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Abstract 
The pervasive presence of microplastics in marine environments has raised 
significant concerns. This review addresses the pressing issue of microplastic 
pollution in marine ecosystems and its potential implications for both the en-
vironment and human health. It outlines the current state of microplastic 
occurrence, distribution, and extraction methods within marine organisms. 
Microplastics have emerged as a significant environmental concern due to 
their harmful effects on ecosystems and their potential human health risks. 
These particles infiltrate marine environments through runoff and atmos-
pheric deposition, ultimately contaminating beaches and posing threats to 
marine life. Despite the gravity of this issue, there has been limited research 
on the presence and distribution of microplastics in marine organisms. This 
review aims to bridge this knowledge gap by comprehensively examining the 
occurrence, distribution, and various extraction methods used to detect mi-
croplastics in marine organisms. It emphasizes the urgent need for targeted 
measures to manage microplastic pollution, highlights the significant role of 
human activities in contributing to this problem, and underscores the im-
portance of reducing human-induced pollution to safeguard marine ecosys-
tems. While this paper contributes to the understanding of microplastic pol-
lution in marine environments and underscores the critical importance of 
taking action to protect marine organisms and preserve our oceans for future 
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generations, it also emphasizes that, in effectively tackling the microplastic 
problem, a well-coordinated approach is essential, involving research initia-
tives, policy adjustments, public involvement, and innovative technologies. 
Crucially, prompt and resolute responses must exist to counteract the esca-
lating peril posed by microplastics to the oceans and the global environment. 
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1. Introduction 

The prevalence of plastics in our daily lives is an important environmental issue 
that is being addressed in the twenty-first century [1]. Each year, a staggering 
300 million tons of plastic waste are discarded into our oceans, comprising items 
like plastic bags, discarded fishing gear, food containers, and bottles. Like other 
emerging contaminants (such as heavy metals and PFAS), these pollutants infil-
trate marine environments through various avenues, including rivers, coastal 
sewers, floods, and wind, ultimately contaminating our once-pristine beaches 
and resorts [2] [3] [4]. The combined impact of multiple contaminants under-
scores the complex challenges associated with maintaining the health and integ-
rity of marine environments. This surge in plastic and microplastic presence 
stands as one of the gravest threats to marine life and the environment, resulting 
from human activities both on land and at sea [5]. 

Microplastics, defined as plastic particles measuring less than 5 mm in size, 
come in two distinct categories: primary microplastics and secondary microplas-
tics [6]. Primary microplastics include products used in households and indus-
tries, such as cosmetics, cleansers, insect repellents, and sunscreens [7]. They al-
so result from the ship-breaking industry and air-blasting technology. Secondary 
microplastics are smaller fragments that develop over time from the degradation 
of larger plastic items in terrestrial and marine environments [7]. 

Microplastics are not individual entities but rather a mixture of polymers and 
additives that can absorb substances from the surrounding environment, in-
cluding pollutants and nutrients [5]. Recently, airborne tire wear particles 
(TWPs)–a class of microplastics pollution-were reported to contain toxic com-
pounds such as 6PPD-Q and 4-ADPA that can leach from these TWPs via urban 
stormwater runoff posing health risks to marine organisms [8]. The presence of 
microplastics in aquatic environments is a global concern due to their toxicity 
and persistence. They can serve as vectors for various pollutants and emerging 
contaminants in marine organisms [9]. Chemical additives used in plastic man-
ufacturing, environmental contaminants absorbed on plastic surfaces, and heavy 
metals can have harmful effects on marine biota, including disruption of meta-
bolic and reproductive activity, weakened immune response, oxidative stress, 
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cellular toxicity, inflammation, and even cancer [5] [10] [11] [12] [13] [14]. 
Moreover, microplastics increase chemical substances’ bioavailability and bi-

oaccumulation risk in marine organisms, as these particles can be ingested [15] 
[16]. In recent years, microplastics have been recognized as emerging pollutants 
and a significant threat to marine organisms and ecosystems worldwide [5]. If 
their accumulation continues at the current rate, it is predicted that by 2050, 
there will be more microplastics than fish in the oceans. 

This is a critical environmental issue because the pervasive presence of micro-
plastics has far-reaching consequences for marine ecosystems and, by extension, 
human well-being [17] [18]. The effects of microplastics are not confined to the 
immediate marine environment; they have the potential to disrupt entire food 
chains and ecosystems [19]. 

One concerning aspect is the bioaccumulation of microplastics. As marine 
organisms ingest these tiny plastic particles, they can become carriers of pollu-
tants that adhere to the surfaces of microplastics [20]. When larger organisms 
consume the contaminated prey, the pollutants can biomagnify through the food 
web, resulting in potentially harmful concentrations in apex predators, including 
species consumed by humans [21] [22]. This raises significant concerns about 
the safety of seafood and the potential transfer of contaminants up the food 
chain to human consumers. 

The impact of microplastics extends beyond direct ingestion and bioaccumu-
lation. Their presence in aquatic ecosystems can disrupt nutrient cycling and al-
ter microbial communities, potentially affecting the health of the entire ecosys-
tem [23]. Moreover, the ingestion of microplastics by filter-feeding organisms, 
such as mussels and oysters, can lead to reduced feeding efficiency, impaired 
growth, and compromised reproduction [24] [25]. These effects reverberate 
throughout the ecosystem, potentially causing cascading impacts on other spe-
cies [26] [27]. 

Although many studies have examined the sources, fate, transport, and tox-
icity of microplastics in terrestrial and marine environments [1] [4] [28] [29] 
[30] [31], a few have focused on the occurrence, distribution, and extraction 
methods of microplastics in marine organisms. To bridge this knowledge gap, 
this review provides a comprehensive overview of the occurrence, distribution, 
and extraction methods of microplastics in marine organisms to present current 
data on the presence and distribution of microplastics in marine environments 
worldwide in a bid to understand the extent of microplastics pollution and their 
potential effects in marine ecosystems, while discussing the pros and cons of dif-
ferent extraction methods of MPs in marine organisms. 

2. Occurrence, Abundance, and Distribution of Microplastics  
in Marine Habitat 

Plastic was introduced for the sole purpose of creating convenience for people. 
However, it has become a burden due to its persistent nature. Plastic pollution of 
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the marine environment, particularly oceans and inland waters has become a 
global issue because of the threats it poses to humans and aquatic bodies. It is es-
timated that if this is left unabated, it could be 12 billion tons affecting most of 
the globe by 2050 [32]. Microplastics are quite harmful to living organisms [33] 
[34] and have become a growing cause of concern because they affect marine 
habitats and the lifeforms of organisms. 

It is even more dangerous with the reality that these microplastics can easily 
enter into marine habitats alongside wastewater, drainage systems, litter from 
the environment, washing clothes, and fertilizer [35]. Microplastics are broadly 
classified into two. These are primary and secondary sources. In Figure 1 below, 
these sources are exemplified, including their pathway into the aquatic ecosystem. 

The primary source of microplastic is mainly specific industrial sectors. They 
are mostly used for specific industrial applications. Mechanical exfoliants like 
cosmetics, healthcare products, sunscreen, and toothpaste are some of the com-
mon examples of primary sources of MPs [6] (Many of these items are com-
monly used as such it is not surprising to see that its users discard them inap-
propriately [36]. 

The secondary source of microplastics forms in the marine environment due 
to the fragmentation of larger plastics into fine matter. These items are com-
monly released into the marine environment through bottles, pipes, clothing, 
nets, and plastic sheets. Microplastics make up 95% of the pollutants that are 
found in marine habitats. Interestingly, these pollutants accumulate and spread 
over the marine environment, water surfaces, and sea floors [37]. 

 

 
Figure 1. Exemplary sources of microplastics that infiltrate the marine environment. 
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MPs get into the marine habitat through the movement of wind, sewer, and 
even tidal processes and these affect the aquatic organisms that consume these 
microplastics [38] [39]. In the bodies of these aquatic bodies, the plastics can be 
broken down into smaller parts due to stress, biological processes, and even 
changes in temperature. These contaminants have pores that easily absorb 
chemicals from their surroundings and can transport these components to living 
things. Unfortunately, when these marine organisms consume these toxic com-
ponents, it reduces immune function, affects growth, and even results in oxida-
tive stress for the organisms. MPs can easily enter freshwater and marine envi-
ronments if not properly managed and this will have dire consequences. Sadly, 
many aquatic organisms mistake these microplastics for foods and as such, they 
consume them [40]. When aquatic organisms consume these toxic substances as 
food, it can cause chemical and physical properties. These plastics when con-
sumed by aquatic organisms can cause blockage in the digestive system and 
cause reduced growth of the animals [41]. This is not all as different chemicals 
and metals can stay associated with these microplastics and affect the lives of 
aquatic animals [42].  

Microplastics infiltration has become very prevalent, with algae being mostly 
affected by this infiltration [43]. Unfortunately, it doesn’t end with algae as its 
consumption can also pose a risk to humans. There have been instances of MPs 
going into the food chain and affecting people who consume such foods. Special 
attention is drawn to MPs because they have been detected in human-related 
foods like table salt, milk, beer, and honey [44]. Microplastics pollution has left a 
negative impact on the economy and even public health. These microplastics are 
known to pose serious health concerns to humans because of their toxic effects. 
Unsuspecting individuals get affected by these microplastics by inhaling the sub-
stance in the air or through dermal infusion. 

Although there are different methods of identifying microplastics, they are 
broadly classified into two types such as physical and instrument-based meth-
ods. However, the instrument-based method is considered to be more reliable 
for identifying microplastics. Considering plastics account for about 80% of ma-
rine litter, it becomes necessary to control the pollution caused by these micro-
plastics [45]. One of the ways to control this pollution is through the introduc-
tion of strict regulations to control all aspects of marine resources. An example 
of such regulations is the United Nations Convention on the Law of the Sea 
(UNCLOS). UNCLOS emphasizes the need for nations to establish a framework 
to control the pollution caused by waste dumping. Another marine pollution 
control is recycling plastic materials. When the recycling rate of plastics is in-
creased it can reduce pollution caused by plastics use and production. Plastic 
waste should be properly treated to prevent environmental pollution in the future. 

3. Occurrence, Abundance, and Distribution of Microplastics  
in Marine Organisms 

One of the main sources of microplastic contamination in marine organisms is 
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secondary microplastics, which are produced as a result of the degradability and 
fragmentation of primary microplastics [46] [47]. The most prevalent form of poly-
mer discovered, Polyethylene, makes up 23% of total consumption. It is followed by 
polystyrene (22%), polypropylene (12%), polyester (9%), and polyamide (6%). In se-
lected studies, fibers and fragments were the most often ingested substances in terms 
of shape, with consumption rates of 23% and 21%, respectively [48]. 

An important biological system that depicts the movement of energy and nu-
trients through the ocean ecosystem is the food chain of marine organisms. Pri-
mary producers like phytoplankton and algae are where it all starts because they 
use light and nutrients to generate organic matter via a process called photosyn-
thesis [49]. These producers are consumed by primary consumers like zoo-
plankton and herbivorous fish. Primary consumers are consumed by secondary 
consumers like predatory fish and cephalopods [50]. The highest trophic levels 
are populated by tertiary consumers like apex predators and marine mammals. 
Detritivores and decomposers, including bacteria and crabs, disintegrate organic 
materials and dead organisms to recycle nutrients back into the ecosystem [51]. 
Different organisms with adaptable diets and roles in different trophic levels 
make up the interconnected and complex marine food chains. Given the im-
portance of each level in the marine food chain, microplastics contamination at 
any level would have a significant effect [52]. 

All marine organisms at various levels of the food chain have the potential to 
consume MPs and related contaminants through a number of different routes, 
such as inhalation at the air-water interface, filter/suspension feeding, consump-
tion of prey that has been exposed to MPs, and direct ingestion [53] [54]. They 
can also bioaccumulate a wide variety of MPs with various sizes, colors, shapes, 
and polymeric compositions [55]. Yet, it is generally recognized that ingestion is 
the primary method through which MPs accumulate in aquatic organisms [56]. 
Additionally, small-sized MPs are ingested by organisms of various feeding 
types, allowing biological interaction, because they overlap or come into contact 
with the size range of their prey [57] [58]. 

According to Cáceres-Farias et al. [59], fish was observed to have the highest 
microplastics abundance (75% ± 12.0%), followed by mollusks (90% ± 3.5%) and 
crustaceans (20% ± 7.0%). Filter feeders like mussels and oysters might possibly 
ingest microplastics. The prevalence of microplastic contamination in the soft 
bodies of several mussel species has previously been estimated to reach 97% [60]. 
Another study found that the mussel species Mytella charruana was observed to 
have a prevalence of 87% of microplastic particles in its soft body. In other re-
cent investigations, mollusks with prevalence of 83% and 47%, respectively, in-
cluding the Pacific oyster Crassostrea gigas and the palmate oyster Saccostrea 
palmula [61]. Another research found that Crassostrea cf. corteziensis, one of 
the species with the greatest plastic pollution, had a prevalence of microplastic 
particles of 93% [59]. On an ecological level, however, the consumption of mi-
croplastics by bivalves has shown a number of adverse effects on molluscs, in-
cluding oxidative damage, immunological response, and cytotoxicity [62]. 
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Microplastics have been found in crustaceans, where they are present in 53% 
of crustaceans in the North Pacific zone and 20% of penaeid shrimps in the 
Tropical Pacific [63]. Plastics can get caught as crabs push water over their gills 
to take in oxygen. For instance, crustaceans exposed to polystyrene microbeads 
exhibit reduced fecundity, delayed growth of offspring, reduced intake of food, 
impaired enzyme function, and altered behavior [64]. 

Fishes, when exposed to MPs, may ingest through their gills and digestive sys-
tems [64]. In another research, the glassfish, Ambassis dussumieri, had a re-
duced body length when exposed to microplastics than when treated as a con-
trol, and the probability of surviving was similarly lower than those of the con-
trols [65]. Difficulty in feeding due to the blockages in digestive organs was 
caused by larger microparticles [66]. This blockage and irritation in the gastro-
intestinal tract led to reduced feeding which would lead to decreased nutrient 
intake [67]. Furthermore, it was shown that MPs in fish species’ gills, livers, and 
digestive tracts promote inflammation, oxidative stress, and disturbed energy 
metabolism [68]. 

4. Microplastics Extraction in Marine Organisms 

Microplastics serve as a conduit for conveying absorbed persistent organic pol-
lutants, heavy metals, fish pathogenic bacteria, and multi-drug resistant E. coli 
[69] [70] which may have harmful impacts on marine organisms, and hence the 
need for microplastic extraction. Microplastics have been identified in a range of 
marine organisms spanning varying ecological pyramids including including ce-
taceans, bivalves, zooplankton, worms, and seabirds [71] [72].  

Identifying, measuring, and extracting microplastics from marine organisms us-
ing scientific methods can be challenging [73] and require specialized techniques 
and equipment. Several works of literature on microplastic extraction from the en-
vironment apply multiple extraction techniques including density separation, siev-
ing, digestion, and filtration [74] [75] for MP extraction from sediments, marine 
organisms, and water samples but the one technique specific to extraction from 
marine organisms have been chemical digestion for most studies [75] [76] [77]. The 
path to MP detection in food items is illustrated in Figure 2, and the subsections 
that follow elucidate important extraction methods. Identification and extraction of 
MPs from organisms provide an understanding of the extent of marine pollution 
and prevent further harm to living marine organisms. 

4.1. The Digestion Process 

The digestion process allows researchers to isolate and study microplastics from 
marine organisms in a controlled laboratory environment using different forms 
of chemicals including acid [79], alkaline [80], oxidizing agents [81], and en-
zymes. In laboratory settings, a chemical digestion approach can be applied to 
extract microplastics from the gastrointestinal tracts of marine organisms [82] 
[83]. This technique is commonly used for MP extraction in fat fish species [83],  
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Figure 2. Microplastic detection stage [78].  

 
zooplankton, phytoplanktons, bivalves, crustaceans, and polychaete [15] [75] 
and other marine species. Extraction is conducted on dead species similar to a 
necropsy (an animal autopsy) where the plastic debris is carefully separated and 
removed using chemical solutions at different densities, oxidizers, acids, or alka-
line substances. The forms of digestion applied in the extraction of MP in ma-
rine organisms are described in the subsections that follow. 

4.1.1. Acid Digestion 
The most commonly used acids for digestion during the extraction of microplas-
tics include the strong acids nitric (HNO3), Perchloric (HClO4), formic (CH2O2), 
hydrochloric (HCl) [76] and rarely peroxymonosulphuric (H2SO5) [79]. The 
weaker acids ascorbic (C6H8O6) and citric (C6H8O7) are mainly used as enhanc-
ers and or buffers [76]. The major advantage associated with the application of 
strong acid digestion lies in their effective (94% - 98%) biogenic matter destruc-
tion [84]. However, research has shown that the conditions under which the ac-
ids must be applied for effective biogenic destruction pose major drawbacks be-
cause they have deleterious effects on some of the plastics to be extracted. Such 
conditions include; 95% HNO3 [85], 69% HNO3 [86] heat treatment 60˚C, 80˚C, 
2 h [79], 80˚C, 3 h [87], 100˚C, 2 h [85]; prolonged extraction time such as over-
night [88], 96 hours [86] and using the acids in combination; HNO3:HClO4 (4:1 
v:v), HCl:HNO3, (1:3 v:v) [74]. 

Generally, at high concentrations and temperatures, the strong acids namely 
nitric, hydrofluoric, Perchloric, peroxymonosulphuric, and sulphuric severely 
degrade MPs. peroxymonosulphuric, and sulphuric are likely severely damaged 
[86]. Li et al. [89] reported the complete removal of the tissues of the banana 
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prawn GIT but also the significant degradation of seven reference polymers 
(polyamide (PA), polyethylene (PE), polyester (PES), polypropylene (PP), poly-
styrene (PS), polyvinyl chloride (PVC), and rayon) by concentrated acid diges-
tion treatment. Avio et al. [77] reported a recovery of only 4% for PE and 4 ± 3% 
for PS respectively from 22.5 M nitric acid after 12 h at room temperature fol-
lowed by 30 min boiling. In a related study, Schrank et al. [79] reported in-
creased stability of PE and PS with recoveries of 95% - 100% and 49% respec-
tively upon boiling with 15.7M nitric acid for 2 h suggesting improvement of 
MPs stability by lowering concentrations of digestants. Schrank et al. [79] also 
reported the complete dissolution and destruction of PA, PET, and PUR by hot 
nitric acid (80˚C, 15.7 M HNO3, 2 h). 

Peroxymonosulphuric (H2SO5) (Caro’s) acid, a very highly activated and 
strongly oxidizing acid made by mixing H2O2 with concentrated H2SO4 has been 
reported to severely degrade polyurethane (PUR) and PA during extraction of 
MPs [79]. Formic (CH2O2) has also been suggested as a digestive agent and was 
used (3%, 72 h) to decalcify polyps to assist in the visualization of ingested blue 
polypropylene shavings [89]. HCl, though known for its low digestion efficiency, 
has been reported to cause disintegration of PA, clumping of PET, and surface 
modifications to PVC by exposure at (37%, 25˚C 6 h) [86]. In combination with 
concentrated nitric acid (HCl: HNO3, 1:3), the aqua regia is a potent oxidizing 
agent though still less aggressive than pure concentrated nitric acid. PA can 
however be degraded even by a 5% HCl [90]. Furthermore, (PA, Nylon), polyes-
ter, (PET) and polycarbonate have minimal resistance to acids, even at very mild 
concentrations [91]. 

Given all the above, Rani et al. [74] and Joano et al. [92], suggested the impo-
sition of limits to the use of acidic digestion or utilizing it with extreme caution 
and presumably when other approaches fail. Dellisanti et al. [93], reported the 
frequency of use for the various methods of digestion of mussels to be in the or-
der; alkaline (46%) > oxidative (28%) > mixed chemical (12%) > enzymatic (8%) 
and acidic digestions (6%). 32% of these treatments were paired up with density 
separation steps using NaCl solution for efficacy. A similar trend was observed 
for fish; alkaline (56%) > oxidative (12%,) > mixed chemicals (10%) > acids 
(8%) >enzymes (4%) [93]. 

Despite the drawbacks mentioned above however, acid digestion has been ap-
plied in the extraction of MPs from several marine organisms including fish 
[94], shellfish [95], crabs [96] [97], mussels [85], banana prawn gut [89], diges-
tive tract of decapods [84] [97], copepods and euphausiids [87] and bivalves, 
polyps [89] among others.  

4.1.2. Alkaline Digestion 
Alkaline digestion applies basic solutions such as potassium hydroxide (KOH) 
[98], sodium hydroxide (NaOH), and sometimes the weak base sodium hypo-
chlorite (NaClO) [74]. These are used to digest animal tissues through hydroly-
sis and denaturation of proteins [99]. KOH (10%, 1.26M) has been the most 
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frequently used during the extraction of MPs because of its relatively mild dam-
age to MPs compared to other chemicals such as NaOH [84]. It was applied to 
successfully digest the GIT of fish during a 2 - 3 week incubation [100]. KOH: 
NaClO (1:1, v/v) combination was reported to give the highest efficiency in the 
fish stomach by destroying adhering biofilms composed of polysaccharides, 
proteins, and lipids [84]. NaOH has been used to successfully digest muscle tis-
sue [88] and the GIT of fish with an additional neutralization step using HNO3. 
However, it does not give a satisfactory digestion of the other tissues of fish [86]. 
Protocols employing the use of KOH (10%, 10:1 v: w) for tissue digestion, nor-
mally involve oven incubation at 40˚C for a treatment period of 72 to 120 hours 
or even more [86] [89]; baking (450˚C, 6 h)or incubation (60˚C overnight) [101] 
[102]. The recoveries of plastics (≥95%) are generally good but such strongly al-
kaline conditions are destructive to some plastics such as PET with reported re-
covery (70% - 75%) for 10 M NaOH digestions. The recovery increases at lower 
concentrations such as 1M [80]. However, even such a low concentration (1M) 
was reported to destroy LDPE when digested for 2 days at room temperature 
signifying the negative impact of a prolonged digestion period [103]. The tem-
perature raised to 60˚C increased the digestion efficiency in fish to 91% and 98% 
using NaOH and KOH respectively. However, elevated temperature was associ-
ated with surface damage and reduced recovery rate of some plastics such as 
PET, PC PE, and PVC Dellisanti et al., [93]; Karami et al. [86] further report that 
KOH (10%, 50˚C - 60˚C) changes the color of Nylon 66. KOH is also reported to 
be ineffective when applied in the digestion of decapod intestinal tracts [104]. 
Another drawback to KOH digestion is the massive saponification that normally 
accompanies its use with fish and other lipid-rich tissues. The resultant soapy 
material normally encases MPs, lowering their recoveries, and clogs filters which 
may demand an additional step requiring the use of methanol or ethanol [105]. 

Despite some of the drawbacks cited, however, the use of KOH remains the 
most cost-effective, utilizing cheaper and common chemicals and demanding 
simple sampling procedures [101] [102] [103]. It has been applied in the diges-
tion of several tissues including plankton [106] [107], oysters [108], shellfish and 
bivalves [102], prawns and mussels [104], crabs [98] and mussels [101]. 

4.1.3. Enzymatic Digestion 
This involves the use of enzymes such as protease-K [109], trypsin, Corolase 
7089 [88], Alcalase [110], pancreatic enzymes [111], lipase, chitinase, cellulase 
[112], papain and collagenase [113]. It is a biologically specific means of hydro-
lyzing proteins and breaking down tissues [114]. The process has been applied to 
remove complex organic matrices by modifying multi-step protocols according 
to the matrix composition [115]. Enzymatic digestion is either used alone or 
sometimes in combination with other digestion methods to eliminate major 
proteins, lipids, and carbohydrates [115]. The advantages of enzymatic digestion 
over the other procedures stem from the fact that it registers no loss, degrada-
tion, or surface alteration of MPs and is also less hazardous to human health 
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[116]. The enzyme Pepsin causes no damage to polymers but proved only par-
tially effective at digesting biogenic material [117]. In some instances, low-cost 
enzymes (lipase, amylase, chitinase, and cellulase) have been effectively utilized 
in the removal of plastic particles from muscle tissue samples [118]. Further, by 
manipulation of digestion factors of temperature (50˚C), the concentration of 
Proteinase-K, and prolonging the incubation period, the low efficacy (88%) was 
raised to 97% [109]. 

Enzymes do not interact with polymers, and conserve plastics while removing 
organic materials. For example, chitin exoskeletons have been eliminated by a 
method for complex samples utilizing chitinase enzymes [115]. On the other 
hand, Uurasjärvi et al. [119] used a four-step and 8-day procedure to dissolve 
marine samples containing chitinaceous materials. They involved the use of a 
combination of H2O2, the enzyme chitinase, and sodium dodecyl sulfate (SDS). 
The use of optimized protocols combining proteinase-K and sodium perchlorate 
(NaClO4), obtained high digestion efficiency (>97%) and did not cause any de-
structive effect on PS, PE, PVC, nylon, and polyester [109]. 

Whereas enzymes can break down biomass and facilitate the extraction process 
of MPs with little damage [116], their use has several drawbacks. First, the Pro-
teinase-K that gives very good results is very expensive [120]. Secondly, the speci-
ficity of enzymes implies a large volume of mixed enzymes may be required to 
target different proteins to achieve complete digestion of the target biomass, and 
this may lower the economic viability of the process [121]. Thirdly, the use of a 
Universal Enzymatic Digestion Protocol (UEPP) [115] targeting a wide range of 
biological matrices needs a preliminary evaluation of the matrix composition to 
select the proper digestion steps [115]. The more steps the greater the chances of 
contamination, and loss of MPs, and the heavier the workload to the personnel 
[114]. Another drawback is that this method may not be applicable when targeting 
fragments of biodegradable polymers that are deliberately designed to be degraded 
by enzymes [88]. Furthermore, several enzymatic protocols have been evaluated 
mainly on smaller-sized organisms (e.g., 0.15 - 0.33 g) [122] possibly due to the 
cost and time involved. Finally, the digestion efficiencies of enzyme protocols are 
also relatively lower compared to other extraction methods [112]. 

Nevertheless, enzymes can be used singly, in combination, or along with other 
chemical digestion methods by targeting specific biomass that is not readily di-
gestible by the available chemicals. For example, it has been applied in plankton 
samples and copepods [109], mussels [88], bivalve tissues [111], intestinal tracts 
of turtles [88], and zooplankton [90]. 

4.2. Density Separation 

Density separation involves the use of high-density (1.2 - 1.5 g·mL−1) medium, 
usually a solution of sodium chloride (NaCl), sodium iodide (NaI), sodium 
tungstate (NaWO4), calcium chloride (CaCl2) or zinc chloride (ZnCl2) in isolat-
ing partially inorganic biomass such as bone fragments, chitin, and grits [81] 
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[123]. The lower-density microplastics normally float to the surface and are col-
lected. Density separation can be useful in studies following digestion [90] or for 
reducing the sample size before removing organic material by purification [79]. 
The most commonly used solution is that of sodium chloride (NaCl) because it 
is cheaper, non-hazardous, able to increase the initial density of a solution when 
added in the correct quantity, and yields a sufficiently good recovery ≥ 63% 
[124]. However, NaCl produces a density of only 1.2 g/mL, hence may not apply 
to higher-density plastics, such as PET, PVC, and PUR, as well as HDPE, PS, PA, 
and ABS (2.2 g/mL) [74] [114]. NaI (aq) and ZnCl2 (aq) could therefore form 
viable alternatives to NaCl (aq) because their higher densities (>1.6 g/mL), make 
them capable of floating the high-density plastics. However, they are both toxic 
to the environment and humans and expensive [125]. ZnCl2, NaI, and CaCl2 so-
lutions (density 1.6 - 1.8 g/mL), alternatives to NaCl for higher-density plastics 
are corrosive and acidic and are likely to be aggressive towards some plastics 
[126]. Furthermore, NaI is hygroscopic, and its storage, recycling, and reuse may 
be very difficult. In some instances, the low density of NaCl has been raised (1.3 
g/mL) by adding sucrose (C12H22O11), or table sugar to cater for higher density 
MPs [127]. With respect to marine organisms such as fish, the process of density 
separation which occurs after digestion is illustrated in Figure 3. It begins with 
the removal of GIT or gill, followed by the alkaline digestion of the sample for 72 
hours above room temperature. This can be followed by vacuum filtration, mi-
croscopic analysis, and the use of spectroscopic methods to ascertain MP types 
and their associated components or compounds. 

Another issue with the density separation step is the risk of sample loss or 
contamination caused by repeated sample transfer, re-suspension, and retrieval 
of MPs [93]. Drawback also comes from the fact that during the density separa-
tion process, organic matter may float together with plastic particles, making it 
difficult to distinguish the two, necessitating the need for further treatments 
such as chemical digestion [128]. 

 

 
Figure 3. Post-digestion method of extracting MP from Gastrointestinal Tract and gills of fish. 
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5. Practical Implications and Future Direction 

In general, microplastics are more abundant near densely populated areas, on 
beaches and on infralittoral sediments [129]. The world’s freshwaters, soils, 
oceans, and air are progressively contaminated with tiny plastic particles, frag-
ments, and fibers. Microplastics, which are now ubiquitous in the natural envi-
ronment, originate from different sources along plastic product’s lifecycle [129] 
[130]. They are extremely persistent in the marine environment and thus, accu-
mulate at increasing and or overwhelming rates [131]. Due to their small sizes, 
varied colors and different shapes, several marine species routinely mistake and 
ingest microplastics as food [131] [132]. Microplastics are commonly ingested by 
aquatic species including plankton and large marine mammals [132]. Humans 
are also exposed to microplastics through the ingestion of microplastics con-
taminated seafood, beverages or by inhaling airborne microplastics [132]. 

While some studies have been done on microplastics extractions and quanti-
fication in marine organisms and water environments, most studies were done at 
laboratory levels. Furthermore, laboratory experiments have shown that plas-
tic-sorbed chemicals can transfer into organisms upon ingestion [133]. However, 
studies distinguishing the effects of additives on microplastics are scarce. Also, at 
the environmental levels, there is no clear information on whether the ingestion 
of plastic containing sorbed contaminants and additives by marine organisms 
can influence the bioaccumulation of these substances. Thus, there are growing 
concerns over the environmental and human health bearings linked to the con-
tinued exposure to microplastics. The possibility of long-term and irrevocable 
risks to human health and ecosystems demands mitigation actions to be taken to 
halt plastics and microplastics accumulations in the environment. 

5.1. Plastics and Greenhouse Gas (GHG) Emissions 

In addition to the potential threats to ecosystems, recent studies indicated that a 
significant amount of Greenhouse gasses (GHG) are being emitted as plastic 
waste breaks down into smaller pieces. Polyethylene is the highest emitter of 
both Methane and ethylene due to exposure to sunlight [134]. When exposed to 
solar radiations, unrecycled or improperly disposed plastics generate GHG both 
in water and air. The Global GHG emissions from plastics are expected to reach 
1.34 gigatons per year by 2030 and 2.8 gigatons per year by 2050 [135]. It is re-
ported that the global incineration of plastic waste and annual plastic production 
gives rise to about 400 million tons of CO2 [136]. The plastic industry is reported 
to account for approximately 6% of the global oil consumption and is expected 
to reach 20 percent by 2050 [137]. 

5.2. Governance Approaches to Microplastics’ Pollution 

Plastic pollution in the marine environment is undoubtedly a global problem 
that requires an urgent intervention. While microplastic pollution has attained 
substantial attention from researchers and the public, efforts to tackle microplas-
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tics pollution globally have been restricted because of weak and fragmented acts 
[131] [138]. Although microplastics are an internationally recognized pollutant, 
there are no formal management strategies currently [139]. Most developed ac-
tions have focused on larger plastics, specifically, plastic bags [138]. Moreover, 
the reuse and recycling of plastics is very low compared with other materials in-
cluding paper, glass, and metals [136]. 

To limit plastic use and minimize marine environmental pollution, almost 150 
countries have executed some form of legislation to eliminate single plastic use 
[132]. Despite all these efforts, there exists a significant gap in developing a clear 
policy and governance mitigation response. Addressing the microplastic prob-
lem is crucial for achieving and realizing sustainable ocean governance and the 
2030 Sustainable Development Goals [140]. 

6. Conclusion 

This paper has successfully reviewed the occurrence, distribution, and extraction 
methods of microplastics in marine organisms, and consequently, practical im-
plications have been posited. Indeed, microplastics present a multifaceted chal-
lenge when it comes to waste management and remediation. Their diminutive 
size makes them exceptionally challenging to capture and remove from aquatic 
environments, rendering mitigation efforts quite demanding. To effectively 
tackle the microplastics issue, a comprehensive approach is necessary. This in-
cludes enhancing waste management practices, reducing plastic consumption at 
its source, and pioneering innovative technologies designed specifically for the 
removal of microplastics from water bodies. Moreover, fostering public aware-
ness and education regarding microplastics and their environmental impact is of 
paramount importance. Engaging individuals and communities in initiatives 
aimed at curbing plastic consumption, advocating responsible waste disposal 
practices, and supporting policies geared toward combating plastic pollution are 
essential for implementing enduring solutions. The proliferation of microplas-
tics in aquatic environments represents a multifaceted and pressing environ-
mental challenge. Its repercussions extend well beyond immediate marine eco-
systems, impacting the entire ecological food chain and potentially posing risks 
to human health. Effectively addressing this issue demands a well-coordinated 
effort involving research, policy reforms, public engagement, and the advance-
ment of cutting-edge technologies. It is of utmost importance that we respond 
promptly and decisively to confront the escalating threat posed by microplastics 
to our oceans and the global environment as a whole. 
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