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Abstract 
Quantum field theory creates fermions via abstract operators exciting abstract 
fields, with a specific field for each type of specific particle. This operator al-
gebra lends itself well to quantum statistics, nevertheless, our physical under-
standing of this process is nonintuitive at best. In this paper we analyze the 
creation of fermions from primordial gauge field quantum gravity loops in 
the context of Calabi-Yau manifold theory. I extend a prior mass-gap treat-
ment based on Yang-Mills gauge theory of higher order self-interaction to in-
clude the half-integral spin of fermions. 
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1. Introduction 

Fermions, generally identified as the matter in our Universe, are characterized 
by a finite mass-gap above the vacuum and by ½ -integer spin. There is currently 
no understanding of the creation of matter, meaning fermions with mass, spin, 
and charge. The Millennium $1,000,000 Mass gap Prize asks for an explanation 
of why particle masses don’t decay to vacuum energy. The lowest stable particle 
energy over the vacuum is the mass gap in question. The Standard Model of Par-
ticle Physics does not know how to compute particle masses; they are put in by 
hand. Mass is tricky in quantum field theory, which is based on the concept of a 
specific field distributed throughout space for each type of particle. Stimulating 
the field is considered to bring the particle into existence. How mass evolved is a 
mystery. Quantum fields cannot be measured, and their physical nature is un-
known; both epistemic and ontological interpretations exist. 

Sbitnev [1], using quaternions for translation in 4D space and spin rotation on 
3D spheres, deals with a space densely filled by an incompressible quantum su-
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perfluid; a Bose-Einstein condensate. Computations on this fluid lead to gravi-
tomagnetic equations similar to Maxwell’s equations for electromagnetic fields: 
“Schrödinger, vorticity, and wave equations follow from these equations as a 
natural outcome.” Sbitnev’s approach differs from primordial theory based pri-
marily on ontological assumptions. For example, ( ),tρ r  is the density distri-
bution of “sub-quantum particles, carriers of masses”; no such sub-quantum par-
ticles exist in primordial theory. Also, “Physical vacuum is a special super fluid 
medium populated by enormous amounts of virtual particle-antiparticle pairs”, 
while virtual pairs do not exist in primordial theory. Further, Sbitnev introduces 
a torus with a string twisting two times around the torus tube, then maps this (in 
a physically impossible way) into a 3D sphere and draws conclusions about spin. 
“The frequency ω is that of rotation about the center of the torus; the toroidal 
vortex wall can be filled by helicoidal strings.” Strings do not exist in primordial 
theory. Rather than zero viscosity, Sbitnev considers dynamical “viscosity that 
fluctuates about zero in time. …we believe that it is zero in the average in time, 
but its variance is not zero.” He further believes that this viscosity µ  avoids a 
singularity at the vortex core and supports infinite lifetime of the vortex. Based  

on mcρ ωΩ = , he observes that the vorticity equation ( ) 2
m t

t
ωρ µ ω∂
= ∇

∂
 de-

scribes vortex motion in a local reference frame sliding along an optimal trajec-
tory guided by the wave function that is solution of Schrödinger’s equation,  
ideally simulating the particle moving along the Bohm trajectory. In summary, 
Sbitnev treats gravito magnetism with quantum fields per particle and with va-
cuum as virtual particle-antiparticle pairs. Finally, Sbitnev assumes the “weak 
field approximation”, a crucial mistake made by physicists for over a century. 

Quantum field theory is well defined, so it is relatively easy to compare to 
primordial field theory, which is explicitly based on an ontological model of the 
physically real primordial field (that all modern theories assume that all forces 
converge to.) Quantum interactions occur between fields/particles and the sys-
tem evolves through these interactions; primordial field evolution is possible 
only through self-interaction; nothing else exists to interact with. Quite simply, 
the change in state of the system, represented by ∇  acting on the system, is 
equal to the system acting on itself, hence: 

( ) ( )1 1  ,ψ ψψ ψ ξ ξ ψ− −∇ = ⇒ = − =ξ ξ                (1) 

with ξ ξ∇ = ∂ . Solutions to the self-interacting equations include inverse scalar 
and inverse vector; interpreted as time and space, these yield duration and distance, 
both applicable to fields. Primordial theory considers only one field to exist, with  

aspects based on space ( ) 1ψ =
r

ξ  and time ( ) 1
t

ψ ξ = − , and dynamics based  

on turbulence of the ultra-dense field. Via Hestenes’ Geometric Calculus oper-
ating on i= +G Cψ  we derive Heaviside’s gravitomagnetic dual of Maxwell’s 
electromagnetics. The important self-interactions are those of a given momen-
tum density interacting with field circulations induced by the momentum den-

https://doi.org/10.4236/jmp.2024.151005


E. E. Klingman 
 

 

DOI: 10.4236/jmp.2024.151005 134 Journal of Modern Physics 
 

sity, formulated on a fractional lattice [2]. 
Primordial field theory has no undefined entities such as the quantum fields 

and wave functions of quantum field theory; there is only the reality of the gra-
vitomagnetic field. Sbitnev neglects charge in his treatment of spin; we will de-
rive electromagnetic charge in primordial field theory. First, we examine the is-
sue of fermion spin. 

In primordial field theory the primordial field is the real physical gravitomag-
netic force field that interacts with moving mass density. In the beginning the 
density of mass-energy was essentially as high as we wish it to be. Since particle 
creation occurs at LHC energy densities, we already know the relevant range of 
energies; consider the collision-event-resulting-jets simply to be a case of the 
primordial field in action, induced via mind boggling instrumentation. In 2006, 
as I began primordial field theory, the LHC was in process of reassessing their 
expected “quark gas” in the collisions to be instead a perfect fluid. This very 
real particle phenomena is derived in primordial field theory through the 
self-interaction process. Self-linking turbulence involves varying energy distribu-
tion, and momentum density induces circulation in the local C-field. The key  

equation is 
t

ρ ∂
× = − +

∂
GC v∇  with 1g c= = = . The field energy density ρ   

moving through local gravity G  (the ether) induces circulation ×C∇ . This 
circulation induces a higher order circulation, as the field interacts with itself. 
My quantum loop gravity fractional lattice treatment of this interlinked torus 
system has been shown to produce a stability zone in which collapse to a primal 
torus is energetically favored. I formulate this as a mass gap “existence proof”, 
analyzing mass-gap in terms of higher-order self-interactions of the primordial 
field by reinterpreting the non-Abelian term of Yang-Mills gauge theory as fol-
lows: ( ) ( )2, ,i iA A A Aµ ν µ µ

+   ⇒     adapting it to higher-order self-interaction. In 
this paper we assume this mass-gap existence proof establishes the fundamental 
requirement and we analyze the fermion spin in the context of Calabi-Yau 
theory. 

A quantum theorist may wonder, “why introduce Calabi-Yau?” The answer is 
subtle, but for the most part it means that I do not have to prove my statements. 
Calabi-Yau provides a framework of proof and defines the limits and constraints 
of the framework: as long as I remain in the framework, my statements are true. 
For example, Sbitnev introduces a torus with a “string”, which he claims twists 
two times around the torus tube, then he proceeds to map this into a physically 
impossible 3D sphere. But as there is ever-more reason to doubt the efficacy of 
string theory, I prefer to have a specific mathematico-logical framework in mind 
and Calabi-Yau theory provides exactly that framework. The decision to remain 
within the bounds of a compact Kahler manifold, with a vanishing first Chern 
class, allows one to assume a Ricci-flat metric. Hestenes’ Geometric Calculus ap-
plies on a Ricci-flat metric, as well as Wolfram’s Mathematica-based 3D pers-
pectives. 

In short, Primordial field theory differs significantly from Quantum field 
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theory, which assigns an individual quantum field existing at every point in 
space-time for each class of elementary particle. Specific particles are invoked via 
particle creation operator and viewed as excitations in a specific field; when 
Feynman developed his quantum field theory of gravity, he began by assuming 
“gravity as the 31st field” [3]. Creation of such particles is nonintuitive; operator 
algebra enables physics in which the total number of particles changes based on 
harmonic oscillators and provides an abstract means of creating and annihilating 
specific particles, based on specific fields. Elsewhere I develop an intuitive un-
derstanding of particle creation from the primordial field of the universe, in-
volving new concepts of physics. Many physicists, comfortable with complex, 
albeit nonintuitive, theories, tend to dismiss intuitive approaches to any complex 
problem they are familiar with, so I formulate the theory in terms of Einstein’s 
field equations, Yang-Mills gauge theory, and now Calabi-Yau topology, these 
being familiar approaches that have failed to deliver the goods but are felt to be 
generally valid approaches to the problem. The structure of this Letter is as fol-
lows: 

Sec. 2 The ontology of time and space is introduced. We ask if there could be 
gravity in a universe devoid of matter (no particles)? 

Sec. 3 The theory of the primordial field of our Universe, prior to the creation 
of matter. 

Sec. 4 The Calabi conjecture is framed in terms of a metric, the geometry of a 
space, and such a metric, derived in 1921 by Kasner, yields an exact solution to 
Einstein’s field equations, interpreted herein in terms of the dynamical primor-
dial field. 

Sec. 5 Review of primordial field equation in the Kasner metric and higher 
order self-interaction physics. Re-interpreting the Yang-Mills nonabelian terms 
yields a mass-gap existence proof. 

Sec. 6 Topological aspects of the Calabi-Yau manifold, including Kahler geo-
metry, first class Chern, complex manifolds, and Ricci curvature. 

Sec. 7 Primordial flow analyzed in Calabi terms. 
Sec. 8 Ontological flow on a torus. 
Sec. 9 Separation of U(1) × U(1) flow symmetry. 
Sec. 10 Derivation of Quantum Spin. 
Sec. 11 Parallel vector transport around a closed path shows ½ -integral cha-

racter of this flow. 
Sec. 12 Measurements on a dynamic model. 
Sec. 13 Summary. 
Sec. 14 Conclusions. 

2. The Ontology of Time and Space 

Laurent Field states [4]: “Spacetime is just an abstraction…. I believed all my life 
that spacetime exists, but I no longer do so.” Einstein early concluded that space 
and time are abstractions; “there is no vacuum [aka ‘empty space’] absent field.” 
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[5]. He later concluded that the field is effectively the ether through which waves 
propagate but did not, however, go back and fix special relativity; he instead in-
troduced curved space, which dominated physics for a century. In curved space 
local gravitational energy density is undefined; instead, we have variations of 
“quasi-local-mass”. I treat these conflicting concepts in terms of Heaviside’s gra-
vitational equations derived from the primordial field self-interaction principle 
[6]. 

Relevant to these concepts is Ricci curvature, which corresponds to a space 
with no matter. Calabi, a geometer, asked if there could be gravity in our un-
iverse even if space is a vacuum totally devoid of matter [7]. If so, he saw that 
curvature makes gravity without matter possible. In the following we review the 
geometer’s approach to this (essentially physics) problem and attempt to clarify 
problematic areas of this conjecture: we identify “matter” with “particles”, spe-
cifically fermions, while we identify “the vacuum” as the primordial field. 

3. The Primordial Field of the Universe 

The standard model of particle physics assumes all forces merge into one at the 
big bang, though this has not been demonstrated. Our fundamental assumption 
is that the primordial field, and nothing but the primordial field, existed at the 
Creation. If interaction is to occur (as it must, to evolve to our current Universe) 
the field must interact with itself; nothing else exists to interact with. This 
Self-Interaction Principle is represented by the Self-Interaction equation  
ψ ψψ∇ =  where ψ  represents the primordial field and ∇  represents the 

change operator. If the field depends upon some parameter ξ , the change op-
erator becomes ξ∇→ ∂ , which leads to two formal solutions: a scalar solution 
( ) 1ψ ξ ξ −= −  and a vector solution ( ) 1ψ −=ξ ξ , associated respectively with 

time t and position r . Defining primordial field ( ) ( ), ,t i tψ = +G r C r  with 
corresponding operator t∇ = + ∂∇ , Equation (1) becomes  

( )( ) ( )( )t i i i+ ∂ + = + +G C G C G C∇                (2) 

A Hestenes’ Geometric Calculus expansion of this equation immediately leads 
to the following:  

  Self-Interaction equations Heaviside equations 
  ⋅ = ⋅ − ⋅G G G C C∇    ρ⋅ = −G∇  

        2i i⋅ = ⋅C G C∇             0⋅ =C∇                        (3) 

  t∂ − × = × ± ×G C G C C G∇  tρ× = − + ∂C v G∇  

  0ti i× + ∂ =G C∇    t× = −∂G C∇  

The terms on the left are given field energy density interpretation leading to 
Heaviside’s 1893 formulation [8] of the right side of (3) with 1g c= = = . 
These equations are identical (under iteration) to Einstein’s non-linear field eq-
uations. Self-interaction Equations (3) derive from (2) in straightforward fashion. 
To obtain the right-hand side physical meaning is attached to field ψ , with G  
gravity and C  the gravitomagnetic field. The concept of field strength is absent 
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in the derivation, other than the implicit assumption of strong fields existing at 
the big bang. When Heaviside’s equations are derived by linearizing Einstein’s 
equations (discarding higher order terms) the resultant equations are erro-
neously labeled the weak field approximation to Einstein’s equations, leading 
physicists to regard Einstein’s geometric equations as the “true” physics with 
Heaviside believed to hold only for weak fields. Since our Heaviside formulation 
is equivalent to Einstein at all field strengths; these equations of gravity hold at 
all scales, including the particle scale, geometry-based concepts of gravity are ab-
stract and unnecessary for a theory of gravity; despite the common assumption 
that gravity depends on mass, Heaviside’s equations clearly show that the actual 
dependence is on mass density ρ . The equations of gravity (3) are based on 
gravitational fields ( ),tG r  and ( ),tC r  while Yang-Mills is based on gauge 
fields. Field equation 0⋅ =C∇  implies we can make use of vector identity 

0⋅ × =A∇ ∇  to replace C  with vector × A∇ . Compatible with Equations (3) 
are gauge field equations: 

= ×C A∇ , tφ= − − ∂G A∇ , 0tφ∂ + ⋅ =A∇              (4) 

The first two Equations in (4) define the fields in terms of the four-potential A, 
while the last eqn specifies the Lorenz gauge condition, 0Aµ

µ∂ = . The scalar 
potential m rφ = − , and vector potential =A v ; gauge field A  is seen to be a 
velocity field v . Expansion of the gauge field equation allows us to interpret the 
Abelian form of the field strength: F A Aµν µ ν ν µ= ∂ − ∂ . The field strength tensor 
constructed from the above is shown [9]: 

       (5) 

Figure 1. The C-field momentum-energy density matrix. 
 

Ten coefficients are needed to describe how metric coefficients change from 
point to point in the manifold. In Figure 1, the Heaviside field tensor is symme-
trical about the 4 × 4 diagonal, with two sets of six numbers on either side of the 
diagonal. Gravitomagnetic terms y xzC C=  and y zxC C− =  represent bivectors 
rotating in the xz-plane equivalent to the rotation about the axial vector on the 
y-axis. If 1g c= =  the C-field is described by = ×C r p  where p  is the 
momentum density inducing circulation equivalent to angular momentum den-
sity ( = ×L r p ). In the Einstein-deHaas sense, gravitomagnetic field C  essen-
tially is angular momentum. At particle scale we expect this inherent spin densi-
ty field to be quantized, as implied in Figure 1. Were this not the case, a C-field 
vortex, like a skater pulling in her arms to zero, would spin up to infinite density 
at a point. Thus, we anticipate an extended object, not the point particles of 
quantum field theory.  

The formulation F A Aµν µ ν ν µ= ∂ − ∂  separates radial field ( )G r  and gra-
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vitomagnetic field ( )C r , with gravitomagnetic terms representing angular 
momentum. Planck’s constant has dimensions of angular momentum  

2ml t mvr= = , so this is a feasible underlying degree of freedom to be quan-
tized. If gravity does not interact with itself in a static situation, one must ask 
what Yang-Mills non-Abelian term ,A Aµ ν    represents. It has not been inter-
preted in any useful fashion dynamically, so our mass-gap existence proof at-
tempts a new interpretation of self-interaction in Yang-Mills. This is justified by 
the fact that almost seventy years of work in this field has failed to solve the crit-
ical problems. This is perhaps hinted at with a quote from Taubes: 

“Once upon a time a Martian arrived, gave us the Yang-Mills equations, and 
left.” 

Jaffe and Witten define the mass gap problem [10] and note: “Some results are 
known for Yang-Mills theory on a 4-torus T 4 approximating R 4 and, while the 
construction is not complete, there is ample indication that known methods 
could be extended to construct Yang-Mills on T 4.” The existence proof approach 
for a solution to the mass-gap problem [11] will now be used to explore the issue 
of ½ integral spin. 

4. The Calabi Conjecture 

Yau observes that Einstein’s equations tie curvature to gravity. This century old 
concept has been accompanied by century old paradoxes, of the type associated 
with the concept of “quasi-local-mass” [12]. How physical energy density can be 
encoded as geometry is explained in [13]. Our goal here is to employ topology 
and geometry on the primordial field ontology.  

Calabi’s conjecture is concerned with spaces that have a specific type of cur-
vature known as Ricci curvature, relating to the distribution of matter within the 
space. A space is Ricci-flat if space holds no matter. Eugenio Calabi, a geometer, 
viewed the problem as “strictly geometry” and therefore framed the problem in 
terms of a metric, i.e., the geometry of a space, defining the length of every path, 
in terms of distance between points in space. However, a given topological space 
can have many possible shapes and many possible metrics, so Yau concludes 
that Calabi’s conjecture concerning what kind of metric a space can “support” is 
equivalent to asking, “For a given topology, what kind of geometry is possible?” 

We are now dealing with ontological concepts of physics such as vacuum, 
field, matter, energy density, and abstract concepts of geometry such as metric, 
topology, curvature, and manifold. We begin with a specific physics problem, 
the universe defined by the Kasner metric, then analyze it in terms of topological 
concepts. 

5. The Dynamic Universe Defined by the Re-Interpreted  
Kasner Theory 

We assume that the primordial field was present at the moment of Creation and 
expanded as the big bang. Perhaps initially only spherical symmetry applied, G , 
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but at some point, this symmetry broke, and the field became ultra-turbulent, 
with vortices and tori representing C-field angular momentum density distribu-
tions. Physically real turbulent loops twist in 3D and intersect themselves; such 
reconnection events realign forces—both energy and momentum proceed in 
opposite directions along the reconnection axis. Such an event has been used to 
initiate analysis of the Kasner metric, an exact solution to the Einstein field equ-
ation. In [14] I construct the physics of ijh  for a dynamic spatially homogenous 
anisotropic Bianchi vacuum model that solves Einstein’s equations in terms of 
the physically real primordial field, otherwise devoid of matter. Kasner derived 
the solution to 0Rµν =  in 1921. Narlikar and Karmarkar’s later formulation is: 

( )
1 22 2 2 2

1
d d 1 dj

D p
j

j
s c t nt x

−

=

= − +∑ .                   (6) 

While Equation (6) is subject to constraints on jp , the meaning of parameter 
n has been obscure. I interpret n to be primordial field ( )C t  induced by mo-
mentum jp , assumed to exist because of a reconnection event. In Figure 2(a) 
( ), ,r x y z  is the point in space where the induced C-field is measured, while 

Figure 2(b) displays a C-field energy-density histogram based on axial symme-
try associated with an arbitrary slice through the energy density history at ( )tr . 
An arbitrary slice of the field shows self-induced field behavior, with first and 
second order induction diagrammed in Figure 2(c). 

The higher-order self-interaction shown in Figure 2(c) is treated elsewhere, 
but the matter-free field has energy density distribution that is turbulently dy-
namic. This contrasts with the static metrics of the one-body theory of general 
relativity such as Schwarzschild and Kerr. The Schwarzschild metric is  

( ) ( )( )2 2 2 2 2d d d 1 2 d 1 2 d d ds g x x t x y zµ ν
µν φ φ= = + − − + +  where ~ m rφ  is a 

function only of position. In other words, the static metric is not a function of 
time; distribution of the field is fixed in space over all time. The dynamic metric 
(Equation (6)) is best understood as dynamically describing the distribution of 
the field over time, when 0n ≠ , due to the effect of the momentum density p  
of the field. When 0n =  the Kasner metric reduces to Euclidean space since 
( )21 1p =  is always unity. However, if we assume that momentum density p  is 
non-zero, then our interpretation of the n term as the value of the local C-field 
induced by p  implies that n cannot be zero. 

Kasner is a spherical topology in the sense that the boundary of the field can 
be deformed to a sphere. The constraints on the Kasner metric include a geome-
try in which the distributed field lengthens in one direction while shrinking in 
the other two directions, and vice versa. Momentum constraints 

1

1
1

D

j
j

p
−

=

=∑  and 
1

2

1
1

D

j
j

p
−

=

=∑  determine the specific shape. Kasner topology of a primordial field 
universe is not sufficient for creation of a fermion; the mass-gap existence proof 
relies upon local ultra-high-density field turbulence (found at the big bang or in 
atom-atom collisions at LHC) to assume evolution of a vortex-to-helix-to-torus 
topology, hence we next investigate topological concepts applicable to Cala-
bi-Yau. 
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(a)                    (b)                      (c) 

Figure 2. (a) C-field energy is calculated at position r  with respect to a reconnection 
event in an anisometric open universe described by the Kasner metric. (b) An energy his-
tory of two such induced C-field circulations. The time axis is mapped onto the recon-
nection axis corresponding to the z-axis, and cylindrical symmetry is applied. (c) An ar-
bitrary slice through the momentum axis reveals second and third order induced C-field 
flows. 

6. The Topology of Calabi-Yau 

A manifold is a space or surface of any dimension n; the number of two-dimensional 
spaces is restricted to two basis types: either a sphere or a donut. The dynamic 
Kasner solution developed above represents a universe composed of nothing but 
a primordial field. Unlike the Schwarzschild solution, the cosmological Kasner 
solution does not have an “outside”; the surface or boundary of this universe is 
such that all the primordial field is “inside” the boundary, deformable into a 
sphere. In the Kasner solution the field is such that the distribution of field 
energy expands or contracts anisotropically; as noted, two dimensions increase 
in length, while one decreases, or vice versa. Conversely, the mass-gap solution 
has donut topology, specifically a one-hole torus. The Kasner spherical topology 
of the primordial universe differs from the local toroidal topology of the fermion, 
so relevant topological concepts are examined. Per Yau: 

“Calabi wanted to know if a certain kind of complex manifold—a space that 
was compact and ‘Kahler’—that satisfied specific topological conditions (va-
nishing first Chern class) could have a Ricci-flat metric.” 

Kahler: Manifolds resemble Euclidean space on a local scale but can be very 
different on a global scale. Calabi’s conjecture pertains strictly to complex mani-
folds—surfaces that are expressed in terms of complex numbers, i.e., two- 
dimensional local surfaces. Riemann surfaces are complex and automatically 
qualify as Kahler; space looks Euclidean at a single point and stays close to Eucli-
dean when one moves away from the point. Such spaces are even-dimensional as 
only complex manifolds can have Kahler geometry, which provides an indica-
tion of how close a space comes to being Euclidean based on criteria that are not 
strictly related to curvature. Whether a particular metric is Kahler is a function 
of how the metric changes as one moves from point to point. Kahler manifolds 
are a subclass of complex manifolds known as Hermitian manifolds, “on which 
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you can put the origin of a complex coordinate system at any point, such that 
the metric will look like a standard Euclidean metric at that point.” Kahler ma-
nifolds have a rotational symmetry such that vectors ( ),a b a ib= +  on the ma-
nifold are rotated 90˚ via multiplication by the imaginary unit, i, with the length 
of the vector preserved. This “internal” symmetry supports parallel transport, as 
we will see in a following section. This internal symmetry, which in many ways 
defines Kahler manifolds, is restricted to the space tangent to the manifolds.  

Internal symmetry: The “internal symmetry” of Kahler geometry is unrelated 
to the internal symmetry discussed in our Yang-Mills-based existence proof of 
the mass-gap. That internal symmetry refers to “iso-spin symmetry” which Hei-
senberg invented to allow use of Pauli’s SU(2) spin matrix algebra. Abstract 
iso-spin space differs from physical spin space, hence the qualification “internal 
space”. In Calabi-Yau space theory, “internal space” is instead associated with 
the six “hidden dimensions” (of a ten-dimensional string-theory formulation), 
assumed on the order of 10−30 cm, modelled after Kaluza-Klein’s treatment of the 
5th dimension in their attempt to unify gravity and electromagnetics.  

For the primordial field we choose 4-D constructions, rather than the 10-D or 
11-D of string theory, which has been a center of interest in Calabi-Yau theory. 
Some string theorists make strong claims: “All of the numbers we measure in 
nature—all of the things we consider fundamental, such as the mass of quarks 
and electrons—all of these derive from the geometry of Calabi-Yau.” In this 
context, Calabi proposed an internal symmetry related to supersymmetry. Oper-
ation of LHC for over a decade has failed to show the slightest sign of super-
symmetry, and Yau points out that, “…without supersymmetry, string theory 
makes little sense.” Our use of Calabi-Yau has nothing to do with supersymme-
try.  

Chern class: The next topological concept is Chern class, developed to ma-
thematically characterize the difference between two manifolds. We are inter-
ested only in the simplest aspects dealing with complex manifolds. Specifically, 
we are interested in places where the flow in a vector field shuts down. For ex-
ample, a spherical topology such as the earth supports the flow of wind currents 
at every point on the globe except two: there is zero net flow at the North pole 
and the South pole. These dead spots are places where nothing flows at all. The 
donut topology, on the other hand has no dead spots; flows around the surface 
of a torus can flow forever. Maxwell marveled at Helmholtz’s proof that “in a 
perfect fluid such as a whirling ring, if once generated, would go on whirling 
forever.” Clearly, we wish for our fermion flows to last forever—a topology in 
which this is the case is called a “vanishing Chern class” or “first Chern class of 
zero”. 

Ricci curvature: Ricci curvature is essential to understanding what the Calabi 
conjecture is all about. It is a kind of average of a more detailed type of curvature 
known as sectional curvature. To find the Ricci curvature, pick a point on the 
manifold, find a vector tangent to that point, then look at all 2D tangent planes 
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that contain that vector, each of which has a sectional (Gauss) curvature asso-
ciated with the plane. The Ricci curvature is the average of these sectional cur-
vatures. “A Ricci-flat manifold means that for each vector one picks, the average 
sectional curvatures of all the tangent planes containing that vector equals zero.” 
This, although the sectional curvature of any individual plane may not be zero. 
In higher dimensions a manifold can be Ricci-flat without being flat overall. 
Einstein’s formulation equates the flow of matter density and momenta at a 
point to the Ricci tensor. This is its key relevance for our theory of fermions so 
with these topological concepts in hand, we state the Calabi conjecture: “A 
compact Kahler manifold with a vanishing first Chern class will admit a metric 
that is Ricci-flat.”  

Before using these geometer’s concepts to formulate a theory of spin, we re-
view the physics of the same problem. 

7. Analysis of Primordial Field in Calabi Terms 

Having just reviewed the relevant Calabi-Yau topological concepts, we now re-
late these to the physics of the Ricci tensor. Einstein’s field theory equation  

R Tµν µν=                          (7) 

is unique in that the stress-energy tensor T µν  is expressed in Euclidean space, 
whereas the Ricci tensor Rµν  represents curved space coordinates. Despite its 
endurance for over a century, this formulation makes no sense. No one knows 
how to solve an equation in which each side is formulated in a different coordi-
nate system, one of which is unknown. One might ask, why not just express 
T µν  in curved space? The problem is that the curvature is not known until after 
the problem has been solved. Feynman hints at this: 

“In general, it is not possible to write down any kind of consistent T µν  (…) 
unless one has already solved the complete, tangled problem.” (…) “Even for 
very simple problems, we have no idea how to go about writing down a proper 
T µν .” 

Note that there is only one point common to both T µν  and Rµν —the point 
at the origin: (0, 0, 0). If we place a mass at this common point, the equation 
makes sense, and we can derive a solution, the Schwarzschild metric, based on 
the singularity at the origin. The field equation cannot be solved at the singular-
ity, but does apply outside of the singularity, where 0T µν = . Vishwakarma [15], 
concluding that curvature of Rµν  is derived from the gravitation field outside 
the mass point, proposed that T µν  is superfluous, and can simply be deleted 
from Einstein’s equation, leaving 

0Rµν = .                           (8) 

That is, the stress-energy tensor representing energy density distributed over 
space, T µν , is nonsensical and has never been solved for or tested against gen-
eral relativity experiments. In agreement with Vishwakarma’s conclusion that 
Rµν  curvature is based on the gravitational field, I have shown how the gravita-
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tional field energy density can be encoded as geometry (i.e., curvature), however, 
a proper energy-stress tensor of the gravitational field does not exist. This cen-
tury-old paradox has led to such erroneous concepts as “quasi-local-mass”. 

We consider next the left-hand-side of the field equation; starting with a Rie-
mannian tensor, abcdR , we can obtain Ricci tensor Rµν  from the contraction 

bd
ac abcdR g R= , where the sum over repeated indices is a bit like taking a scalar 

product of two vectors. In this case the shape of spacetime is defined by the me-
tric tensor abg  with inverse such that [ ]1ab

abg g = . The Ricci scalar is given by 
ac

acR R g= . These are quantified expressions of spacetime curvature. 
Consider a spherical region of closely spaced points around point P, moving 

with velocity v . As the points flow through curved space the sphere can rotate, 
twist, or distort. The Ricci tensor abR  keeps track of the change in volume of 
the region. An associated Weyl tensor keeps track of the changes in shape of the 
region of points. 

The fields of topology and physics converged when Yau realized that the Ca-
labi-Yau conjecture need not be presented in purely geometric terms but can be 
written as a partial differential equation, whereas I start with differential equa-
tions and derive geometry (encoding energy density as geometry.) The differen-
tial equation he tried to solve in the Calabi-Yau conjecture is literally Einstein’s 
equation of empty space, ( 0T µν = ), that is, Calabi-Yau manifolds are regarded 
as solutions to Einstein’s field equations. 

Summarizing: Yau proved that a Ricci-flat metric can be found for compact 
Kahler space with a vanishing first Chern class; he could not produce a precise 
formulation of the metric itself. One is thus left, not with a solution, but merely 
an existence proof that a solution exists. 

The simplest possible Calabi-Yau space is a two-dimensional torus or donut, 
compatible with the existence proof of the mass-gap, a torus derived from the 
use of Heaviside equations in turbulent media. Here we close with a simple to-
pological “derivation” of the torus. (Figure 3) 

Calabi’s conjecture is formulated in terms of complex manifold, Kahler geo-
metry, metric, Chern class, Ricci curvature. Yau claims spaces satisfying the 
complicated set of topological demands are like rare diamonds, but the conjec-
ture offers a general rule telling us that they are there. 

 

→ → 

(a)                             (b) 

 
(c) 

Figure 3. A toric surface can be entire “flat” (zero Gauss curvature) because it 
can be made, in principle, by rolling up a sheet of paper into a tube and then 
joining the ends of the tube to each other. 
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8. Ontological Flow on a Torus 

The above treatment has provided topological context and introduced existence 
proofs. I now analyze fermion topology in a 4D Calabi-Yau, modified Yang- 
Mills context, by focusing on the relevant ontological flow. Ignoring tangent 
bundles of differential geometry, we focus on the fact that the tangent space on 
the manifold can be defined as the set of all velocity vectors.  

The solution to Maxwell’s field wave equations has U(1) symmetry,  
( ) ( )e ~ cos sini iθ θ θ+ . In other words, the propagating field has helical structure. 

The physical regimes of interest are ultra-high-density gravitational fields, exem-
plified by big bang and atom-atom collisions at CERN. Both such regimes are ex-
tremely turbulent such that collisions of helices, including self-intersection occurs, 
potentially forming tori. In such cases the symmetry is U(1) × U(1).  

Our mass-gap existence proof analyzes the self-interaction of a newly formed 
torus, concluding that beyond a certain stage of relaxation, the torus is self- 
stabilizing and self-healing against external interference and disturbances up to a 
limit. A key point on which we will construct our analysis is that Kahler mani-
folds are a subset of complex manifolds known as Hermitian manifolds, “on 
which you can put the origin of the complex coordinate system at any point, 
such that the metric will look like a standard Euclidean metric µνη  at that 
point.” By implication, we could do so at any neighboring point, as well. 

Consider the torus that is formed by “joining” the ends of a helical flow 
structure; the U(1) × U(1) structure is like circles surrounding every point on the 
torus “core” which is itself a circle. The surface of the donut represents the flow 
of the gravitomagnetic field energy density, described by the velocity vector, re-
garded as a vector being transported around a closed path. Topologically, this 
vector has the same direction as the tangent to the path at a given point. The 
tangent at any point on one of the U(1) circles is given as follows: For a curve 
with radius ( )tr  the unit tangent vector ( )T̂ t  is defined by ( )T̂ t = r r  . If 
we relabel this as sr   where s is the arc length, then the tangent vector is given  

by 
d
ds
r

, the change in the vector ( )tr  as it moves along arc length.  

Our U(1) × U(1) conceptual model shows every circle disconnected from 
every other circle; not a helix, (Figure 4). To reflect the physical ontology of the 
torus, we desire helical flow lines. The tangent, and hence flow velocity, has the 
same definition, and since the radius is constant around the U(1) circle, the ve-
locity is constant. The parametric helix is ( ) ( ){ }cos ,sin ,t t t=r r . This is easy to 
see, but for comparison with the torus we display it in Figure 5(b), according to 
the following: 

x[t_]: = Cos[t]; y[t_]: = Sin[t]; z[t_]: = t; 
velocities = Table [{{x’[θ], y’[θ], z’[θ]}}, {θ, 0, 4π, π/180}]//N 
ListPlot[Table[{velocities[[n]][[1]].velocities[[n]][[1]], n}, {n, 361}]]//N 
Figure 5(b) shows the value of the velocity squared, 2⋅ =v v . Observe that 

the velocity of any point of a helix on a cylindrical surface has constant magni-
tude (speed). From the Kahler property we know that the velocity of a neigh-
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boring point on a neighboring helix behaves the same. It is key that these neigh-
boring helices do not intersect; since their tangents are parallel, as seen in Figure 
5(a). 

We elaborate on simple helical flow because it is easy to grasp and yet differs 
from toroidal flow, despite that we constructed a torus from a helix, by curving 
the helix until its ends join; this joining changes the U(1) helix symmetry to the 
U(1) × U(1) symmetry of the torus. We show the difference in Figure 6 by plot-
ting the velocity of the “helical” flow around the torus. 

 

 
(a)                         (b) 

Figure 4. (a) U(1) (circles) centered on red U(1) circle yield; (b) 
Torus with U(1) × U(1) symmetry. 

 

 
(a)                                 (b) 

Figure 5. (a) Illustrating that neighboring helices [induced by the same momentum] 
do not intersect; neighboring vectors that are parallel are transported in parallel fa-
shion. (b) The speed at any point, anywhere in either helix, is constant. 

 

 

Figure 6. Unlike the constant velocity of helical flow, the [squared] velocity of toroidal 
flow is smoothly distributed between minimum and maximum velocities. The velocities 
range from ~6.5 to ~11 as the parametric path is followed from zero to 360 degrees. This 
differs from the velocity of the helix because the size of the torus has changed, neverthe-
less, this distribution of velocities represents any size torus. 

velocity

θ

θ

vel2
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If the donut retains a circular cross section, we might initially guess that the 
flow velocity would have constant magnitude like the helix. We investigate why 
this is not the case. 

Calabi required Kahler manifolds, with the property that we can put the origin 
of a local coordinate system at any point, such that the metric will look like a 
standard Euclidean metric at that point. For simplicity, pick a point on the outer 
equator and choose a path that loops through the “hole” in the donut and even-
tually returns to the starting point. Such a path is closed. But we could have 
chosen a point on the equator infinitesimally close to the point we did choose, 
and created a new closed path in which every point on the new path is infinite-
simally close to the equivalent point on the original path. One can show by con-
struction (Figure 5(a)) that the two paths do not cross each other or intersect. 
The process of adding new paths infinitesimally displaced from the last path ef-
fectively builds a “sheet” of flow with surface energy density σ. Every point on 
the torus can be considered part of a sheet flowing up across the outer equator 
and down across the inner equator. 

Ontologically, if we build the donut with smaller circles centered on a large 
circle in the plane of the donut, the tangent of the smaller circles is constant in 
magnitude; the flow velocity around the small circle is constant. But we cannot 
construct a physical torus from adjacent circles, so we must have a helical struc-
ture such that the flow is not only around the small “circle”, but also flows 
around the donut hole. Toroidal flow as an idealized helix leads to constant ve-
locity, yet, ontologically, the topology is based on “surface flow”. If the surface 
flow along the outer equator is “up”—then continuous flow must be “down” 
along the inner equator of the torus. Consider a segment of arbitrary length 

ox∆  and arbitrary height oy∆  at the outer equator with flow velocity ov  as 
seen in Figure 7(a) with the segment between the two dashed radial lines shown 
as a green overlay on the torus. In Figure 7(b) we show the outer segment and 
corresponding inner segment, extracted from the torus. 

In Figure 7(a) the green segment on the outer equator of the torus is labeled 
with arc length ox∆  and height oy∆ , yielding segmental area o o oa x y∆ = ∆ ∆ , 
through which the surface density of field energy flows with (upward) velocity 

ozv . Figure 7(b) shows both segments labeled, with the inner segment described 
by arc length ix∆  and height iy∆  yielding segmental area i i ia x y∆ = ∆ ∆  with 
inner velocity izv , flowing down across the inner equator. A U(1) slice through 
the torus perpendicular to both equators has two half circles, inner and outer, so 
we set segment heights equal, such that o iy y∆ = ∆ . The toroidal velocity plot, 
Figure 6, shows that the velocity varies from minimum to maximum, so we as-
sume that o i≠v v . It is obvious that the length ix∆  of the inner subtended arc 
is less than that of the outer subtended arc ox∆  so that o ix x∆ > ∆ . (Similarly, 
lengths jy∆  could be that of arc subtended by φ∆  so that o iy y∆ > ∆ ). With 
the topology and geometry of the surface flow described, we next analyze the 
physical ontology. 
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(a)                        (b) 

Figure 7. (a) Two arbitrary radii establish two arc segments subtended by 
the angle between the dashed lines. A green segment of height oy∆  spans 
the arc between these dashed lines. (b) The corresponding segment on the 
inner equator is shown from a different perspective. Surface energy density 
is assumed to flow through both segments. The labelled inner and outer 
segments are shown with respective vertical velocities izv  and ozv .  

 
The circulating field energy density is proportional to ⋅C C , where  
× = −C p∇ . Although we envision the vortex surface as two dimensional, let us 

assume a finite wall thickness jr∆  so that we can write the field density as vo-
lume energy density ~ρ ⋅C C  and mass flow (momentum jP ) through a 
segment with volume j j jx y r∆ ∆ ∆  proportional to 

( )j j j j j jx y r ρ= ∆ ∆ ∆ =P v  mass flow of field through wall segment j  (9) 

This momentum induces more C-field circulation, as analyzed in the mass- 
gap existence proof; the stable final state of the topological ontological structure 
is assumed to represent a fermion. 

A stable continuous mass flow (momentum) up through the outer segment is 
assumed to equal the mass flow (momentum) down through the corresponding 
inner segment through conservation of momentum, thus all vertical mass flow 
across the outer equator equals vertical mass flow across the inner equator. If we 
turn the torus upside down, inner flow is up and the outer down, while the 
meaning of inner and outer equators will not change; therefore we use equator 
indices {i, o}: 

    oz iz o o oz i i iz oz izV Vρ ρ= − ⇒ ∆ = −∆ ⇒ = −v v v v P P            (10) 

The negative sign denotes oppositely directed vertical velocities of vertical 
mass flows across outer and inner equators. Assume that vertical parameters 

jy∆  and wall thicknesses jr∆  are equal, then 

iz o o o o

oz i i i i

V x
V x

ρ ρ
ρ ρ

∆ ∆
= ⇒

∆ ∆
v
v

                  (11) 

We group the energy/mass density jρ  with the relevant velocity jv , cancel 
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the product of vertical parameters and wall thickness i i o oy r y r∆ ∆ = ∆ ∆  and con-
vert horizontal parameters, the segment lengths, to arc lengths for angle θ∆  
between the dashed lines, where 0 2θ< ∆ ≤ π  and arc length subtended by the 
angle is j jx r θ∆ = ∆ . Since θ∆  cancels for all values of the angle, reduce (11) 
to vertical momentum density (mass density flows) izp  and ozp  such that 

  i iz o
i iz o oz

o oz i

r
r p r p constant

r
ρ
ρ

= ⇒ = =
v
v

               (12) 

and expand the geometric product: j jz j jz j jz⋅= + ∧r p r p r p . Both j i=  and 
j o=  radius vectors are perpendicular to the vertical momentum vectors, Figure 

8, hence scalar products 0j j⋅ ≡r p  and, converting to cross products, we have  

i iz o oz× = − ×r p r p .           (13) 

Thus, we have coupled the density flow parameters jzp  to the topology pa-
rameters jr . For an arbitrary slice through the torus the centroid angular mo-
mentum (point at center of hole) is: 

0centroid i iz o ozr p r p= + ≡L                       (14) 

The angular momentum of the centroid is shown to have a specific direction 
in the xy-plane for arbitrary θ  (slice) therefore the value of L  must be zero. 
The bivector relation is i iz o oz= −r p r p  since vertical velocities have opposite di-
rections with respect to the centroid, hence we have i iz o oz× = − ×r p r p . With 
angular momentum density of the slice measured at the centroid zero; we calcu-
late the angular momentum density at the torus core: 

core iz oz= × + ×L b p b p          (15) 

Since i iz o ozr p r p= −  and ( )jz j j jzVρ= ∆P v  where j j j jV x y r∆ = ∆ ∆ ∆  and 

j jx r θ∆ = ∆  with jy∆  and jr∆  the height and thickness of the jth equatorial 
segment specified as i oy y∆ = ∆  and i or r∆ = ∆  so that ( )j j jm r y rρ θ= ∆ ∆ ∆  
under the assumption that the same mass flows across the inner and outer 
equatorial segments: i om m= . From the above: 

iz o i iz

oz i o oz

r v
r v

ρ
ρ

= =
p
p

                      (16) 

Based on the helical velocity the vertical velocity components are equal 

iz ozv v≡ , despite that we have shown that o iv v> . If so, then we have 

i o o
i o

o i i

r r
r r

ρ
ρ ρ

ρ
 

= ⇒ =  
 

      (17) 
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Figure 8. Cartoon depicting relevant vectors of the 
torus model of the fermion. The radii ri, ro, and R 
used in measurements in Table 1. 

 
Thus, mass density of the inner equatorial segment is greater than the outer by 

ratio ( o ir r ) and we have arrived at a relation between the topology and the 
(vertical) field momentum density. We rewrite angular momentum at the core, 

core iz oz= × + ×L b P b P , as 

( ) ( )~core i i iz o o oz i iz o ozV V b m v m vρ ρ= ∆ + ∆ +L b v v            (18) 

Note that 
2

o ir rb −
=  and that we have specified that the same mass must flow 

across the inner and outer equators, hence [ ]
2

o i
core i iz o oz

r r m v m v−
= +L . Since 

i om m=  and iz ozv v=  the angular momentum at the core is  

2
2

o i
core i iz

r r m v− =  
 

L  or  

( )core o i j jzr r m v= −L ,                    (19) 

where  

 


local energy density local segment volume

~j jm V⋅ ∆C C                 (20) 

and jzv  is the vertical velocity at equator j. Angular momentum at the toroidal 
core is induced by energy flowing at the toroidal surface. The energy flowing at 
the toroidal surface is equivalently induced/sustained by the core “current”, that 
is, we again arrive at a relation between the topology and the field momentum 
density, related to the motion of the field energy density. 

We conclude this section on ontological flow by observing that the velocity 
variations seen in Figure 6 imply that toroidal flow velocity varies and thus 
cannot be the constant speed of light. In other words, variations in energy den-
sity of the vector field flow through space, but NOT at the speed of light. The 
speed of light describes the propagation of a stress wave in the field across space. 

9. Separation of U(1) × U(1) Flow Symmetry 

The relevant symmetry is U(1) × U(1) and we have up to this point focused on 
the U(1) circulation about the torus through the donut hole and have required a 
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constant mass flow through the hole: iz oz= −p p . Next, we focus on the other 
U(1) circulation, that around the hole in the donut. In other words, the U(1) × 
U(1) symmetry is resolved into two orthogonal flows z θ= +p p p  where zp  is 
the momentum through the hole and θp  is the momentum around the hole. 
Referring to Figure 8 we have three well defined radii, ir , or  and R, defining 
respectively the radius of the inner equator, the outer equator, and the core of 
the torus. Each of these distances is associated with a velocity: 2 2

x yv vθ = +v . 
Whereas the vertical velocity jzv  is constant, independent of r or θ, the mass 
flow through any given segment is proportional to the arc subtended by θ∆ , 
and the mass of each segment, by construction, is equal to that of the other seg-
ment, independent of θ∆  and of y r∆ ∆ , therefore the mass flow associated with 
each segment is proportional to jv θ , i.e., ( )j j j jm rθ θ=p v . Since o iv vθ θ>  we 
have o iθ θ>p p . Angular momentum L  at the centroid and at any point on the 
core are due to equatorial vertical velocities iz ozv v=  while o iv v> . Next consider 
angular momentum due to corresponding horizontal components o iv vθ θ>  with  

0o oz θ= +v v v  and i iz iθ= +v v v .                   (21) 

Angular momentum at the centroid due to equatorial momentum in the 
xy-plane is: 

~ i i i o o om mθ θ× + ×L r v r v       (22) 

with o ir r>  and o iv vθ θ>  where ( ) ( )22
i ix iyv v vθ = +  and  

( ) ( )22
o ox oyv v vθ = + . We thus resolve ontological flow on the torus into two  

components; vertical components rotate around the core (and through the hole) 
and induce angular momentum in the xy-plane at the core. Horizontal compo-
nents flow around the hole in the θ direction and induce angular momentum 
(C-field) in the z-direction at the centroid. Vertical velocities are the same value 
at inner and outer equators, while horizontal velocity at the outer equator is 
greater than that at the inner equator. Conservation of mass flow in both direc-
tions is achieved via compensating changes in local field density, with the greater 
density appearing at the inner equator. 

However, unlike the vertical momentum, which is constant around the torus, 
the horizontal momentum around the hole varies with the distance from the 
centroid and applies to mass that is off the equatorial plane, requiring integra-
tion over all radii from ir  to or  complicating the issue. For that reason, we 
take a different approach to the problem. Rather than attempting to calculate the 
horizontal momentum associated with every point on the torus, we study the 
third Heaviside Equation in Equation (3): ρ× = −C v∇  derived from the pri-
mordial self-interaction Equation (1). We ignore the time change in gravity field 
G . The ×C∇  represents the circulation of the field induced by momentum  
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density and 
3

mass
volume d

m
x

ρ = =
∫

 with v  the velocity of the U(1) mass density  

circulation in the equatorial plane, ~ θ θ⋅C C . If P  is the momentum of this 
U(1) circulating field, then the U(1) circulation in the vertical plane is  

3
2d ~x

c
θ θ

θ
⋅ × = −  

 ∫
C CC P v∇                   (23) 

In this case the mass density ρ  moving with velocity v  is the mass of the 
horizontal C-field circulation induced by the helical solenoid divided by the re-
levant volume, 3dV x= ∫ , that is  

3d xρ = = ∫v p P                        (24) 

Here momentum P  will be identified with the core of the torus, and volume 
with the inside of the torus. Recall that the minus sign in Heaviside’s equation is 
associated with the direction of flow of the induced C-field circulation, we will 
drop it in our calculations of magnitude. We follow Arfken [16] and set an infi-
nitesimal volume to be 3d d d dx x y z=∫  (cube) and specialize to the cylindrical 
volume corresponding to the U(1)-based eiCt  helix, in which case we redefine 
the volume in cylindrical coordinates as 

 3d d d d   d d d
S

x x y z r r zφ= ⇒∫∫∫ ∫∫ ∫ ∫∫ ∫  (cylinder)          (25) 

If we integrate z from 0 to 1 the result is the unit normal 
1

0
ˆdz n= =∫

n
n

 to the 

vertical plane of circulation. We next use these results to invoke quantum 
half-integral spin.  

10. Derivation of Quantum Spin 
From the above, applying Stokes’s theorem to Heaviside’s equation  

2
g
c

ρ × = − 
 

C v∇ : 

( )ˆd d
S S

a n
∂

⋅ × = ⋅∫∫ ∫C C l


∇                      (26) 

we obtain the line integral around the closed (vertical) path. For a given mo-
mentum (in the z-direction) the circulation in the vertical plane is fixed and 

( )n̂ ⋅ ×C∇  must not depend on the coordinate system. In the following we 
make use of the dimensional relations:  

[ ] 2da l= , 2
g l

mc
  =  

, [ ] 3
m
l

ρ = , [ ]ˆ 1n = , [ ] lv
t

= , [ ] 1C
t

= , [ ] lλ = .   (27) 

To obtain 

( ) 2
3ˆd l ma n l

m l
  ⋅ × =   
  

C v∇                    (28) 

where velocity v  is perpendicular to the plane of the C-field circulation. 
The results in Equation (28) allow us to modify equation (26) as follows: 

( )ˆd d
S S

m a n m m
∂

⋅ × = = = ⋅∫∫ ∫C v P C l


∇               (29) 
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At this point recall that our goal is to derive a fermion from a theory of quan-
tum gravity, so we invoke deBroglie’s fundamental basis of quantum theory,  

hP
λ

= . Substituting this into Equation (29) and multiplying both sides by λ  

we obtain for n̂λ=λ  and unit mass, 1m = : 

d
S

a h⋅ × =∫∫ Cλ ∇                       (30) 

This is a novel quantum relation, relating the wavelength of the core momen-
tum to the circulation induced by this momentum and finding the quantized 
results in terms of Planck’s constant. Since 3 2d dx xλ= ⋅∫ ∫  so λ  is the length 
of the helical cylinder. From Equation (29) we further obtain 

d
S

m hλ
∂

⋅ =∫ C l


, 
1d

S

h
m λ∂

 ⋅ = = 
 ∫ C l v



            (31) 

which implies that the circulation around a closed loop is quantized, and that it 
is the gauge field vector. Of course, the helix is not closed, but the torus induced 
by momentum P  is closed, and that is the focus of our next development. We 
have calculated the vertical contributions of the field energy density momentum 
to the core of the torus and the centroid of the torus. We here identify the hori-
zontal contribution to the angular momentum as related to Planck’s constant.  

11. Vector Transport around a Closed Path 

Many are familiar with vector transport on the surface of a sphere—begin at the 
north pole and follow any longitude line to the equator, maintaining the vector 
as tangent to the curve at every point along the curve. When the equator is 
reached, the vector points south, and motion along the equator retains this di-
rection of the vector. After reaching an arbitrary longitude begin moving the 
vector toward the north pole, maintaining its tangent nature at every point. 
When the north pole is reached, the final tangent vector is not parallel to the 
original vector at the same pole. The pole is used for simplicity, but this concept 
applies at any point and in any coordinate system. The concept of “holonomy” is 
a measure of how tangent vectors on a particular surface get twisted up in such 
parallel transport over a loop around the surface. In fact, to tie Calabi-Yau to 
string theory, supersymmetry was used as the bridge to holonomy; holonomy 
was used as the bridge to Calabi-Yau.  

To analyze vector transport on the torus we arbitrarily choose the starting 
point on the vertical axis at R (red arrow in Figure 8). The green arrow of length 
b ends on the starting point. As this is at the top of the torus, the vertical coor-
dinate is not changing at this point, hence 0z =v . As we move off the starting 
point toward an equator, the vertical component of velocity becomes nonzero, 
finally reaching izv  (or 0zv ) at the equator, then proceeding toward the bottom 
of the torus where again 0z =v . Continuing this U(1)-symmetry vertical mo-
tion the point of interest is transported around the torus through the “donut 
hole”. But the ontological flow has U(1) × U(1) symmetry and flows around the 
donut hole as parameter θ  increases. Therefore, when the flow crosses the in-
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ner equator the velocity at ir  is i z θ= +v v v  where θv  is the rotational veloc-
ity of the flow in the xy-plane. The flow of the field is left-handed with respect to 
the core flow. The z-component of velocity izv  is maximum at the equator, 
then diminishes until it vanishes at the bottom-most parts of the torus.  

A 360˚ θ-rotation effects one complete circle around the torus, but only half a 
rotation about the hole in the torus; the final point on the path does not overlay 
the starting point. In every case, regardless of starting point, a further 2π rota-
tion will return to the starting point, thus requiring a total 4π-rotation to close 
the path, as required for fermions. Once we determine that one circulation 
around the donut hole corresponds to two circulations around the “helical” to-
rus, we invoke Equation (31) to conclude that 2 d

S
h

∂
⋅ =∫ C l



. This implies that 
the relevant wavelength is 2λ and thus, compatible with Equation (29), we have: 

d
2S

ha⋅ × =∫∫ Cλ ∇ .                     (32) 

That is, the quantum gravity-based spin of the fermion is 
2
h

. This implies, 

correctly as we have seen, that the C-field must wind about the torus twice to 
return to its starting state. 

12. Measurements on a Dynamic Model  

Rather than complicating the visual dynamic flow further, by dividing it into two 
components as it flows around the torus, I decided to also dynamically display 
the values of the horizontal and vertical components of velocity as it flows 
through every point. I typically employ 360 points for each U(1) path, and so can, 
via Mathematica controls, determine the speed of simulation, as it is quite simple 
to walk my way around the path, slowing down at each of the critical points (the 
red and green arrow heads in Figure 9(c)) examining the velocity components, 
equatorial vertical velocities iz ozv v=  with o iv v>  and corresponding hori-
zontal components o iv vθ θ>  with  

o oz oθ= +v v v  and i iz iθ= +v v v .                (33) 

thereby building a table as seen in Table 1. The radii are defined in Figure 8, 
with ir  the inner radius, or  the outer radius, and R the radius to the core of 
the torus. 

At any point on the manifold the velocity Zθ= +v v v . If we square both sides, 
term 0Zθ ⋅ =v v  since θv  and Zv  are orthogonal, hence  

2 2
Zv v vθ= +                         (34) 

 
Table 1. Measurement of velocity components. 

deg 0 30 60 90 120 150 180 210 

θv  10.8 9 10.8 3 10.8 9 10.8 3 

Zv  0 9 0 9 0 9 0 9 

v  10.8 12.7279 10.8 9.48 10.8 12.72 10.8 9.48 

radi R ro −R −ri R ro −R ri 
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(a)                    (b)                       (c) 

Figure 9. Based on equation 29 we draw a closed path around the torus, with the area of 
the enclosed xy-plane defining the horizontal boundaries of the torus. (a) shows a pers-
pective angle on the path, while (b) shows an overhead perspective of the same path, and 
(c) depicts a semi-opaque torus with white outer equator shown and the closed path tra-
versing the torus shown in black with colored arrows indicating direction of flow.  

 
For example, at 30˚ the velocity is 2 29 9 12.7279220+ =  while at 90˚  

2 23 9 9.48v = + = . We see from the table that the measurements confirm the 
intuitively derived relations based on the reasoning about conservation of mo-
mentum. In short, the dynamic visualization of the field behavior intuitively 
confirms the correctness of the model/theory, while the measurement access to 
arbitrary parameters can serve as proof of the flow model worked out by con-
servation equations and the U(1) × U(1)-symmetry. When these measurements 
on the model agree in detail with intuitively and/or analytically derived behavior, 
the feeling is as if one has “struck gold”. One can only sincerely thank David 
Hestenes and Steven Wolfram for their contributions to this task. 

13. Summary 

There are a lot of details in this paper, and my focus has been primarily on get-
ting the details right. An anonymous reviewer asked for more context, and this 
has improved the presentation of the information, for which I am grateful.  

The key to fermion spin is its half-integral nature. This was first interpreted 
from spectral statistics, and then projected onto Stern-Gerlach beam-splitting 
experimental results seen in the infamous Bohr-postcard. The formulation fits 
the expected data, but no physical basis of half-integer spin is known. Explained 
succinctly, half-integral spin is not mapped into itself in one revolution, but re-
quires a 4π-rotation, a decidedly nonclassical result. The simplest math analog is 
the mobius strip, but no one takes that seriously. The complete lack of ontologi-
cal theory of half-integral spin has led to such explanations as Feynman’s “belt 
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trick” wherein unobservable “tethers” are “tangled” such that a single rotation 
does not allow untangling to occur, while a 4π rotation untangles the system, 
restoring it to its initial state. Interestingly, Schiller has issued a preprint [17] 
based on a formalization of the belt trick. 

The half-integral spin that flows from primordial field theory is not based on a 
belt trick; it is based on Heaviside’s gravitomagnetic dual to electromagnetism. 
The issue of computation of flow on the surface of the torus is one that is best 
addressed by constraining all calculations to the manifold defined by Calabi-Yau. 
This avoids any use of strings, while allowing use of Hestenes’ Geometric Calcu-
lus—instantiated in Wolfram’s Mathematica 13. The flow of C-field energy den-
sity around the surface of the torus is complicated; the vector being transferred 
around the path is always changing. Even the use of magnitude-adjusted, col-
or-coded vectors is dynamically complex. A dynamically stable model of this 
complexity is a very strong argument for the integrity of the mathematical de-
sign. The ability to make measurements on the dynamic model which can then 
be compared to the predicted measurement results is rather convincing. 

An Internet search for Calabi-Yau topology returns images of the type shown 
in Figure 10. They’re often viewed as “compactified”, meaning that the local 
topology exists at every point in 3D space. This is the “trick” that allows string 
theorists to claim that 10D and 11D theories are meaningful. A decade of opera-
tion of the LHC has failed to find any signs of supersymmetry, and string theory 
makes no sense without supersymmetry; nevertheless, support from the string 
theory community kept Calabi-Yau alive during its critical period.  

Of course, in the context of today’s mysteries in physics, and ready belief in 
higher dimensionality at fundamental levels, such images are always enjoyed by 
physicists and the artistically inclined; but even if higher dimensional models 
turn out to be physically inappropriate, the Calabi-Yau manifolds retain su-
preme importance for (3D + 1)-space-time physics: they allow the use of Eucli-
dean space tools locally in a global non-Euclidean ontology. In other words, we 
are allowed to compute flows on toroidal surfaces confidently. 

In summary, a new theory of physics based on the existence of a primordial 
field at the creation of the universe resolves a number of paradoxes [logical con-
tradictions] associated with 20th century physics. It contrasts with quantum field 
theory, which has one field per particle, and with general relativity, which 
equates the world to geometry. 

 

 

Figure 10. A 10D Calabi-Yau manifold image de-
signed by Stewart Dickson at redbubble.com. 
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The new theory leads almost immediately to Heaviside’s equations of gravity, 
dual to Maxwell’s equations of electromagnetism. While these are generally rec-
ognized as iteratively equivalent to Einstein’s field equations, physicists have 
been ultimately confused by the label “weak field approximation”. Primordial 
field equations are density-based and hold at all field strengths.  

In “Self-linking Field Formalism” [18] we note that the gravitomagnetic field, 
induced by and inter-acting with mass flow, is significantly different from the 
electromagnetic field induced by and interacting with charge flow, in that the 
electromagnetic field is uncharged and hence cannot interact with itself. The 
gravitomagnetic field has energy density, hence mass density, and can therefore 
interact with and induce itself.  

The U(1) × U(1) symmetry described herein supports two orthogonal circula-
tions, vertical and horizontal. It seems reasonable that these self-sustaining inte-

ractions have equal angular momenta, that is, each mode supports 
2
h

. The ver-

tical momenta induce the flow at the core, whereas the horizontal momentum 
produces the half-integral spin at the centroid. Only this spin is measurable. 

Based on analogy with electromagnetism, we show that gravitomagnetism 
supports field structures that are self-induced; these structures include vortices 
in turbulent fluid, and we have shown that higher order self-interactions lead to 
toroidal structures that are self-stabilizing, thus bringing Calabi-Yau theory into 
the picture. The key contribution of Calabi-Yau to primordial field theory is 
found in the definition of Kahler manifold, vanishing Chern class, and Ricci-flat 
geometry. These establish a topological geometry framework subject to existence 
proofs. String theory has focused on 10D and 11D structures, for reasons to be 
examined elsewhere. Primordial field theory deals with (3D + 1) of space and 
time. We consider the torus structure to be effectively described by U(1) × U(1) 
symmetry, in which a 4π rotation is required to transform any point in the flow 
into itself via vector transport over a path on the surface of the torus. This cor-
relates perfectly with the half-integral spin that characterizes fermions. 

Analysis of the flow of the gravitomagnetic field energy density on the toroidal 
surface leads to formulating flow relations through the donut hole and around 
the donut hole, with the velocity at any point resolved into zv  velocity and θv  
velocity. 

Because primordial field theory is ontologically well defined, and the fermion 
is topologically well defined, we create a model fermion based in the mass-gap 
existence proof, now augmented by the half-integral spin existence proof. We 
then make measurements on this well-defined model and prove that our onto-
logical analysis has yielded dynamical equations that match the measurements at 
well-defined points. This is considered an existence proof of the half-integral 
fermion spin. 

The above theory is classical in nature, as is relativity. The quantum is intro-
duced by invoking the key quantum relation underlying all quantum mechanics: 
deBroglie theorem: p h λ= . 
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14. Conclusions 

The above summary reviewed the fact that our primordial field theory is now 
adorned with two key proofs for toroidal fermions: 
• Mass-gap existence proof 
• half-integral spin existence proof 

Note that the standard model of particle physics has no explanation of particle 
mass nor any explanation for half-integral spin. Nor can it calculate the mass of 
any particle. Of course, at this point, primordial field theory cannot calculate 
fermion mass either. It is known that the C-field circulation energy has mass 
density, and it is also known that rotational energy is mass [19]. What has not 
yet been proved is the nature of electric charge in primordial field theory. We 
cannot nail down the mass and size of the fermion until we include the charge 
and associated fields, which are not assumed present at the Creation. The goal is 
to show that this follows from the principles of the primordial field theory. 
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