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Abstract 
This paper presents a new dimension reduction strategy for medium and 
large-scale linear programming problems. The proposed method uses a sub-
set of the original constraints and combines two algorithms: the weighted av-
erage and the cosine simplex algorithm. The first approach identifies binding 
constraints by using the weighted average of each constraint, whereas the 
second algorithm is based on the cosine similarity between the vector of the 
objective function and the constraints. These two approaches are comple-
mentary, and when used together, they locate the essential subset of initial 
constraints required for solving medium and large-scale linear programming 
problems. After reducing the dimension of the linear programming problem 
using the subset of the essential constraints, the solution method can be cho-
sen from any suitable method for linear programming. The proposed ap-
proach was applied to a set of well-known benchmarks as well as more than 
2000 random medium and large-scale linear programming problems. The 
results are promising, indicating that the new approach contributes to the 
reduction of both the size of the problems and the total number of iterations 
required. A tree-based classification model also confirmed the need for com-
bining the two approaches. A detailed numerical example, the general nu-
merical results, and the statistical analysis for the decision tree procedure are 
presented. 
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1. Introduction 

The popularity of linear programming can be attributed to many factors, in-
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cluding its capacity to model large and complex problems and the ability to solve 
such problems in polynomial time [1] using effective algorithms. However, 
many large-scale real-life problems almost always contain a significant number 
of redundant constraints and variables, increasing their complexity and impact-
ing post-optimal analysis [2]. Redundancy in linear programming is expected 
because of the complete lack of knowledge about the constraints and the desire 
to formulate the problem without omitting essential elements. Thus, researchers 
tend to include all the information given in the form of binding and non-binding 
constraints. Even including non-binding constraints does not alter the optimum 
solution; it may require additional iterations and increase the computational dif-
ficulties [3] [4]. Furthermore, the optimal strategy is to remove the types of re-
dundancy, which reduces the total solution time [5]. Because they do not affect 
the solution structure, redundant or excessive constraints can be removed from 
the problem and not included in the formulation [2]. As a result, the constraints 
used should ideally be less than the original ones. This paper aims to present a 
method that uses a subset of the original constraints considered essential to the 
solution. It combines the cosine simplex algorithm [6] with a recently proposed 
method based on the weighted average of a linear programming problem [7] and 
eliminates redundant constraints while improving existing solving methods. 

1.1. Literature Review 

The contributions to algorithms and approaches for linear programming (LP) 
problems are reviewed in this section. The most popular techniques for solving 
LP problems are provided first. These techniques are used to characterize bind-
ing and redundant restrictions in addition to solving LP problems. The literature 
study also includes algorithms for eliminating redundant constraints, identifying 
binding constraints, or contributing to the dimension reduction of the problems. 
The first effective solution technique in linear programming was the Simplex 
method proposed by Dantzig [8] [9] [10], which is the most popular method 
that allows efficient post-optimality analysis; however, it is very computationally 
expensive for large-scale problems [11] [12]. Other computational methods for 
maximizing a linear function subject to linear inequalities were proposed [13] 
[14], and solving problems in polynomial time; nevertheless, they performed 
poorly in practice [15]. Corley et al. [6] presented the cosine simplex algorithm, 
an improvement of the Simplex algorithm that decreases the number of simplex 
iterations and calculations each iteration. The cosine criteria utilized detect ac-
tive constraints faster than the usual Simplex method. A polynomial projection 
approach [16], the Exterior Point Simplex Algorithm (EPSA) [17] [18], and im-
proved Simplex algorithms [19] [20] [21] [22] have also been studied. 

In addition to methods for solving LP problems, other algorithms have been 
developed to identify and remove redundancies. According to Terlakey [23], the 
ultimate goal of any technique is to identify nonessential constraints, and works 
suggest that redundant constraints should be identified and trivial constraints 
should be deleted [24] [25] [26]. Several techniques dealing with redundancy in 
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linear programming were summarized in the work proposed by Karwan et al. [3]. 
This work also mentioned that identifying and removing redundant constraints 
may be as computationally demanding as finding the solution. Furthermore, 
many approaches have been devised using pivoting rules, variable selection rules, 
and Simplex-like matrices to remove nonbinding constraints from LP problems 
[4]. Redundancy was studied by Luenberger [27] in LP, transportation, and flow 
chart problems. Algorithms for determining irrelevant constraints in systems of 
linear inequalities and identifying redundant constraints in a system of linear 
constraints have also been developed [28]-[34] in primal and dual-form LP 
problems, while methods for classifying linear constraints as redundant or ne-
cessary were also developed [35] [36]. Presolving heuristic algorithms have been 
used for identifying redundancy [5] [37] [38], and routines have been developed 
for large and sparse LP problems prior to solving them with an interior 
point-based optimizer [39]. Stojković and Stanimirović [40] proposed two direct 
methods for identifying redundant constraints in linear programming based on 
cosine similarity and game theory, respectively. Bradley et al. [41] proposed sev-
eral heuristic algorithms for detecting and exploiting structural redundancy in 
large-scale mathematical programming models, real-life linear programming, 
and mixed-integer models. New approaches have been developed to preprocess 
nonnegative large-scale problems to reduce their dimension by identifying and 
removing redundant constraints and variables [42] [43] [44]. Nikolopoulou et al. 
[7] proposed a method for identifying binding constraints in LP problems using 
the weighted average of each constraint. The method was accurate in problems 
without excessive or superfluous constraints, while in general LP problems, the 
accuracy of the proposed algorithm was tested using Type I and Type II errors, 
as described in a previous procedure [32].  

Real-life problems are often formulated as LP problems, including all the 
operative information given as constraints to avoid missing essential elements. 
This constraint inclusion leads to augmented problems, which are often hard to 
solve. To address this issue, we propose a method that uses the subset of binding 
constraints, forming a reduced-size problem equivalent to the original one using 
the outcomes from identifying binding constraints of two existing methods [6] 
and [7]. Consequently, combining two methods leads to a significantly reduced 
size of LP problems when applied to medium and large-scale LP problems. The 
new method is based on a geometric approach to identifying the subset of bind-
ing constraints; it eliminates the need for artificial variables and is not computa-
tionally demanding. Moreover, it introduces new notions in LP programming: 
the sufficient and the minimal efficient problem. 

1.2. Organization of the Paper 

The rest of the paper is organized as follows: Section 2 discusses the new ap-
proach using the combination of the weighted average method and the cosine 
simplex method. The proposed algorithm is presented in Section 3. Section 4 
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presents the numerical results of the algorithm tested on a collection of well-known 
benchmarks and random LP problems. Further statistical analysis using decision 
trees is presented in Section 5. Finally, Section 6 discusses the results and re-
marks on the proposed approach and possible extensions. 

2. Materials and Methods 
2.1. Description of the Problem 

Consider a linear programming problem with a nonempty convex feasible re-
gion: 

( ) T

subject to
max

0

=

≤
≥

z x c x

Ax b
x

                         (1) 

where x  is the n-dimensional vector of decision variables, ij m n
a

×
 =  A  is the 

coefficient matrix of the problem, [ ]i m
b=b  is the righthanded vector, and  

j n
c =  c  is the objective coefficient, jc ∈ , ija ∈  and 0ib > , for  

1,2, ,i m=  , and 1,2, ,j n=  . The coefficient function of the problem is  
( ) T=z x c x . All types of constraints are included in problem formulation since 

it is not known a priori which constraints are binding, redundant, or excessive. 
Large-scale LP problems almost always contain a significant number of redun-
dant and excessive constraints and variables. Unfortunately, no easy method ex-
ists to identify constraints except in two-dimensional problems [4]. 

2.2. Definitions and Assumptions 

In this section, five definitions are given. The first two refer to the types of con-
straints in LP problems; the next introduces a new notion regarding the subset of 
constraints required to solve an LP problem; and the fourth refers to the LP 
problem that is produced by a subset of constraints of the original problem. Fi-
nally, the last definition refers to LP problems formulated only by the binding 
constraints. 

Consider a linear programming problem (1) with a nonempty, convex feasible 
region. 

Definition 2.1: A constraint is called “binding” or “active” if it is satisfied as an 
equality in the optimal solution. Otherwise, the constraint is called “redundant”.  

Definition 2.2: If the plane of a redundant constraint contains no feasible 
points (it lies beyond the feasible region), then the constraint is called “excessive” 
or “superfluous”.  

Definition 2.3: Let { }1 2, , , mS s s s=   be the set of constraints of problem (1). 
Let { }1 2, , , uS s s s′ =  , u m<  be the subset of constraints that includes all the 
binding and nonbinding constraints. Then, { }1 2 1 2, , , , , , ,u u u mS s s s s s s+ +=   . 
Furthermore: 
● The S ′  subset is called “essential”, and a constraint that belongs to the S ′  
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subset is called “essential”. 
● In the special case where the number of constraints is less than the number of 

variables, then u m≤ . 
Definition 2.4: A linear programming problem consisting of several essential 

constraints is called a sufficient problem.  
Definition 2.5: A linear programming problem consisting of binding con-

straints is called a minimal efficient problem.  
Consequently, the following corollaries are formulated: 
Corollary 2.1: The sufficient problem is equivalent to the original problem and 

has the same solution.  
Corollary 2.2: There could be more than one sufficient problem equivalent to 

the original one having the same solution. 
Therefore, the new problem with the nonempty convex feasible region can be 

formulated as 

( ) T

subject t
max

0

o

u u

=

≤

≥

z x c x

A x b
x

                           (2) 

where x  is the n-dimensional vector of decision variables, u ij u n
a

×
 =  A  is the 

coefficient matrix of the problem, u is the number of the essential constraints of 
the original problem (1), [ ]u i u

b=b  is the right-handed vector, where j n
c =  c  

is the objective coefficient, jc ∈ , ija ∈  and 0ib > , for 1,2, ,i u=  , and 
1,2, ,j n=  . The coefficient function of the problem is ( ) T=z x c x . The con-

straints in the sufficient problem (2) are reduced compared to those in the orig-
inal LP (1). Thus, the sufficient problem (2) is reduced in size compared to the 
original problem (1). The main purpose of this paper is to locate the essential 
constraints that form a sufficient problem, that is, the { }1 2, , , uS s s s′ =   subset. 

2.3. Weighted Average Method & Cosine Simplex Algorithm 

In this section, the main idea of the two methods that are used to form the pro-
posed algorithm is presented.  
● Weighted average method [7]. 

Consider the linear programming problem (1). Assume that in this problem 
there are no excessive constraints and the feasible region is convex. Let  

( )1 2, , , nx x x∗ ∗ ∗ ∗=x   be the optimal solution to the problem (1). Binding con-
straints hold equality in the system of inequalities in problem (1), thus ∗x  is a 
solution for each binding constraint of the LP problem (1). The goal of the me-
thod is to identify the constraints that hold equality in the optimal solution ∗x . 
The key idea behind the method is that binding constraints can be predicted if 
the solution ∗x  can be estimated. For this purpose,  

  1
1

1

ij ijj
i i ijj
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                     (3) 
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is considered the weighted average of the i-constraint, 1,2, ,i m=  . Then, the 
n-dimensional vector ( ), , ,i i i iλ λ λ∗ = λ  is a solution to the i-constraint,  

1,2, ,i m=  . The si
∗λ , 1,2, ,i m=  , that correspond to binding constraints are 

expected to have similar or quite similar values. The m-dimensional vector 
( )1 2, , , mλ λ λ= λ  represents the weighted average for the set of constraints of 

the problem, and the aim was to use the si
∗λ , 1,2, ,i m=  , to identify binding 

constraints. For this purpose, si
∗λ , 1,2, ,i m=  , are used in ascending order. Τhe 

n-dimensional point ( )min min min, , ,M λ λ λ , where { }min min : 1,2, ,i i mλ λ= =  , 
is the only point where the bisector of the orthogonal coordinate system’s first 
angle intersects the feasible region’s boundaries. Hence, the constraint that cor-
responds to minλ , is a constraint of the feasible area. The rest of si

∗λ , lie on the 
bisector but are outside the feasible area of the problem (for further details, see 
[7]). The 𝑛𝑛-dimensional function ( ) ( )min min min, ,,λ λ λ∗ =T x   is a solution to a 
constraint of the feasible area and can be considered an estimator of the optimal 
solution ∗x  to the problem (1); therefore, the constraint corresponding to 
point M could be considered essential to solving the LP problem [45]. 
● Cosine simplex algorithm [6]. 

Consider the linear programming problem (1). Let 
T

cos i
i

i

a c
a c

θ =                              (4) 

for 1,2, ,i m=  , be the cosine of the angle iθ  between the vectors ia  and the 
vector c of the objective function. For a given problem (1), this method begins 
by solving a relaxed problem of the original objective function subject to a single 
constraint, yielding a nonempty, bounded feasible region. At each iteration of 
the algorithm, the constraint that is most parallel to the objective function 
among those violated by the solution to the current relaxed problem is appended 
to it. The algorithm adds active constraints until the Kuhn-Tucker conditions 
[11] and [1], both necessary and sufficient for (1), are satisfied. When no con-
straints are violated, the solution to the current relaxed problem is optimal for 
the original problem.  

2.4. Related Work and Motivation 

The main idea is based on a recently proposed notion: the segmentation of the 
area that is prescribed by the problem’s constraints into two parts: the high-chance 
area of nonbinding constraints and the area of potential binding constraints. For 
this purpose, a heuristic procedure using cosine similarity and the weighted av-
erage is applied. These two methods were chosen since they are both based on 
methods for potential binding constraints. As a result, a segmentation rule is 
formed based on the outcomes from the graphical plot between the cosine and 
the weighted average method [46]. The outcome of the segmentation rule was 
that the essential constraints should be searched among those that are more pa-
rallel to the objective function and those that correspond to small weighted av-
erage values. 
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An example of a linear programming problem (1), where the number of con-
straints is much larger than the number of variables, was used to form the heu-
ristic segmentation rule. In this problem, which constraints are binding, redun-
dant, or excessive is unknown. The example was considered a random problem, 
created using a jitter function, and implemented in R [47]. At first, a vector that 
was considered a solution to the problem was chosen. Then, the coefficient matrix 

ij m n
a

×
 =  A  was formed, and the coefficients ija , 1,2, ,i m=  , 1,2, ,j n=  , 

were generated independently and randomly from the uniform distribution. The 
vector [ ]i m

b=b  is formed by multiplying the above matrix A  with the consi-
dered solution and adding random noise to this vector. To form the objective 
coefficient vector j n

c =  c , the coefficients were generated independently and 
randomly, and [ ]1,1jc ∈ − , 1,2, ,j n=  . 

Consider a random 750 × 50 LP problem (1). The binding constraints in this 
example are 18. The optimal value of the objective function is equal to 28.065, 
and the number of total iterations is 146. Consider each constraint’s cosine (4) 
and weighted average (3). A graphical plot (Figure 1) is used between the cosine 
and the 21 iλ , 1,2, ,750i =  . The black dotted vertical lines refer to the quar-
tiles of the cosine and the 21 iλ , 1,2, ,750i =  , on the plot. In Figure 2, the 
axis that corresponds to 21 iλ , 1,2, ,750i =  , is represented by 21 l , and the  
 

 

Figure 1. First segmentation of a random 750 × 50 LP problem. 
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Figure 2. Second segmentation of the random LP problem. 
 
axis that corresponds to cos iθ , 1,2, ,750i =  , is represented by cos. The 
binding constraints are represented as dark blue dots, while the redundant or 
excessive constraints are represented as light grey dots. According to Figure 1 
there are no binding constraints in the area that is defined below the value of the 
first quartile of cosine. 

Therefore, the points in this area can be removed from the original problem 
and can be considered points referring to redundant or excessive constraints. 
This area can be considered a high-chance area of redundant or excessive con-
straints, while the complementary area can be considered an area where poten-
tial binding constraints can be found. The constraints considered essential to 
solving the problem are located in the complementary area.  

After removing the points in the high-chance area of excessive constraints, the 
constraints of the new problem are 562, which is equal to a 25% reduction of the 
original number of constraints. The optimal value of the objective function of 
the new, reduced-sized problem is equal to 28.065, which is equal to the value of 
the objective function of the original problem. In the reduced problem, the 
binding constraints are the same as those of the original problem; however, the 
total iterations are 111, which is a 23.972% reduction of the original number of 
iterations. In Figure 2, where the same procedure is used, the axis that corres-
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ponds to 21 iλ , 1,2, ,562i =  , is represented by 21 l , and the axis that cor-
responds to cos iθ , 1,2, ,562i =  , is represented by cos. The binding con-
straints are represented as dark blue dots, while the redundant or excessive con-
straints are represented as light grey dots. Ιn the new problem, it is observed that 
three binding constraints are in the new high-chance area of redundant or ex-
cessive constraints. Furthermore, there are no binding constraints in the lower 
left corner area of the plot, which consists of dots that are below the line refer-
ring to the new first quartile of cosine and the line referring to the new first 
quartile of 21 il , 1,2, ,562i =  . In this area, 39 constraints can be removed 
from the problem. 

The constraints of the new problem are now 523, which means that the con-
straint reduction of the original problem is 30.267%. The optimal value of the 
new, reduced-sized problem equals 28.065; the binding constraints and the non-
zero variables are the same as those of the original problem, and the number of 
total iterations is 109. The final number of iterations is reduced by 25.343%.  

The proposed two-step segmentation rule is summarized as follows: 
 

Two-step segmentation rule 

input: The number of decision variables (n), the number of constraints (m), the  
coefficient matrix of the problem (A), the vector of the right-hand side coefficients (b), 
the vector of the objective coefficients (c). 
Output:  

(Initialization) Compute: 
cos iθ , 1, 2, ,i m=  , using (4) 

1cQ , the first quartile of the values of cos iθ , 1, 2, ,i m=   
Step 1:  
Remove the constraints that: 1cos i cQθ ≤ , 1, 2, ,i m=   
Step 2: for the new problem, compute 

iλ , 1, 2, ,i k m= − , using (3) 
21 iλ , for 1, 2, ,i k m= −  

cos iθ ′ , 1, 2, ,i m=  , using (4) 

1cQ′ , the first quartile of the values of cos iθ ′ , 1, 2, ,i k m= −  

1Q λ′ , the first quartile of the values of 21 iλ , 1, 2, ,i k m= −  

Remove the constraints that: 1cos i cQθ ′ ′≤  & 1
21 i Q λλ ′≤ , 1, 2, ,i k m= −  

 
The rule’s effectiveness was proved by an application to 1000 random medium 

to large-scale LP problems, where the number of constraints was about 10 - 15 
times larger than the number of variables. More specifically, the rule was applied 
in 500 random LP problems, where n = 50 and m = 500, and in 500 random LP 
problems, where n = 50 and m = 750. The problems were implemented accord-
ing to the procedure described in this section regarding a random 750 × 50 
problem using R. To check the effectiveness of the segmentation rule, the bind-
ing constraints of the original problems and the binding constraints of the prob-
lems after the first and second segmentations were identified using the Simplex 
method in R. 
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After the first segmentation, the binding constraints were identical in 98% of 
the 500 × 50 problems. After the second segmentation, the binding constraints 
were identical in 87.2% of the problems, while in 99.2% of the problems, the 
number of binding constraints differed by one at most. These results are re-
ported in Table 1. In Table 2, the first and the second column refer to the statis-
tics regarding the percentage of the difference between the original objective 
value and the objective value after the first segmentation (p.obj1) and the per-
centage of the difference between the original objective value and the objective 
value after the second segmentation (p.obj2); the third and the fourth column 
refer to the statistics of the percentage of the difference between the original va-
riables and the variables after the first segmentation (p.sol1) and the percentage 
of the difference between the original variables and the variables after the second 
segmentation (p.sol2) and the last column refers to the statistics of the percen-
tage of the total constraint reduction (p.reduced). As is observed from Table 3, 
the two segmentations did not affect the value of the objective function signifi-
cantly.  

In 94% of the 750 × 50 problems, the binding constraints were the same after 
the first segmentation, and in 99.8% of the problems, the number of binding 
constraints differed by one at most. After the second segmentation, the binding 
constraints were identical in 82% of the problems, while in 97.2% of the prob-
lems, the number of binding constraints differed by one at most. These results 
are reported in Table 3. Finally, Table 4 reports the statistics regarding the  
 
Table 1. Binding constraints after the first and the second segmentation in 500 × 50 LPs. 

Binding 
constraints 

First segmentation Second segmentation 

Frequency Percent 
Cumulative 

percent 
Frequency Percent 

Cumulative 
percent 

0 490 98% 98% 437 87.4% 87.4% 

1 10 2% 100% 59 11.8% 99.2% 

2 0 0 0 3 0.6% 99.8% 

3 0 0 0 1 0.2% 100% 

Total 500 100%  500 100%  

 
Table 2. Statistics after the first and the second segmentation in 500 × 50 LPs. 

Statistics p.obj1 p.obj2 p.sol1 p.sol2 p.reduced 

Mean −0.0001 −0.0001 −0.0001 0.002 0.298 

Std. deviation 0.0004 0.0006 0.012 0.018 0.009 

Minimum −0.01 −0.01 −0.1 −0.1 0.276 

Maximum <10−4 <10−4 0.1 0.14 0.334 

Quartiles 

25% <10−4 <10−4 <10−4 0.292 0.292 

50% <10−4 <10−4 <10−4 0.298 0.298 

75% <10−4 <10−4 <10−4 0.304 0.304 
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Table 3. Binding constraints after the first and the second segmentation in 750 × 50 LPs. 

Binding 
constraints 

First segmentation Second segmentation 

Frequency Percent 
Cumulative 

percent 
Frequency Percent 

Cumulative 
percent 

0 470 94% 94% 410 82% 82% 

1 29 5.8% 99.8% 76 15.2% 97.2% 

2 1 0.2% 100% 13 2.6% 99.8% 

3 0 0 0 1 0.2% 100% 

Total 500 100%  500 100%  

 
Table 4. Statistics after the first and the second segmentation in 750 × 50 LPs. 

Statistics p.obj1 p.obj2 p.sol1 p.sol2 p.reduced 

Mean <10−5 −0.0001 <10−4 0.001 0.298 

Std. deviation 0.0002 0.0004 0.0045 0.018 0.008 

Minimum <10−5 <10−4 −0.08 −0.13 0.28 

Maximum <10−5 <10−4 0.07 0.21 0.32 

Quartiles 

25% <10−5 <10−4 <10−4 <10−4 0.292 

50% <10−5 <10−4 <10−4 <10−4 0.297 

75% <10−5 <10−4 <10−4 <10−4 0.304 

 
variables mentioned in Table 4; in this case, the two segmentations did not sig-
nificantly affect the objective function’s value. To conclude, the essential con-
straints should be searched among the constraints more parallel to the objective 
function and those corresponding to small weighted average values. 

3. Discussion on the Proposed Method 
3.1. Description of the Method 

For a given LP problem (1), where m > n, a combination of the cosine simplex 
algorithm and the weighted average algorithm is used to reduce the dimension 
of the problem. The main objective of the reduction is to keep the essential con-
straints and subtract the nonessential ones to determine a sufficient problem. To 
assure the effectiveness of the proposed method regarding the essential con-
straints, we calculate the percentage of binding constraints after the reduction 
that is identical to the binding ones in the original problem. For the implemen-
tation of the proposed method, the i-constraints, 1,2, ,i m=  , that  

8
1 10n

ij j ij a x b −
=

− ≤∑                        (5)  

are considered binding. The original and reduced problem can be solved using 
any LP method; for the proposed procedure, the Simplex method was used. 

The two algorithms, the cosine simplex and the weighted average algorithm, 
are combined and use the essential constraints proposed by the mentioned me-
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thods individually. Applying this procedure leads to a relaxed problem consist-
ing of the original objective function subject to a subset of the original set of 
constraints, forming a nonempty, bounded feasible region. Then, using a rank-
ing rule, the proposed method adds essential constraints until the Karush-Kuhn- 
Tucker conditions [1] [11], which are both necessary and sufficient for the 
problem (1), are satisfied to form this subset. The ranking rule is related to the 
cosine simplex and the weighted average algorithm. It can be summarized as 
follows: The problem’s constraints are sorted in ascending order by the weighted 
average criterion and in descending order by the cosine criterion. After locating 
the subset of the essential constraints, any LP method can solve the given LP 
problem. 

Regarding the weighted average criterion, a random integer number 1r : 

2n r m≤ ≤  is chosen. This number is considered the threshold for the weighted 
average of the constraints. That is, the constraints whose rank (in ascending or-
der) of 21 iλ  for 1,2, ,i m=  , is above this threshold should be used to solve 
the original problem (1). Let m1 be the subset of these constraints. This consid-
eration is equivalent to selecting the constraints whose rank (in ascending order) 
of iλ , for 1,2, ,i m=  , is below the threshold. Thus, it is ensured that the con-
straint related to minλ  is used. Regarding the maximum cosine criterion, a ran-
dom integer number 2r : 2n r m≤ ≤  is also chosen, and it is considered a thre-
shold for the cosines of the constraints. Let m2 be the subset of these constraints. 
In this case, the constraints whose cosines (in ascending order) are above this 
threshold should be used to solve the original problem (1). This consideration 
ensures that the constraint with the maximum cosine closest to the objective 
function is used. Constraints that form a minimum angle with the objective 
function are considered active [40]. However, if the system of inequalities in 
problem (1) contains several excessive constraints, some of the minimal angles 
derived from the cosine similarity (4) may be determined by excessive con-
straints [40]. 

The two criteria could lead to the same or a different subset of the original 
constraints. Then, the new method uses k constraints, where k is less than or at 
most equal to the original constraints, n k m≤ ≤ , to solve the problem (1). The 
k constraints are a combination of the constraints corresponding to both the as-
cending order of the weighted average values siλ , 1,2, ,i m=  , and the des-
cending order of cosine values. More specifically, the constraints satisfying the 
two criteria are essential for the original problem. The set of constraints pro-
posed by the two approaches—which is the sum of the constraints proposed by the 
weighted average and cosine method—is used to avoid a potentially non-feasible 
area. In the event that the constraints chosen do not lead to a feasible solution, 
the problem cannot be solved, and the procedure of setting new random num-
bers based on the weighted average and cosine criteria is repeated. More pre-
cisely, the new thresholds that are used to choose the two subsets of constraints 
m1 and m2, should have a lower value than the previous ones. The proposed al-
gorithm terminates when a feasible solution with fewer constraints than the 
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original problem is obtained (k < m) or all the constraints of the original prob-
lem are used (k = m).  

Combining the two methods leads to a subproblem equivalent to the original 
one since it consists of essential constraints. Using fewer of the original con-
straints may lead to a near-optimum because binding constraints may not be in-
cluded in the subset. However, applying the proposed method to several known 
benchmarks has shown that this probability is extremely low (see Table 5). 
Consequently, the new method could use a subset of the original constraints to 
solve the problem. For large-scale problems where the number of constraints is 
much larger than the number of variables, e.g., 10 - 15 times larger, the number 
of essential constraints could be much smaller than the number of original ones. 
Therefore, the dimension reduction can be quite significant. Apart from the di-
mension reduction, one advantage of the proposed method is that only a subset 
of the original constraints is included in the overall calculations using constraint 
selection. Another advantage is that no artificial variables except those used to 
solve the problem are used. The number of artificial variables is also reduced 
when a reduced subset of constraints is used. Moreover, in the subset of con-
straints, there is at least one constraint that forms the feasible region and is pro-
posed by the weighted average method, and at least one constraint that is consi-
dered active and is proposed by the weighted average method and/or the cosine 
method. 

3.2. The Pseudocode of the Proposed Algorithm 

A flow diagram of the weighted average and cosine algorithm (w.a.co) to provide 
an optimal solution for LP is shown in Figure 3. 
 
Table 5. Computational results on a selection of well-known benchmark LPs. 

Problem n m used n.bind p.bind m1 m2 Common 

25fv47 1571 821 772 540 0.987 532 573 333 

80bau3b 9799 2262 2262 1294 0.997 1427 2227 1392 

addlittle 97 56 56 44 1 49 55 48 

afiro 51 27 27 19 1 16 25 14 

agg 163 488 488 67 1 339 465 316 

agg2 302 516 506 84 1 342 488 324 

agg3 302 516 516 89 1 371 512 367 

bandm 472 305 305 245 1 129 281 105 

beaconfd 262 173 122 106 1 12 110 0 

blend 83 74 74 59 1 74 38 38 

bnl1 1175 643 607 367 1 560 220 173 

boeing1 384 350 336 239 1 237 335 236 

boeing2 143 166 129 128 1 102 27 0 

bore3d 315 233 232 101 1 109 227 104 

brandy 249 220 220 166 1 117 197 94 
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Continued 

capri 353 271 187 142 1 177 37 27 

cycle 2871 1903 1903 1204 1 1468 1202 767 

czprob 3523 929 901 875 0.996 598 815 512 

d2q06c 5167 2171 2145 1388 0.987 2056 1721 1632 

d6cube 6184 415 414 409 1 271 181 38 

degen2 534 444 440 331 1 256 438 254 

degen3 1818 1503 1503 1044 1 1441 554 492 

dfl001 12,230 6071 5791 5188 1 5257 4174 3640 

e226 282 223 203 123 1 172 112 81 

etamacro 688 400 369 308 0.997 192 280 103 

fffff800 854 524 524 330 1 448 426 350 

finnis 614 497 406 130 0.992 365 120 79 

fit1d 1026 24 24 24 1 23 6 5 

fit1p 1677 627 499 364 0.997 412 382 295 

fit2d 10,500 25 25 25 1 17 18 10 

fit2p 13,525 3000 3000 1500 1 2250 2462 1712 

forplan 421 161 148 142 1 125 81 58 

ganges 1681 1309 1078 443 1 776 385 83 

gfrd_pnc 1092 616 616 548 1 229 537 150 

greenbea 5402 2392 2392 2199 1 1906 1132 646 

greenbeb 5402 2392 2392 2199 1 1778 2211 1597 

israel 142 174 174 70 1 126 173 125 

kb2 41 43 43 9 1 17 34 8 

lotfi 308 153 143 111 1 126 100 83 

maros_r7 9408 3136 2863 984 1 2775 922 834 

moodszk1 1620 687 687 673 1 539 381 233 

nesm 2923 662 611 120 1 65 563 17 

pilot 3652 1441 1159 1152 1 1056 451 348 

recipe 204 91 91 40 1 79 58 46 

sc105 103 105 105 98 1 78 74 47 

sc205 203 205 205 198 1 124 102 21 

sc50a 48 50 50 47 1 48 26 24 

sc50b 48 50 50 50 1 26 33 9 

scagr7 140 129 112 102 1 87 79 54 

scfxm1 457 330 330 185 0.984 286 116 72 

scfxm2 914 660 660 375 1 329 603 272 

scfxm3 1371 990 990 565 1 896 612 518 

scorpion 358 388 381 312 1 355 115 89 

scsd1 760 77 77 69 1 75 39 37 

scsd6 1350 147 147 140 1 119 35 7 
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Continued 

scsd8 2750 397 397 391 1 178 279 60 

sctap1 480 300 166 146 1 136 39 9 

sctap2 1880 1090 930 569 1 371 916 357 

sctap3 2480 1480 1020 798 1 714 888 582 

seba 1028 515 514 505 0.998 75 514 75 

share1b 225 117 117 117 1 116 80 79 

share2b 79 96 96 59 1 47 86 37 

shell 1777 536 536 534 1 393 372 229 

ship04l 2118 402 397 139 1 374 256 233 

ship04s 1458 402 376 139 1 229 273 126 

ship08l 4283 778 778 365 1 447 707 376 

ship08s 2387 778 764 365 1 736 515 487 

ship12l 5427 1151 1096 498 1 752 859 515 

ship12s 2763 1151 909 498 1 792 443 326 

sierra 2036 1227 1221 566 0.993 587 1057 423 

stair 467 356 338 89 1 136 277 75 

standmps 1075 467 464 352 1 208 259 3 

standata 1075 359 356 352 1 208 233 85 

standgub 1184 361 361 354 1 210 251 100 

stocfor1 111 117 110 74 1 88 82 60 

tuff 587 333 333 300 1 259 97 23 

vtp.base 203 198 198 139 1 87 142 31 

wood1p 2594 244 244 242 1 201 159 116 

woodw 8405 1098 1064 1064 1 673 528 137 

 

 

Figure 3. A flow diagram of the weighted average and cosine algorithm (w.a.co). 
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A formal description of the proposed algorithm is presented below: 
 

Algorithm The weighted average and cosine algorithm (w.a.co) 

input: The number of decision variables (n), the number of constraints (m), the  
coefficient matrix of the problem (A), the vector of the right-hand side coefficients (b), 
the vector of the objective coefficients (c), two random integer numbers 1 1:r n r m< ≤ , 

2 2:r n r m< ≤ . 
output: The percentage of binding constraints after the reduction that are identical to the 
binding ones in the original problem (p.bind), the total used constraints (used), the  
constraints of the weighted average method (m1), the constraints of the cosine similarity 
method (m2), the common constraints ( 1 2m m ). 

(Initialization) Compute: 

iλ , 1, 2, ,i m=  , using (3) 
21 iλ , for 1, 2, ,i m=   

cos iθ , 1, 2, ,i m=  , using (4) 

Set ( ){ } ( )2 2increasing or1 1der rank 1i irnd λ λ== , 1, 2, ,i m=   

Set ( ){ } ( )increasing order2 co ors c sanki irnd θ θ== , 1, 2, ,i m=   

(General loop) 
While 1 1:r n r m< ≤ , 2 2:r n r m< ≤ , do 

Select: m1 = the constraints of rnd1 set that their rank is 1r≥  
Select: m2 = the constraints of rnd2 set that their rank is 2r≥  

If 1 2m m =∅ , then 
use the subset 1 2m m  

If the problem (1) is feasible, then 
solve the problem (1) using an LP method - STOP 
else 

select 1 1_r new r<  and 2 2_r new r<  
solve the problem (1) using an LP method  

end second if 
else  

if 1 2m m =∅  & 1 2m m m+ = , then 
solve the problem (1) using an LP method - STOP 

end first if 
Print  
p.bind, used, m1, m2, common 

end while 

3.3. An Example of a Linear Programming Problem 

In this section, we solve an LP problem using the proposed method.  
Consider the following LP problem (6): 

max 1 24 3x x+  

s.t. 

1 27 2 14x x+ ≤  

1 23 5 15x x+ ≤  

1 27 6 42x x+ ≤  
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1 2 7x x+ ≤  

1 23 4 12x x+ ≤  

1 2, 0x x ≥ . 

According to the definitions given in Section 2.2, the original set of con-
straints is { }1 2 5, , ,S s s s=  . The main purpose is to find the S ′  subset of con-
straints using the proposed approach. LP problem (6) is first solved using Simp-
lex in R to validate the effectiveness of the proposed procedure. The optimal 
value of the objective function is equal to 11.545. The first and fifth (the last) con-
straints are binding. Consequently, the essential constraints can be located ac-
cording to the criteria proposed in Section 3. The values for 21 iλ , 1,2,3,4,5i = , 
are 0.413, 0.284, 0.096, 0.082, and 0.34, respectively. The biggest value among the 
values of 21 iλ , 1,2,3,4,5i = , is referring to the first constraint. The ascending 
order of the values of 21 iλ , 1,2,3,4,5i = , is 5, 3, 2, 1, 4. Using the weighted av-
erage method, 1r  is randomly chosen as 2. Then, the constraints having the two 
bigger values of 21 iλ , 1,2,3,4,5i =  are chosen. Therefore, the essential con-
straints are the first and the fifth. The values for cos iθ , 1,2,3,4,5i = , are 0.934, 
0.926, 0.998, 0.989, and 0.96. The biggest value of cos iθ , 1,2,3,4,5i = , is refer-
ring to the third constraint. The ascending order of the values of cos iθ , 

1,2,3,4,5i = , is 2, 1, 5, 4, 3. Using the cosine similarity method, 2r  is randomly 
chosen as 4. Then, the constraints having the four bigger values of cos iθ , 

1,2,3,4,5i =  are chosen. In this case, the subset of essential constraints that are 
finally used are the first, the third, the fourth, and the fifth. The second con-
straint is not used since it does not satisfy either the weighted average or the co-
sine criterion. The second constraint is not binding, and its removal does not af-
fect the optimal solution to the problem.  

Therefore, the sufficient problem (7) consists of the four constraints is pre-
sented below: 

max 1 24 3x x+  

s.t. 

1 27 2 14x x+ ≤  

1 27 6 42x x+ ≤  

1 2 7x x+ ≤  

1 23 4 12x x+ ≤  

1 2, 0x x ≥ . 

LP problem (7) is solved again using Simplex in R language. The optimal val-
ue of the objective function of the reduced problem is equal to 11.545, which is 
the same as the optimal value of the objective function of the original problem 
(6). In the final problem (7), the first and fourth constraints are binding; the 
binding constraints of LP problem (6) are the same as the binding constraints of 
LP problem (7). According to the definitions given in Section 2.2, in LP problem 
(7), the subset of the essential constraints is { }1 3 4 5, , ,S s s s s′ =  while in LP prob-
lem (6), the original set of constraints is { }1 3 4 5 2, , , ,S s s s s s= . The constraint re-
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duction for the problem is 20%. 

4. Numerical Results 

In this section, the numerical results of the proposed algorithm are presented. At 
first, we apply the proposed method to several well-known benchmarks and 
random LP problems. Then, the proposed procedure was implemented in R for 
more than 2000 LP problems. Finally, after applying the procedure, the whole set 
of the reduced LPs, consisting of several well-known benchmarks and random 
LP problems, was solved using Simplex in R.  

4.1. Application of the w.a.co. Algorithm in Netlib Problems 

The proposed algorithm was applied to well-known benchmarks in the literature 
as netlib problems [48]. The netlib library includes medium and large-scale LP 
problems where some of them refer to real-life scenario problems; for example, 
blend is a variant of the oil refinery problem; boeing1 and boeing2 refer to flap 
settings on aircraft for economical operations; dfl001 is a real-world airline 
schedule planning (fleet assignment) problem; finnis is a model for the selection 
of alternative fuel types; lotfi involves audit staff scheduling; and pilot is one of 
the economic models developed by George Dantzig’s group. In these problems, 
the original constraints are the given constraints. The main goal was to deter-
mine the essential constraints that form the sufficient problem according to the 
definitions given in Section 2.2, that is, the { }1 2, , , uS s s s′ =   subset. However, 
only 16.45% of the set of problems (13 out of 79 problems) have constraints 
greater than the variables. Consequently, to deal with this particularity, some 
steps of the proposed algorithm were partially adapted:  
 
Adapted w.a.co. algorithm 

(General loop)  
While 1 1: 2r r m< ≤ , 2 2: 2r r m< ≤ , do 

Select: m1 = the constraints of rnd1 set that their rank is 1r≥  
Select: m2 = the constraints of rnd2 set that their rank is 2r≥  

If 1 2m m =∅ , then 
use the subset 1 2m m  

If the problem (1) is feasible, then 
solve the problem (1) using an LP method - STOP 
else 

select 1 1_r new r<  and 2 2_r new r<  
solve the problem (1)  

end second if 
else  

if 1 2m m =∅  & 1 2m m m+ = , then 
solve the problem (1) using an LP method - STOP 

end first if 
Print  
p.bind, used, m1, m2, common 

end while 
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Moreover, we should mention that LP problems where the number of va-
riables is greater than the number of constraints can be solved in dual form [27] 
apart from using the adapted algorithm. Table 5 reports the numerical results of 
applying the algorithm to a set of netlib problems. Since the number of con-
straints is less than the number of variables in 83.3% of netlib problems, in some 
problems there is no significant constraint reduction. More specifically, the 
number of essential constraints was less than the original constraints in 50% of 
the problems and equaled that in 50% of the problems. We also observe that the 
two procedures chose different sets of constraints (m1 and m2). In some prob-
lems, the average weighted method proposed more constraints than the cosine 
similarity method; in others, the cosine similarity method proposed more con-
straints than the weighted average method; however, it is unclear which proce-
dure is preferred. The weighted method selects fewer constraints than the cosine 
similarity method in 48.7% of the netlib problems. The detailed numerical re-
sults are summarized in Table 5. 

Regarding the names of the columns in Table 5, n refers to the number of va-
riables, m to the number of constraints, used refers to the number of essential 
constraints proposed by the proposed method, n.bind is the number of binding 
constraints according to (5), p.bind is the percentage of binding constraints lo-
cated by the proposed method to the binding constraints of the original LP 
problem, m1 is the set of constraints proposed by the weighted average method, 
m2 is the set of constraints proposed by the cosine similarity method, and com-
mon refers to the common constraints between m1 and m2. According to the de-
finitions given in Section 2.2, the numbers in column “used” refer to the subset 

{ }1 2, , , uS s s s′ =   of the essential constraints, while the numbers in column “m” 
refer to the set { }1 2, , , mS s s s=   of the original constraints. Regarding the 
number of iterations, the required number of iterations using the Simplex me-
thod is, on average, ( ) 2m n+  [12] [49]. Therefore, it is obvious that even when 
the constraint reduction is small using the proposed method for some netlib 
problems, the number of iterations and operations is significantly reduced. 

Descriptive statistics regarding the application of the algorithm are reported 
in Table 6. The first column refers to the percentage of the binding constraints  
 

Table 6. Statistics on a selection of well-known benchmark LPs. 

Statistics p.bind used_m m1_m m2_m m1_used m2_used m1_m2 c_used 

Mean 0.999 0.95 0.668 0.652 0.704 0.678 1.333 0.369 

Std. deviation 0.003 0.089 0.204 0.237 0.211 0.235 0.96 0.208 

Minimum 0.984 0.553 0.069 0.13 0.098 0.198 0.109 0 

Maximum 1 1 1 0.998 1 1 4.784 0.857 

Quartiles 

25% 1 0.94 0.532 0.502 0.579 0.504 0.674 0.211 

50% 1 1 0.677 0.679 0.738 0.703 1.055 0.385 

75% 1 1 0.823 0.861 0.872 0.897 1.578 0.518 
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(p.bind) after the reduction that are identical to the binding ones in the original 
problem; the second is the percentage of the used constraints (used_m), while 
the third and fourth columns are the percentages of m1 constraints (m1_m) and 
m2 constraints (m2_m) to the original ones, respectively. The following three 
columns are: the percentage of the m1 constraints regarding the essential ones 
(m1_used), the percentage of the m2 constraints regarding the essential ones 
(m2_used) and finally, the ratio of the m1 constraints to the m2 ones (m1_m2). 
The last column (c.used) is the percentage of the common constraints between 
the two subsets m1 and m2 and the essential ones.  

The method used 95% on average of the original constraints, while the mini-
mum percentage of used constraints is 55.3%, and the maximum percentage is 
100%. The median percentage of correct binding constraints for the problems 
equals 100% (99.9% on average) (Table 6). According to Table 5, the correctly 
binding constraints are 100% in 87.3% of the netlib problems, and in 12.7% of 
the problems, the percentage of correctly binding constraints is between 98.4% 
and 99.8%. Therefore, there is a slight chance, 0.09%, of not including a binding 
constraint using the proposed method. In terms of average, the percentage of the 
constraints proposed from the average weighted method and the cosine similar-
ity method was 66.8% and 65.2% of the original constraints of the problem, re-
spectively, and the constraints proposed from the average weighted procedure 
and the cosine procedure were 70.4% and 67.8% of the essential constraints of 
the problem, respectively (Table 6). The constraint reduction can be calculated 
up to 64% (initial constraints minus used ones). Since the mean percentage of 
the common constraints of the two algorithms to the essential ones is 36.9%, 
there is a need to exploit the proposed union of constraints between the two al-
gorithms (Table 6).  

4.2. Application of the w.a.co. Algorithm in Random LP Problems 

Apart from netlib problems, the proposed method was also applied to random 
LPs. We considered applying it to random LPs to exploit the proposed algorithm 
and prove its efficiency. The problems were created using the same R procedure 
presented in Section 2.4. The method was applied to 1000 random medium-scale 
LP problems, where [ ]3,50n∈  and [ ]30,747m∈  and to 1000 random large- 
scale LP problems, where [ ]50,100n∈  and [ ]511,1332m∈ . The number of 
constraints was set to 10 - 15 times larger than the number of variables. After the 
application, the random LP problems were solved using Simplex. The proposed 
algorithm contributed to reducing the number of original constraints and per-
formed fewer iterations when solving the reduced LP problems. The results are 
summarized in Table 7, where the column names are the same as those described 
in Table 5. Furthermore, in Table 7, the last column, iter_red, refers to the per-
centage of the iteration reduction. 

The method used 85.9% on average of the original constraints in medium-scale 
problems, while the minimum percentage of used constraints equals 36% and  
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Table 7. Statistics on medium-scale random LPs. 

Statistics p.bind used_m m1_m m2_m m1_used m2_used m1_m2 c_used iter_red 

Mean 0.933 0.859 0.605 0.602 0.694 0.694 1.482 0.423 0.196 

Std. deviation 0.065 0.121 0.249 0.253 0.247 0.252 1.545 0.198 0.173 

Minimum 0.778 0.36 0.075 0.082 0.084 0.097 0.084 0.039 0 

Maximum 1 1 1 1 1 1 10.176 0.983 0.737 

Quartiles 

25% 0.884 0.781 0.408 0.392 0.509 0.516 0.596 0.271 0.054 

50% 0.95 0.891 0.637 0.627 0.762 0.767 0.999 0.404 0.143 

75% 1 0.859 0.821 0.82 0.914 0.912 1.685 0.557 0.307 

 
the maximum percentage is 100%. The percentage of binding constraints in the 
problems is equal to 93.3% on average. In 25% of the random problems, the 
percentage is 100%, and in 75%, the percentage is between 77.78% and 100%. In 
terms of the average percentage of constraints, the constraints proposed from 
the weighted average method and the cosine similarity method were 60.5% and 
60.2% of the original ones, respectively, and the constraints proposed from the 
weighted average method and the cosine similarity method were 69.4% and 69.4% 
of the essential ones, respectively. The constraint reduction is 14.1% on average 
and can be calculated up to 64% (initial constraints minus used ones). The ratio 
of the common constraints of the two methods to the essential ones is 42.3% on 
average, which means there is a need to exploit the proposed union of con-
straints between the two methods.  

Our method performed fewer iterations on the reduced problems than on the 
original ones. The number of iterations demanded was 19.6% less on average 
than the original. The iteration reduction was calculated at 73.7%. As was men-
tioned in the netlib problems, the two procedures chose a different set of con-
straints (m1 and m2). According to Table 8, the weighted method selects more 
constraints than the cosine similarity method in 51.1% of the random me-
dium-scale problems, while in large-scale problems, it selects more constraints 
than the cosine similarity method in 48.6% of the random large-scale problems.  

Moreover, in large-scale problems, the method used 86.9% on average of the 
original constraints. The minimum percentage of essential constraints is equal to 
55%, and the maximum percentage is equal to 100%. The percentage of binding 
constraints is 92.5% on average; in 25% of random problems, the percentage is 
100%, and in the remaining 87%, the percentage is between 76.5% and 98.3%. In 
terms of the average percentage of constraints, the constraints proposed from 
the weighted average method and the cosine similarity method were 62.5% and 
60.7% of the original constraints of the problem, respectively, and the con-
straints proposed from the weighted method and the cosine similarity method 
were 70.9% and 69% of the essential constraints, respectively. The constraint 
reduction is 13.1% on average and can be calculated up to 44.5% (initial con-
straints minus used ones). The percentage of the common constraints of the two  
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Table 8. Constraints m1 and m2 in medium and large-scale random LPs. 

Constraints 
of the two 
methods 

Medium scale problems Large scale problems 

Frequency Percent 
Cumulative 

percent 
Frequency Percent 

Cumulative 
percent 

m1 511 51.1% 51.1% 486 48.6% 48.6% 

m2 489 48.9% 100% 514 51.4% 100% 

Total 1000 100%  1000 100%  

 
methods compared to the essential ones is 40%, which means there is a need to 
exploit the union of the proposed constraints between the two methods. These 
results are summarized in Table 9.  

The names of the columns in Table 9 are the same as those in Table 7. In 
terms of the average number of iterations, the number is 18.9% less than those in 
the original problem. The iteration reduction was calculated at 77.3%, and in this 
case, the two methods chose a different set of constraints (m1 and m2). 

4.3. Statistical Analysis 

In this section, the results of a statistical analysis that was conducted using the 
characteristics of the problems related to the two subsets of constraints, m1 and 
m2 are presented. At first, statistical analysis was used to confirm the need to use 
a combination of constraints m1 and m2, as proposed by the two procedures, the 
weighted average and the cosine similarity procedure. Furthermore, statistical 
analysis was used to identify the most critical factors that may affect the accuracy 
of the solution that was obtained using the proposed method and describe rela-
tionships between these factors regarding the accuracy of finding the optimal 
solution. These factors arise from the characteristics of the problems that are re-
lated to the new approach and its sub-methods. The percentage of correct bind-
ing constraints in LP problems using the proposed method was determined as a 
factor to specify the accuracy of the approach. 

4.3.1. Decision Trees for Medium and Large-Scale Problems 
The further goal of the statistical analysis was to predict the characteristics of the 
problem with respect to the two methods and confirm that it is necessary to use 
both methods to find an optimal solution. According to the numerical results in 
Section 4.2, the mean percentage of the common constraints of the two algo-
rithms to the essential ones is 42.3% on average in random LPs. Therefore, we 
conducted further analysis to explain and determine the proposed union of con-
straints between the two methods. More specifically, our main goal was to study 
which method should be used in different types of LPs to achieve better accuracy 
in finding the subset of binding constraints. For this purpose, a tree-based classi-
fication model was performed. Decision trees are techniques for determining 
which subsets of explanatory variables are most relevant to predicting a response 
variable. A tree structure is generated by recursively dividing the sample into a  
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Table 9. Statistics on large-scale random LPs. 

Statistics p.bind used_m m1_m m2_m m1_used m2_used m1_m2 c_used iter_red 

Mean 0.925 0.869 0.625 0.607 0.709 0.69 1.517 0.4 0.189 

Std. deviation 0.939 0.8994 0.667 0.627 0.782 0.759 1.023 0.199 0.175 

Minimum 0.765 0.555 0.079 0.073 0.088 0.082 0.088 0.069 0 

Maximum 1 1 1 1 1 1 11.933 0.964 0.773 

Quartiles 

25% 0.881 0.792 0.431 0.414 0.526 0.516 0.611 0.242 0.047 

50% 0.939 0.899 0.667 0.627 0.782 0.759 1.0231 0.366 0.135 

75% 0.983 0.964 0.839 0.817 0.919 0.908 1.709 0.536 0.292 

 
series of groups. A problem in tree construction is determining the splitting of 
the initial information into smaller and smaller pieces. The fundamental idea is 
to select each subset split so that the data in each descendant subset is “purer” 
than the data in the parent subset. Each subdivision is made such that the dif-
ference in the response variable in the resulting two groups is maximized [50] 
[51]. In addition, this technique does not require distributional assumptions; it is 
more resistant to the effects of outliers, and no advanced statistical knowledge is 
required to apply or interpret decision trees [50].  

Moreover, decision trees are data-driven and not model-driven. Therefore, 
this technique has been preferred in statistical analysis over other classification 
methods or models, such as discriminant analysis and logistic regression, which 
have their common origin in the general linear model [50] [51]. Two tree-based 
classification models were constructed from the two datasets of 1000 random 
medium and 1000 random large-scale problems.  

To perform a tree-based classification analysis, we considered the following 
variables according to the proposed method: 
● The variable p. bind_95 refers to the percentage of correctly binding con-

straints. The result is measured in two categories: the percentage that is less 
than 95% accurate and the percentage that is more than 95% accurate. It was 
considered a nominal bivariate variable.  

● P.bind_95 is a variable that we wanted to predict, and it was considered a 
measure of the accuracy of the proposed method.  

● Variables m1_m_cat and m2_m_cat refer to the percentage of binding con-
straints used by the weighted average method and the cosine similarity me-
thod, respectively, in the total binding constraints of the problems.  

These percentages are considered nominal bivariate variables with two op-
tions: 
○ the number of binding constraints (m_1) that is less than 50% (median) of 

the original number of constraints and the number of binding constraints 
(m_1) that is more than 50% (median) of the original number of constraints,  

○ or the number of binding constraints (m_2) that is less than 50% (median) of 
the original number of constraints and the number of binding constraints 
(m_2) that is more than 50% (median) of the original number of constraints. 
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● The variable m1_m2 is the ratio between the constraints from the weighted 
mean method and those from the cosine similarity method.  

The ratio was considered a nominal binary variable with two options: the first 
is when more constraints from the weighted average method are used, and the 
second is when more constraints from the cosine similarity method are used.  

We use the tree-based classification model in medium and large problems, 
where p.bind_95 is assumed to be the dependent variable and the other variables 
are independent. According to the performance measures used, the methods 
QUEST [52] [53], CHAID/exhausted CHAID [54] [55], and CART [56] [57] 
constructed the same trees. Moreover, the risk of the method and the percentage 
of correct classification were the same for the three methods [58] [59]. Therefore, 
without loss of generality, the CHAID growing method is used. This method 
builds a predictive model or tree to help determine how variables best merge to 
explain the outcome in the given dependent variable p.bind_95. More specifical-
ly, we use the CHAID method to predict the correct binding constraints using 
the constraints proposed by the weighted average method and/or the cosine 
Simplex algorithm. Furthermore, we want to predict which method should be 
used more to form the subset of essential constraints. For statistical analysis, we 
used IBM SPSS Statistics 28. 

4.3.2. Statistical Analysis and Numerical Results 
The classification trees for medium and large-scale problems are illustrated in 
Figure 4 and Figure 5 respectively. For each node, the number of problems and 
the percent of binding constraints, which is less or more than 95%, are given. 
The splits occur in order of importance. For example, m2_m_cat was the most 
significant factor regarding the percentage of binding constraints. The “parent” 
node is the accuracy percent of binding constraints and contains splits into two 
“child” nodes, one containing the percentage of the constraints suggested by the 
cosine similarity method, which is less than 50% (median), and the other con-
taining the percentage, which is more than 50% (median). In medium-scale prob-
lems, there are eight termination nodes; in large-scale problems, there are six ter-
mination nodes. The classification in Figure 4 and Figure 5 is highlighted in 
gray. For example, in the medium-scale LP tree-based model that is described in 
Figure 4, the binding constraints in node 5 are classified in the first category 
(the percentage is less than 95%).  

For both medium and large LP classification models, a suitable proposal for 
the two subsets of constraints, m1 and m2 can lead to more than 95% accuracy in 
constraint binding. More precisely, the constraints from the weighted average 
method should be less than half of the original ones to achieve more than 95% 
accuracy in binding constraints. However, the constraints proposed by the co-
sine method should be less than or more than half of the original constraints. If 
the constraints proposed by the weighted average method are more than half of 
the original constraints, the accuracy of the binding constraints is less than 95%. 
This consideration is described in Figure 4 and Figure 5. 
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Figure 4. Tree-based classification model in medium-scale random LPs. 
 

The tree-based classification model calculates a measure of prediction accuracy 
(risk) to indicate the proportion of cases misclassified by the proposed classifica-
tion. For medium-sized problems, the risk for resubstitution and cross-validation 
is 0.275 (standard error = 0.014), whereas for large problems, the risk for substi-
tution is 0.266, and for cross-validation is 0.275 (standard error = 0.014). Table 
10 reports these results. For medium-scale problems, the model correctly classi-
fied 71.2% of the first class of binding constraints (percentage of correct identi-
fication < 95%) and 73.8% of the second class of binding constraints (percentage 
of correct identification > 95%), while the overall percentage of correct classifica-
tion was 72.5% (Table 11). For large-scale problems, the model correctly classified  
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Figure 5. Tree-based classification model in large-scale LPs. 
 
Table 10. Classification risk in medium and large-scale random LPs. 

Method 
Medium-scale problems Large-scale problems 

Estimate Std. error Estimate Std. error 

Resubstitution 0.275 0.014 0.266 0.014 

Cross-validation 0.275 0.014 0.274 0.014 

 
Table 11. Classification in medium and large-scale random LPs. 

Observed 

Predicted medium-scale Predicted large-scale 

<95% >95% 
Correct 
percent 

<95% >95% 
Correct 
percent 

<95% 361 146 71.2% 393 159 71.2% 

>95% 129 364 73.8% 107 341 76.1% 

Overall percentage 49% 51% 72.5% 50% 50% 73.4% 

 
71.2% of the first class of binding constraints (percentage of correct identifica-
tion < 95%) and 73.8% of the second class of binding constraints (percentage of 
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correct identification > 95%), while the overall percentage of correct classifica-
tion was 73.4%. These results are summarized in Table 11. Consequently, for 
medium and large problems, there is a 72.5% and 73.4% chance of achieving ac-
curacy greater than 95% for binding constraints using the characteristics of the 
problems concerning the two subsets of constraints, respectively. 

The tree-based classification model supported the combination of the two 
methods. According to the classification model, the constraints proposed by the 
weighted average method should be less than 50% of the original ones, while the 
constraints proposed by the cosine method should be more than 50% of the 
original ones to achieve accuracy in solving LP problems.  

5. Conclusions 

Researchers tend to include constraints that are not binding to the optimal solu-
tion when formulating linear programming problems for fear of excluding ne-
cessary constraints. This inclusion does not affect the optimal solutions; none-
theless, it may necessitate more iterations and raise the computing difficulty. 
Thus, algorithms inevitably need to be developed to eliminate redundancy using 
necessary constraints and reduce the dimension of the problem under study.  

For this purpose, this paper proposes a method for dimension reduction of 
medium and large-scale linear programming problems using a subset of the 
original constraints considered essential. This subset includes the binding con-
straints and forms a sufficient problem equivalent to the original one. It is cho-
sen from two complementary procedures: the weighted average procedure and 
the cosine procedure. The weighted average procedure ensures that the proposed 
method uses at least one constraint that forms the feasible region and is poten-
tially binding, while the cosine similarity procedure uses at least one constraint 
with a high probability of binding. According to the numerical results, the com-
bination of the two algorithms mentioned seems to be promising. The accuracy 
of identifying significant constraints using this method was tested on a collection 
of known benchmarks and 2000 random medium and large-scale LP problems. 
Statistical analysis showed that neither method should be preferred but should 
be used in a complementary manner. More specifically, the constraints proposed 
by the weighted average method should be less than 50% of the initial ones, 
while the constraints suggested by the cosine method should be more than 50% 
to achieve accuracy in solving LP problems. The reduction of constraints was 
calculated up to 44.7% in netlib problems, 64% in medium-scale problems, and 
44.5% in large-scale problems, and the iteration reduction was calculated up to 
73.7% and 77.3% in medium and large-scale problems, respectively. 

Future work includes extending the computational studies to a larger number 
of tested problems from available benchmark collections and in integer or 
mixed-integer linear programming and improving the reduction and accuracy 
level by implementing the algorithms to use an appropriate subset of the original 
constraints. In addition, the quality of the linear model can be improved by 
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checking if the proposed subsets contain constraints that are not necessary by 
using specific properties as used in constraint satisfaction problems. The pro-
posed method can be applied to large-scale real-life problems like logistics and 
warehouse LP-formulated problems, transportation and transshipment prob-
lems, scheduling problems, product mix problems, airline operations problems, 
and problems related to personnel allocation and the public sector. Using the 
proposed method, we can also have information about the subset of constraints 
that can be used to solve the problem and consider alternative scenarios in case 
the optimal solution cannot be obtained for real-life problems for unpredictable 
reasons. 
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