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Abstract 
With the continuous evolution and expanding applications of Large Language 
Models (LLMs), there has been a noticeable surge in the size of the emerging 
models. It is not solely the growth in model size, primarily measured by the 
number of parameters, but also the subsequent escalation in computational 
demands, hardware and software prerequisites for training, all culminating in 
a substantial financial investment as well. In this paper, we present novel 
techniques like supervision, parallelization, and scoring functions to get bet-
ter results out of chains of smaller language models, rather than relying solely 
on scaling up model size. Firstly, we propose an approach to quantify the 
performance of a Smaller Language Models (SLM) by introducing a corres-
ponding supervisor model that incrementally corrects the encountered errors. 
Secondly, we propose an approach to utilize two smaller language models (in 
a network) performing the same task and retrieving the best relevant output 
from the two, ensuring peak performance for a specific task. Experimental 
evaluations establish the quantitative accuracy improvements on financial 
reasoning and arithmetic calculation tasks from utilizing techniques like su-
pervisor models (in a network of model scenario), threshold scoring and pa-
rallel processing over a baseline study. 
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1. Introduction 

LLMs are the neural networks that have the capability of understanding and ge-
nerating human-like text. As an LLM grows to be better at delivering state of the 
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art results, it still lacks the ability to solve complex problems in various specia-
lized domains, like finance, healthcare, and law, with precision and accuracy. 
While the attempts to improve the result quality intensify, these LLMs become 
extensively intricate and resonate a vast network of intensive parameters insti-
gating a deeper level of complexity in terms of its architecture, processing and 
even the computational requirements of resources. Such larger language models 
often require highly efficient clusters of high performance GPUs which consume 
significant time, costs, and electricity.  

In context of their performance and diverse tasks that they handle, it is im-
portant to note that finetuning [1] is considered an essential aspect. This process 
employs training the model on a smaller and task-specific dataset to tailor its 
potential to a particular use case, making it more contextually relevant and effi-
cient. Additionally, recent and advanced techniques like Chain of Thought 
prompting [2] enable a Large Language Model to get better at reasoning and 
eventually cultivate results with markedly higher accuracy. However, this ap-
proach (typically) works effectively on models with about a 100 billion parame-
ters or more [3]. The prospect of considering a smaller language model to carry 
through a complex task still remains a concern.  

For the scope of this paper, we refer to smaller large language models (or 
SLMs) as models with a relatively low number of parameters, typically less than 
10 billion. We propose an approach of incorporating a supervisor model in a 
network of multiple smaller language models (SLMs) as well as inducing an as-
sistive model, for confronting complex tasks to yield effectiveness by the me-
chanism of the supervisor model employed and the helper mechanism induced. 
In order to refine our scope towards a target application and experimentally 
substantiate the hypothesis, this paper is directed towards the task of financial 
reasoning and arithmetic calculation of nested operations, domains where even 
prominent and heavy-duty models often struggle to perform adequately.  

The objective of this research is to propose an assembly (or, network) of 
smaller models that when subjected to specialized finetuning, not only prove to 
be a better system for exercising penetrability and adding a sense of accountabil-
ity, but also increase the quality of the outcomes. The interconnected workflow 
suggests a network of SLMs, wherein models shall be paired up with their super-
visors, wherever necessary, we refer to this as the Threshold-Based approach. 
The supervisor model employed can be portrayed like a checking mechanism. 
Together, their cumulative efforts are aimed at upholding and ensuring the 
highest possible quality of the final outcome. This collaborative network model 
not only streamlines the process but also establishes a structured framework for 
achieving superior results in diverse tasks.  

While the second proposed approach involves a similar setting it is different 
in scope. In this approach, two versions of the same SLM [with variations either 
in the dataset or hyperparameters, selection of which is task-dependent] perform 
the task concurrently to generate results. Further, the one that has the most con-
textually relevant output is chosen to be taken forward in the chain. We refer 
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this approach as the Parallel Processing method. This setting can be visualized as 
a competitive game-theoretic approach, where multiple agents solve the same 
problem and the best answer is chosen out of the lot. While this approach in-
volves parallel computation, it also ensures that no sub-optimal results are taken 
forward in the chain.  

By the means of a network of SLMs, a user can particularly handle more so-
phisticated tasks without exhausting much of the resources. Our suggested ap-
proaches can be implemented in similar way and adapted to other complex tasks 
in diverse specialized fields, to achieve desired results. 

The key research contributions and novel aspects of the paper are as follows:  
• Proposes an approach to enhance the performance of a chain of smaller 

language models (SLMs) for complex tasks by introducing a corresponding su-
pervisor model that incrementally corrects errors.  

• Suggests utilizing two smaller language models in a network performing the 
same task and retrieving the best relevant output, ensuring peak performance.  

• Introduces a threshold-based approach where a supervisor SLM audits and 
corrects errors from the main SLM to optimize efficiency.  

• Proposes a parallel processing method with two versions of an SLM trained 
with variations either in the dataset or hyperparameters, selection of which is 
task-dependent. 

• Demonstrates the application of these approaches for financial reasoning 
and arithmetic calculation tasks using tailored scoring functions to choose op-
timal outputs.  

• Compares performance of large language model, network of SLMs with su-
pervisor model, and parallel processing on chosen domain of tasks.  

• Aims to solve issues like high computational demands of large models while 
retaining performance for complex tasks by employing network of SLMs.  

2. Problem Statement  

Large Language Models (LLMs) exhibit substantial dimensions, characterized by 
both a high parameter count and extensive computational requirements. Man-
aging storage, employing the required computational units and incurring the 
associated costs elevate as the scale of the model increases. Hence, such LLMs 
pose challenges across various aspects including hosting, training, and finetun-
ing. To learn and understand patterns, large language models usually require 
large datasets for training purposes and hence more computing resources for 
training. While this places them at a superior level for returning outcomes for 
generalized tasks, they often lack the ability to do so in the specialized domains.  

To handle these situations, there exist two primary approaches for imparting 
knowledge to the language models: prompt-engineering, which involves in-context 
learning and the other being “finetuning”. Fine-tuning encounters limitations in 
scale: as the model expands and continuously generates even larger amounts of 
data, it becomes infeasible to retrain the large language model on all newly 
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available information which refrains the likelihood of ideal performance at in-
tricate tasks.  

The objective of the study is to develop and assess an approach of employing a 
network of smaller language models, to address the previously mentioned chal-
lenges, reflecting an aim to resolve these issues.  

3. Literature Survey  
3.1. Prompt Engineering  

Working with Large Language Models often results in very high computational 
and cost usage, yet they fail to deliver the desired results for complex tasks. 
However, there are multiple methods and techniques which can enhance the 
model output with the help of reasoning, one such being the Chain of Thought 
prompting method (CoT) [2]. It is a simple technique that enables the large 
language models to work around a complex problem just like a human would 
approach to solve it, hence it carefully reasons appropriate steps and accordingly 
takes the desired move forward. There have been prominent and promising re-
sults shown by the chain of thought prompting technique. A recent study [4] 
carried out with the GSM8K dataset, indicates that the results obtained from the 
CoT approach while employing the largest models in the GPT and PaLM family 
(with 60 billion parameters or more), were more than doubled their baseline 
comparative results. This reflection is attributed to the influence of the “chain 
of thought” prompts which induces reasoning, thereby making a language 
model interpret it own steps, leading to significant enhancements in the future 
results.  

3.2. Effect of Distilled Learning on Reasoning Tasks  

Even though the Chain of Thought (CoT) operational procedure seems to hold 
great potential, it harbours an issue which arises when the approach is tested on 
the language models, particularly with less than 100B parameters [3]. The expe-
rimental findings demonstrate that the Chain of Thought prompting techniques 
often yielded near zero performance even on the foundational reasoning tasks, 
making it a significant challenge for the SLMs. To devise a solution to this, it was 
proposed that instead of employing the SLMs to work on a variety of tasks and 
aim for an overall performance, it would be much more effective to implement 
distilled learning, a technique where the model is equipped to focus on a very 
specific task using all of its computational power and somehow losing the ability 
to perform on generic task. The approach used here is finetuning a model on a 
dataset, which consists of CoT rationales, which are step-by-step solutions either 
generated by an LLM (like GPT3.5 or GPT-4) or curated by an expert. To illu-
strate the potential, the paper [5] produced a fine tuned version of FLAN-T5 
model which evidently reflected an increase of 11 points on reasoning tasks us-
ing the CoT approach and a decrease of 27.8 on the generic tasks. The reasoning 
results were comparable to those of the PaLM-60B model.  
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3.3. Learning from Mistakes  

To further improve the ability of LLMs to handle and work with mathematical 
data, authors of the paper LeMa [6] introduced a novel approach to enhance the 
reasoning capabilities by emulating human error-driven learning processes. 
Known as Learning from Mistakes, this approach revolved around fine-tuning 
LLMs using CoT data with mistake-correction data pairs generated by GPT-4. 
The process involves collecting inaccurate reasoning paths from various LLMs, 
leveraging GPT-4 as a “corrector” to identify, explain, and rectify mistakes, ul-
timately producing the final answer. Experimental results showcase the effec-
tiveness of LeMa, consistently improving the performance of multiple backbone 
LLMs across two mathematical reasoning tasks when compared to fine-tuning 
on CoT data alone. The paper underscores the potential of error-driven learning 
processes to enhance LLM reasoning capabilities, acknowledging that models 
like Llama 2 still encounter challenges, leaving room for improvement. Fur-
thermore, comparisons indicate that larger LLMs are better at learning from 
mistakes.  

3.4. Advocating the Usage of Smaller Models  
3.4.1. Financial Reasoning 
A recent study [7] laid rich conclusions in this domain by exhibiting that finan-
cial reasoning ability is first shown in language models with at least 6B parame-
ters. Their ability to answer, can be further improved by either employing in-
struction tuning or the usage of larger corpora. As detailed in a scholarly explo-
ration, Meta’s Llama 13B model was able to establish an average ROUGE-L score 
of 0.273 along with an average BERTScore of around 0.845 on the financial rea-
soning task. While a similar test when conducted with GPT-J 6B, achieved the 
average metric of ROUGE-L of 0.122 and BERTScore of 0.788. The results are 
quite promising for the seed stage of working. Taking into consideration the re-
sults of this research, we employ a consistent approach in the preliminary phase 
which utilizes the Llama-2 model with 7 billion parameters.  

3.4.2. Arithmetic Calculation 
Another research performed on a small language model’s arithmetic ability, re-
sulted in creation of Goat [8], a fine-tuned version of the Llama 7B model that 
outperformed GPT-4 (about a trillion parameters) in variety of BigBench [7] 
testing metrics over multiple dimensions. It used the strategy to decompose a 
complex mathematical problem using the basic arithmetic principles. This study 
also reflected that when fine-tuned on the same dataset, models such as Bloom, 
OPT, GPT-NeoX and Pythia cannot match Llama’s capability to work with nu-
merical data. Due to the fact that Llama’s tokeniser splits digits of a number in-
dividually, hence employing it for arithmetic tasks is perceived as a favourable 
aspect. While this study has provided substantial results in the realm of arith-
metic data and its processing, our aim is to draw inspiration from its findings 
and delve into the exploration of numerical answering to the arithmetic nested 
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operations-an area that, to the best of our knowledge, remains largely untouched.  

3.5. LLM Cascading  

Following the idea of minimising the cost of the usage of Language models, a 
recent framework, FrugalGPT [9] offers a collection of techniques for building 
Large Language Model (LLM) applications with budget constraints, aiming to 
reduce costs while improving performance. It mainly suggests three main tech-
niques: Prompt adaption, LLM Approximation and LLM Cascades. While all 
three approaches exhibit merit, the relevance of LLM cascades stands out in our 
study. LLM cascade sends a query to a list of LLM APIs sequentially. If one LLM 
API’s response is reliable, then its response is returned, and no further LLMs in 
the list are needed. The remaining LLM APIs are queried only if the previous 
APIs’ generations are deemed insufficiently reliable. While this approach is de-
signed to minimize costs, the introduction of a heavy-duty model like GPT-4 in 
instances where no LLM API delivers satisfactory results can potentially disrupt 
the cost structure. The LLMs are arranged in ascending order of size, leading to 
increased computational requirements. Notably, this approach does not propose 
to rectify the mistakes of the preceding model. Each query passed to a subse-
quent model with higher parameter count is treated as a fresh query, without le-
veraging insights from the previous models.  

4. Dataset  
4.1. Baseline Dataset Curation  
4.1.1. Dataset for Financial Reasoning 
As a preliminary step of this research to prove the hypothesis, we utilized the 
FinQA [10] dataset which is a large scale corpus of data of the earning reports of 
S&P500 companies. The entries are hence based on its proposed approach of re-
trieval and program generator, which resulted into multiple specialized finance 
question and answer pairs. To outline the dataset hierarchy, FinQA has text la-
bels for both pre/post of a table as well as it includes complex financial questions 
with their respective answers, logic program, explanation and model inputs. The 
data was cleaned by fixing the formatting by catering to the issues such as miss-
ing values in some features like explanation and answer. The instances which re-
flected evidence of such shortcomings were omitted to ensure good quality re-
sults. A comprehensive description of the dataset can be found in Appendix A.  

This dataset is employed by the models to perform the task of financial rea-
soning from a given set of financial information data. The required data was ex-
tracted from various files provided in the FinQA dataset. The selected training 
entries comprised of 810 rows and 2 input features and 2 output features. In the 
initial step, we added two more output features by further evaluating one of the 
features. In addition to this, data_points, a new attribute, was created using 
GPT-4 and GPT3.5-Turbo. This contained the necessary data points which were 
extracted from the input feature. This entirely was elaborated to obtain a Chain 
of Thought Rationale which was further utilized to train the model. The final 
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dataset consisted around 2 input features and 4 output features which when cu-
mulated behaved as an CoT rationale. To compare the scores of our approaches 
with the baseline, we further compiled a dataset consisting 100 random testing 
examples from the FinQA.  

4.1.2. Dataset for Arithmetic Calculation 
We crafted a synthetic dataset to make the language model learn how to ap-
proach when exposed to arithmetic tasks. The justification for generating this 
dataset primarily stems from the evident observations that LLMs struggle with 
basic arithmetic computation and often make arithmetic mistakes, even though 
the reasoning process is correct. Considering the practice used by the authors in 
the publication, titled “Goat” [8], we instilled a similar process to generate ran-
dom complex nested arithmetic expressions with its simplified mathematical 
operation, the steps to solve the expression and eventually the final answer. The 
dataset generated presents a graded range of expressions, progressing from basic 
to complex, thereby promoting enhanced retention and learning. The nested ex-
pressions comprises both standalone instances as well as combination of the four 
foundational operations: addition, subtraction, multiplication, division. The data 
is generated using a python script and has about 2K entries following the set 
standards laid down for it. While there is an assurance against the duplication of 
generated data due to the random numbers generated by the script, however the 
numbers with particularly fewer digits may occasionally recur. Detailed infor-
mation of the dataset is extensively covered in Appendix B. The process of da-
taset curation has been visually summed up in Figure 1. 

4.2. Dataset for Proposed Approach  

Our proposed approach of supervision requires curating a dataset for a supervi-
sor model. This can done by inferencing the finetuned model on a test dataset 
and comparing its solutions with the gold solutions. By inferencing the model on 
large test dataset, we can generate enough training labels that cumulate into the 
dataset for training the supervisor model. Therefore, the supervisor SLM dataset 
maps the false predictions by the model. This process is conducted for curating 
the datasets for both the target applications.  

5. Methodology  

To solve complex tasks like financial reasoning and arithmetic calculations using 
language models has proven to be difficult for not only small language model, 
but also for models that are huge in size with parameters in higher billions and 
trillions. To improve the efficacy of smaller language model on such tasks, we 
propose to implement the following approaches.  

5.1. Baseline Approach  

The baseline approach reflects the usage of a large language model to lay the 
foundation of comparative analysis to assess the performance of our proposed  
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Figure 1. Dataset Curation for Financial reasoning and Arithmetic Calculation. 

 
approaches. We utilized the Llama2-13B model [11] to devise the baseline re-
sults. This framework utilizes the Language Models which are made adept to the 
problem in the bigger aspect by using multiple techniques. For the scope of this 
research, the study revolves around the tasks in the financial and arithmetic do-
main, further extending it to the realm of question and answering with quantita-
tive data and nested mathematical expressions. These chunks of tasks can be eas-
ily handled independently by language models when they are finetuned for the 
specific purpose on a particular dataset. The models are fine tuned using distilled 
learning strategies which are made to instill the Chain-of-Thought rationales. 
This process of refinement using such strategies when repeated on a base model 
for different tasks with respective dataset results into a new fine tuned model.  

Fine Tuning Using Distillation 
The strategies implemented differ for each model due to difference in task and 
the dataset. Both the models were quantized in 4-bit, then fine tuned using 
QLoRA [12] technique using bf16 on a Nvidia RTX a 5000 GPU. Configuration 
for both were taken as low rank as 64, alpha equal to 64 with 0.05 as the dropout 
rate and the learning rate was set as 0.0002. The hyperparameters were decided 
by working out multiple combinations while also reading multiple sources [13] 
on task specific QLoRA parameter efficiency. The distinct point of difference 
were the training steps for each model, 1600 and 3400 for financial reasoning 
and arithmetic calculation, respectively. This was determined using the com-
plexity of task in hand the amount of data which was used for training. Both the 
models were fine tuned using Supervised Fine tuning trainer and were able to 
achieve satisfactory results during inference testing. 

5.2. Our Proposed Approaches  

The implementation of our approaches requires a selection of a Smaller Lan-
guage Model (SLM), for the purpose of financial reasoning and arithmetic cal-
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culation which is chosen to be Llama2-7B. We follow a similar baseline imple-
mentation and finetune (2x) Llama2-7B models for our tasks. The finetuning 
process was the replica of what we did in the baseline methodology. The further 
sections uses the word “SLM-x”, which essentially denotes finetuned Llama2-7B 
model for task-1 and task-2 i.e., financial reasoning and arithmetic calculation 
respectively.  

5.2.1. Proposed Approach 1: Threshold Based Method 
This methodical approach is implemented with additional refinements and 
augmentations including a supervisor language model trained for enhancing the 
output of the used SLM, in our use case. The role of this supervisor is to act as 
the corrective mechanism for the employed language model. It works on a simi-
lar strategy implemented in LeMa [6] while the distinguishing factor is that the 
supervisor model in our approach is a separate entity in the network. A sample 
supervisor prompt would take into consideration the previous model solution, 
the question and a prompt stating to correct the former solution. It would then 
rectify the step where the previous model went wrong and simultaneously cor-
rect the final answer. The supervisor ensures that its corresponding SLM adheres 
to delivering the right kind of output, offering corrective feedback and guidance 
to optimize the overall efficiency of the system. Figure 2 illustrates the proposed 
approach. Unlike the other approaches employed [9], where the size of the large 
language models incrementally increases in the chain, our approach utilizes the 
same size of SLM as the supervisor model.  

Figure 3 denotes the process of curating a dataset required for finetuning a 
supervisor model for the specific task. For the tasks, we inferred the SLMs using 
a validation set and mapped the output with the gold solutions [the correct solu-
tion to a given problem] using various NLP techniques and the algorithm de-
vised for the desired output. The supervisor model is therefore made adept to 
learn the mistakes made by its corresponding SLM thereby ensuring a supervi-
sory, corrective process akin to a corrector providing guidance and correc-
tions.  

Chaining of finetuned models: Followed by the process of fine tuning, the 
language models were first loaded from hugging face using pipeline function of 
the transformers module. Each model had its own LLMChain [14] setup with 
the help of LangChain [15]. The second LLMChain was only called when the 
output from the first LLMChain did not pass the scoring criteria. The final step 
of the approach involved inferencing of the the chains on the test data, similar to 
what is used for inferencing from Large language model in the baseline ap-
proach.  

Cost saving: To further optimize the usage in terms of invoking cost, we em-
ployed a scoring function which acts as a filter for the network. All the outputs a 
SLM are subjected to a scoring function. The supervisor is only called when the 
scoring function determines the output of a SLM is insufficiently lagging reason 
or has predicted a wrong outcome.  

https://doi.org/10.4236/jsea.2024.171002


G. Dhingra et al. 
 

 

DOI: 10.4236/jsea.2024.171002 32 Journal of Software Engineering and Applications 
 

 
Figure 2. Proposed network for threshold-based ap-
proach. SLM and supervisor SLM here denotes the fi-
netuned version of Llama2-7B model. This unit can be 
replicated for other tasks and when chained together, 
can potentially solve a complicated problem. 

 

 
Figure 3. Dataset Curation for the incorporation of the supervisor model as proposed in 
our study. 

 
Scoring function: A key component of the chain is the scoring function at-

tached to the SLM in the network. The introduction of the scoring function is 
grounded on the principle that any below-par performance by the predecessor 
language model, results in the subsequent degradation of the entire chain’s effec-
tiveness. It is developed on the basis of our targeted application of financial nu-
merical reasoning, hence it is worth noting that different use cases might have 
different metrics of evaluating the performance of the language models.  

1) Financial reasoning: The comprehensive scoring metric, tailored for eva-
luating financial reasoning within the Model 1 and its supervisor chain for con-
ducting financial numerical reasoning, encompasses a sequential workflow. This 
involves deriving an explanation from the context information and question, 
fetching necessary data points, and generating a program used for arithmetic 
calculations. The scoring metric evaluates parameters such as the exact match of 
numbers and operators, quantifies deviations, and checks for correct operator 
usage, aligning with the information provided in the questions. Additionally, it 
ensures accurate placement of operators, especially within nested operations, 
through a recursive function. Both approaches are equally weighted in calculat-
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ing the final score, ranging between 0 and 1. For a deeper understanding, Algo-
rithm 1 detailing the function can be referenced.  

 

 
 

2) Arithmetic calculation: The scoring function, akin to the one utilized for 
the financial reasoning task, evaluates the performance of SLM that performs 
arithmetic calculation. It assesses the performance of the model in the sequence 
by quantifying its accuracy by checking the closeness of two values based on 
predefined relative and absolute thresholds. In our study, this threshold is taken 
to be 5% The algorithm returns True if the absolute difference is within the ab-
solute threshold, or if the second value falls within a relative range of the first 
value, as defined by the relative threshold. If neither condition is met, it con-
cludes the values are not close and returns False. Refer to Algorithm 2 for getting 
an in-depth analysis of the utilized function.  

 

 

5.2.2. Proposed Approach 2: Parallel Processing Method 
This approach draws its fundamentals from the concept of utilizing two models 
performing the same task and choosing the best output from the two. It reflects 
the addition of another model of the same size and type to the model utilized for 
making the SLM. Both the models parallelly perform to deliver the results of the 
particular task at hand. Subsequently, the network determines the most relevant 
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output from both the models and selects the one that is the most contextually 
relevant, which is attained by employing the scoring function. Figure 4 portrays 
the methodology of this approach.  

The second versions of an SLM is actually dependent upon the type of task, 
for financial reasoning we found out that by utilizing different parameters, pri-
marily the QLoRa target modules and the training epochs, for the task 1 SLM-v2, 
we were able to fine-tune one model to concentrate on a particular task with 
higher success ratio. While the other model did not show any improvement on 
that particular sub task, it was efficient in solving other variety of questions. The 
dataset used for both the SLM-1 models were the same to maintain a level play-
ing field for the reasoning task. 

While the hyperparameters do play a crucial role, but for task like arithmetic 
calculation, it was found out that utilizing a dataset consisting higher precision 
of numbers, for example, a CoT rationale consisting calculation till 3 decimal 
places instead of 2, made it a much better candidate than finetuning the base 
model with different parameters. So for the finetuning of task 2 SLM-v2 of 
arithmetic calculation we utilised the above approach and kept the hyperpara-
meters same as the version 1 model. Hence, it is noteworthy that these can be 
two approaches while adapting the versions of the models to deliver tasks for 
this approach.  

Building the network: After fine-tuning both the versions of the models, they 
were loaded from hugging face using the similar strategy as discussed before. 
Each model has its own LLMChain setup. The chains were combined using 
LangChain’s RunnableParallel module [16]. Following this, a scoring function 
was attached to the combined chain. This architecture when executed returns a 
dictionary of the output of both chains, which when further passed to the scor-
ing function, retrieves the final output.  

Our proposed approach of parallel processing resonates a competitive net-
work wherein both the models concurrently solve the problem and the best is 
chosen to be taken forward. It is essential to ensure that the scoring function cu-
rated for a task is robust enough to catch all the essential aspects. In our study, 
we have utilized the same scoring function as employed in the above proposed 
approach or the threshold technique, as we had the same tasks at hand.  

 

 
Figure 4. Workflow for parallel-processing approach. Llama2-7B is 
utilized at all places. Both versions, v1 and v2 execute the task con-
currently, and the scoring function selects the most relevant outcome. 
The models are identical, differing only in their hyperparameters or 
dataset aspect, akin to the original, and are referred to as two versions. 
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6. Results  

This section addresses the results obtained by carrying out the above proposed 
methodologies and frameworks. The aim of this study was to lay task specific 
performance by 1) the baseline model 2) network of multiple SLMs with a super-
visor model for auditory purposes 3) network of SLMs with parallel processing 
utilizing a friend model. We utilized a test dataset consisting 100 testing prompts, 
keeping them same across all the proposed and baseline methodologies. The fi-
nal score (accuracy) is calculated as [Total number of Correct Answers/Total 
Prompts (i.e. 100)]. 

The application of these approaches has been demonstrated on the chosen target 
applications: financial reasoning and arithmetic calculation of nested mathematical 
expressions. It is prominent to note that while testing on math prompts, the an-
swers were tallied correctly if they were within 4% of the real answer.  

All the proposed approaches involved the usage of smaller language models 
[in our study they are Llama2-7B] moulded to cater to particular tasks by means 
of supervised fine-tuning. The extensive discussion of each framework is present 
in the further subsections.  

6.1. Task-Specific Model Performance  
6.1.1. Parallel Processing Approach 
This proposed pipeline involves the usage of two same SLMs in the chain for 
each sub-task that needs to be performed. The scoring function applied to the 
outputs generated by both the models assesses and rates them accordingly. The 
one that attains the maximum score out of the two is chosen to be taken forward 
in the chain. In Figure 5 below we display two plots for distinct tasks, financial 
reasoning and arithmetic calculation respectively. In each plot there are scores 
for two different versions of a model reflected individually with the scores of the 
proposed approach. The plot illustrates when individual models are subjected to 
a network where they are linked to their assisting models, they process concur-
rently and achieve maximum accuracy. 

Figure 5 displays the scores of two versions of Llama2-7B model fine-tuned with 
a different strategy and an accumulated score utilizing our proposed approach. 
The max scoring function used, takes into consideration the outputs generated 
by both the models and finalises one of them using the scoring criteria. The plots 
portray that the suggested parallel-processing approach achieves the highest ac-
curacy for both tasks, registering 57% and 85%, respectively.  

6.1.2. Threshold-Based Approach 
The proposed approach of utilizing smaller language models in form of a net-
work with employing the usage of supervisor model revolved around invoking 
the supervisor wherever (and whenever) necessary. This supervisor SLM acts as 
a control mechanism that methodically controls the errors encountered in the 
output of the main SLM. This approach yielded comparative results to employ-
ing a Large language Model for a specific task. The discussion of the result is 
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present in section 6.2 and its visual depiction can be referred in Figure 6.  

6.2. Performance Analysis  

The plots in Figure 6 demonstrate the scores of all the approaches implemented 
for each task separately. Llama2-7B and Llama2-13B denotes the fine-tuned ver-
sion of the base model designed to execute our desired tasks following the same 
strategy. Threshold-Based and Parallel-Processing Approach comprise of two 
Llama2-7B models each, as demonstrated in the methodology. The following 
graphs show that our approach, having similar number of parameters, provides 
more accuracy than a finetuned Llama2-13B model.  

 

 
 

 
Figure 5. Accuracy analysis for the parallel processing approach. The plot on the left 
is the depiction of accuracy for the task of financial reasoning, referred as Task 1. 
While the graph on the right depicts the efficacy for the arithmetic calculation for 
complex mathematical expressions, mentioned as Task 2. V1 and V2 are the versions 
of the same SLM employed in the network. Refer section 5.2.2 for more details. 
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Figure 6. Approach specific accuracy and baseline comparison for the chosen tasks. 
Task1 refers to financial reasoning while Task2 denotes arithmetic calculation. The SLMs 
utilized in our proposed approaches is Llama2-7B.  

 
The plots demonstrate that our proposed approaches stand equal or superior 

to the baselines in both the aspects. Our methodologies substantially improve 
the accuracy of the Llama2-7B model in both target applications, surpassing 
Llama2-13B in financial reasoning while achieving parity in arithmetic calcula-
tions’ capability.  

6.3. Cost Analysis  

In this section, we provide a comprehensive relative analysis of cost utilization 
for model inferencing when employing our proposed approaches and also for 
the established baselines. The following subsections provide a detailed break-
down of the cost analysis for each approach employed in tackling individual 
tasks. All the costs have been calculated utilizing the averaged length of tokens in 
the prompts [input + output] across the testing dataset.  
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• Threshold Based Approach: This proposed approach comprised of a net-
work of SLMs with the working model attached with its supervisor SLM that in-
crementally corrected its errors to enhance the accuracy of the returned answer. 
The scoring function employed in the networks acted as a gatekeeper and passed 
only sub-optimal outcomes further. Hence, looking closely to the methodology it 
can be understood that the total cost essentially depends on the frequency of in-
voking of the supervisor model. For the task of financial reasoning, it can be ex-
perimentally established that the threshold-based method yielded 11% lower cost 
when compared with the baseline. While for the task involving arithmetic calcu-
lation of mathematical nested expressions we observed a substantial 55% cost 
reduction.  

• Parallel Processing Approach: The proposed approach of parallel processing 
involved the network of SLMs wherein two models concurrently performed the 
same operation and the superior result out of the two is chosen as the final out-
put. Upon estimating, it demonstrated that the parallel processing approach re-
sulted in similar inferencing costs (+1.5%) and, therefore, gave no cost advan-
tage for the task of financial reasoning. For arithmetic calculation, it yielded a 
decrease of 2.5% of the overall cost from the baseline. This minimal reduction in 
costs compared to the baseline can be explained because the process involves 
invoking 2 models simultaneously which means the total cost becomes double 
that of Llama2-7B. This approach is more focused towards leveraging the poten-
tial of both the models, and attains a better overall result by ensuring similar in-
ferencing costs.  

Therefore, it can be concluded that both of our proposed approaches incur 
substantially lower (or at par) than the cost of the baseline. While these costs 
have been established for target financial applications, it can considered as a 
harbinger of improvements that may be obtained in other specialized areas. 
Further elaboration can be referenced in Appendix C. 

7. Limitations  

While the study exhibits valuable insights, it also holds certain limitations that 
warrant careful considerations. The precision of answers may be affected due to 
the acceptance of rounded numerical value as correct, potentially impacting the 
overall accuracy and reliability of the results. This approach is consistent along 
all the accuracy assessments. While we illustrate a sequential pattern of the LLM 
network, it is noteworthy that a variety of other configurations are possible de-
pending upon the complexity of the task at hand. We also do not include and 
discuss finance domain-specific LLMs, like BloombergGPT, in our work due to 
their limited public access.  

8. Conclusion  

The objective of this study was to conduct an analysis and lay out conclusions 
for the performance of model networks involving smaller language models and 
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eventually compare them to the efficacy of a larger LLM, which is chosen to be 
Llama2-13B. We introduced two new approaches: a threshold based and a pa-
rallel processing method. Both these approaches employ a network of SLMs to 
carve out the results for any complex task with an added supervisor model in the 
former and an assistive helper model in the latter approach. The introduced ap-
proaches employ Llama2-7B models this study differs from other studies where-
in the models were kept increasing incrementally in size when arranged in chain. 
The efficiency of the proposed approaches was evaluated on two complex tasks 
namely: 1) financial reasoning and 2) arithmetic calculation with nested mathe-
matical expressions, the domains that are largely untouched. Our quantitative 
analysis illustrated that our proposed networks of SLMs stand above or equal in 
comparison to the baseline established in terms of accuracy, while also giving 
better inferencing costs as compared to Llama2-13B when assessed on the test 
dataset. The proposed network provides the leverage of penetrability giving the 
option of molding the network wherever required as well as accounts to yield a 
benefit in terms of developer scalability, which can be attributed to both: low 
costs and size.  

9. Future Work  

The efficacy of the proposed approaches in their application to additional spe-
cialized applications can be measured in the future using similar techniques. 
Additionally, we can conduct experiments to test the alternate configurations of 
the network. We plan to test and compare our proposed network approaches 
against Language Models consisting of 50B+ parameters.  
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Appendix 

This is the appendix of the paper: Smaller & Smarter: Score-Driven Network 
Chaining of Smaller Language Models. 

A. Financial Reasoning Dataset  

The FinQA dataset [10] is a large corpus of data formed by eleven financial ex-
perts who collectively worked on analysing the earning reports of S&P500 com-
panies for the years ranging from 1999 to 2019. Based on its approach of retriev-
al and program generator, the dataset has around 8281 specialised finance ques-
tion and answer pairs. Apart from being groundbreaking one of its kind, the da-
taset has the potential to be utilised in training large language models to retrieve 
high quality question and answering application. It consists of many attributes 
out of which we will be focusing on a few, namely “question”, “gold_inds”, 
“program_re”, “explanation” and exe_ans”.  

B. Arithmetic Calculation Dataset  

The aim of crafting this dataset is to finetune the second model of the chain of 
the LLMs and specialise it for the task of arithmetic calculation of the pro-
gram_re expressions. The utilization of the fundamental mathematical opera-
tions: addition, subtraction, multiplication and division was driven by their fre-
quent occurrence noticed in the financial documents. program_re depicts the 
logic utilized to solve the reasoning tasks. The dataset consists of two broad cat-
egories of the expression: basic and nested. Basic expressions resonate the usage 
on an individual standalone foundational operator on a set of numerals while 
the nested expressions are a combination of operations with multiple dimen-
sions ranging from two to five. A breakdown of the split of the dataset can be 
referred in Figure A1.  

C. Comprehensive Cost Analysis  

This section comprises of an examination of the cost utilization of networks and 
models, presenting a comparative study between the proposed methodologies 
and established baselines. 

The input and output cost of Llama2-7B are 0.25$/Million tokens each and for 
Llama2-13B are 0.5$/Million tokens each. The final cost incurred is directly 
proportional to the length of the prompt which comprises of both the input and 
the output  

The basic cost without any network can be calculated by multiplying the unit 
cost of inputs with their total length and adding this to the product of the unit 
cost of outputs and their total length. Hence, this working can be employed 
while determining the cost for the baseline Llama2-13B. For the threshold based 
approach the final cost is the addition of the costs for the main model and the 
supervisor cost which essentially depends on the time of times the supervisor is 
invoked in the chain. For the task of financial reasoning this frequency was of 
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around 54 times while for arithmetic calculation it was around 20 times. Finally, 
for the parallel processing approach, the overall cost is twice the cost incurred 
for Llama2-7B model as it involves concurrent processing  

The plots in Figure A2 depict the cost fluctuations and comparison across all 
the approaches.  

 

 
Figure A1. Breakdown of the synthetically generated arithmetic dataset. Each alphabet is 
employed as a variable, serving to denote numerical values, including both integers and 
decimals.  

 

 
 

 
Figure A2. Plots depicting the fluctuations of cost for all the approaches across both the target 
applications. Task 1 (Top) illustrates financial reasoning while Task 2 (Bottom) depicts the 
arithmetic calculation application. 
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