. In other words, it tells 
us how much a feature helps to make accurate predictions in our training data. 
The DiffWalking (Difficulty Walking) feature contributed the most towards 
gain. The cover measures the number of data points a given feature affects by 
taking the average of the hessian values of all splits the feature is used in. The 
DiffWalking (Difficulty Walking) feature also contributed the most towards 
cover. The weight is the number of times a feature is used to split the data across  
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Figure 6. Feature importance in the XGBoost model in terms of the gain, weight and cover for the 17 features. 

 
all trees. The AgeCategory feature contributed the most towards weight. In gen-
eral, the plot shows that the XGBoost model considers difficulty in walking 
(DiffWalking) as a key indicator of a possible case of heart disease while others 
such as alcohol drinking (Alcohol Drinking) are considered the least important 
indicators of heart disease. 

3.2. Strengths and Limitations  

Some limitations and strengths can be noted in this work especially in light of 
the related works from [10] [20] [22] [23]. In terms of limitations, firstly, this 
work only focused on using the conventional ML models without any novel 
technique such as the feature engineering technique proposed by [22]. Secondly, 
nothing much was done with hyperparameter tuning in this work. Thus, model 
performance can be further improved through diligent hyperparameter tuning 
techniques such as using the grid search [48] method to determine optimal 
hyperparameters including the class weights and the probability threshold t. Fi-
nally, a combination of other performance evaluation matrices such as the area 
under the curve (AUC) may provide insights into model optimization possibili-
ties.  

In terms of strengths, firstly, this work dealt with a large dataset; thanks to the 
CDC [34]. The raw dataset contains 401,958 instances and 279 features and the 
variety in the samples is enormous (age, race, lifestyle, etc.) as compared to the 
datasets used by the above cited authors. Secondly, this work placed emphasis on 
the use of appropriate preprocessing techniques to handle imbalanced and 
showed that class weighting can significantly improve models performance. It 
was also emphasized that evaluation matrics such as Accuracy can not give clear 
indication of model performance. For instance, in this study, evaluation of the 
models under Case 1 (unweighted class) revealed high accuracy (over 90%), 
primarily driven by effective predictions of the majority class. However, this 
masked poor performance in predicting the minority class (heart disease cases). 
Upon introducing class weighting (Case 2), substantial improvements were ob-
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served, especially in terms of true positives (Recall). This showed that better 
performance of identifying most true positives can be achieved at the expense of 
the overall accuracy of the model. Finally, as compared with most of the other 
cited and related work, the present study contributed an online web application 
which can be freely accessed by anyone. The use of this application is briefly de-
scribed in the next subsection. With more rigorous study including model set-up 
and better or more data, efficient online tools and systems can be developed to 
optimize health care service provision. 

3.3. Model Deployment: Online Web Application  

The selected model (XGBoost classifier) was deployed online and can be ac-
cessed freely at https://drxgboost.streamlit.app/. By clicking the link, anyone can 
access and use the app. The use of the app is briefly described in the online user 
interface as indicated in Figure 7. In order to receive a prediction in terms of 
heart disease, the user will be required to provide all the 17 inputs (features) in a 
manner that best describe their health and living conditions and experiences. 
Once the inputs have been provided, the user can push the “predict” icon at the  
 

 
Figure 7. An image of the deployed online application based on the trained XGBoost ML model. 
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end and a result will be returned within seconds. The returned result will include 
a percentage probability (1% - 100%) of the user having a heart disease. For the 
sake of presentation of the results, the returned probabilities have been further 
classified into four groups, 0 - 25% as the “green zone”, 25% - 50% as the “yellow 
zone”, 50% - 75% as the “orange zone” and 75% - 100% as the “red zone”. It has 
also been mentioned in the web application that results are not equivalent to a 
medical diagnosis as the model has less than perfect accuracy. However, the 
model can help in providing useful insights for early consultation of professional 
doctors. 

4. Conclusion  

Heart disease is one of the leading causes of deaths in the world. Early detection 
and treatment of potential heart disease can save many lives. The medical diag-
nosis of heart disease is a challenging process that requires accuracy and effi-
ciency. Predictive modeling using machine learning is proving to be extremely 
valuable in providing insights and predicting heart disease. Out of the five ML 
models used in this study, the extreme gradient boosting model proved to have 
the best performance in predictive heart disease. Efficient data preprocessing, 
model setup including hyperparameter tuning techniques can lead to accurate 
predictions from the trained models. For instance, many problems (e.g. disease 
prediction, fraud detection, email spam detection, etc.) involve highly imba-
lanced class labels in the datasets and such datasets require diligent data prepro-
cessing techniques including class weighting. The model trained in this study 
was deployed as a web application and it can be freely accessed. The results from 
the application can help in providing useful insights for early consultation of 
professional doctors. As technology continues to evolve, robust techniques in 
machine learning can be expected and this can boost AI-based applications in 
healthcare to assist health professionals and policymakers in making informed 
decisions to provide personalised patient care and improve healthcare services. 
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