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Abstract 
To address the difficulties in fusing multi-mode sensor data for complex in-
dustrial machinery, an adaptive deep coupling convolutional auto-encoder 
(ADCCAE) fusion method was proposed. First, the multi-mode features ex-
tracted synchronously by the CCAE were stacked and fed to the multi-channel 
convolution layers for fusion. Then, the fused data was passed to all connec-
tion layers for compression and fed to the Softmax module for classification. 
Finally, the coupling loss function coefficients and the network parameters 
were optimized through an adaptive approach using the gray wolf optimiza-
tion (GWO) algorithm. Experimental comparisons showed that the proposed 
ADCCAE fusion model was superior to existing models for multi-mode data 
fusion. 
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1. Introduction 

As the working scenarios of industrial machines become more and more com-
plex and diverse, their health condition monitoring is of increasing importance 
[1]. Single sensor signals cannot fulfill this task in diversified scenarios. In many 
circumstances, the health states of machines can be reflected by sensor signals 
such as vibration, electrical current, and sound. Therefore, it is essential to fuse 
these multi-mode sensor signals to obtain overall equipment health status for 
monitoring. 

For status monitoring based on multi-sensor data fusion, the three classical 
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methods—data fusion, feature fusion, and decision fusion—find a broad range 
of applications [2] [3] [4] [5]. Fatehi et al. proposed an iterative algorithm to ob-
tain the covariance matrix of the estimation errors of two Kalman filters and ap-
plied it to data fusion [6]. Xiong et al. proposed a data fusion method based on 
mutual dimensionless [7]. Sun et al. proposed a multi-rule fusion feature selec-
tion algorithm that identified the optimal subset of features from the high-di- 
mensional original feature space for status monitoring [8]. Wang et al. proposed 
a multi-dimensional feature fusion method in which features of ongoing degra-
dation such as peak-to-peak value and mean squared value of the bearing vibra-
tion signal were extracted for bearing lifetime prediction [9]. Liu et al. applied a 
new sparse classification fusion method to the health status monitoring of loco-
motive bearings and proved its validity [10]. Haghighat et al. proposed discri-
minant correlation analysis (DCA), which incorporates class associations into 
correlation analysis of the feature sets for feature-level fusion [11]. It is worth 
mentioning that all these methods require the specific features to be extracted 
before status monitoring. However, some research has indicated that many fea-
tures are valid only at certain stages under certain conditions, making it difficult 
to extract features that are representative of equipment conditions [12]. There-
fore, classical status monitoring based on multi-sensor fusion is hindered by dif-
ficulties in feature extraction. 

Deep neural network (DNN) and deep learning (DL) techniques have become 
a powerful tool in industrial applications due to their strong capabilities in fea-
ture learning and their high accuracy in inference [13] [14] [15] [16]. These me-
thods can automatically mine complex structures and learn, layer by layer, the 
useful features from the original data. Many studies have illustrated that DNN 
can fuse the original input data, extract the fundamental information from the 
lower layers, fuse the results into high-level representations in the middle layers, 
and further fuse them in the upper layers to form the final decision [17] [18] 
[19] [20]. Note that DNN is a fusion structure that integrates feature extraction, 
feature selection, and three-level fusion into a single learning body [21]. There-
fore, it is very suitable for multi-sensor fusion. 

In recent years, health status monitoring algorithms with multi-sensor fu-
sion based on deep learning have been extensively investigated. Li et al. pro-
posed a convolutional neural network with atrous convolution for the adaptive 
fusion of multiple source data [22]. Wang et al. proposed a multi-sensor data 
fusion method and a bottleneck layer-optimized convolutional neural network 
for fault recognition [23]. Chen et al. fused horizontal and vertical vibration sig-
nals through a deep convolution neural network and obtained improved bearing 
health condition detection [24]. Hao et al. One-dimensional convolutional neur-
al network with short-term and long-term memories is used to extract temporal 
and spatial features of vibration signals. The features were then stacked for better 
bearing fault diagnosis [25]. Chen et al. used an SAE-DBN strategy to extract the 
time and frequency domain features of various sensor signals, which were then 
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fused and classified [26]. Moslem et al. proposed a novel 2-dimensional CNN 
for electrical motor current fusion analysis [27]. Li et al. proposed a multi-scale 
sensor feature fusion CNN that fused vibration signals in the data and feature 
layers for bearing status monitoring [28]. Although these methods have obtained 
good monitoring results, they fused single-mode sensor data only, without using 
complementary information from other modes for equipment status monitor-
ing. 

To address this problem, Zhou et al. proposed a deep learning method based 
on multi-mode feature fusion for on-line machinery bearing diagnosis [29]. Wang 
et al. used a deep learning-based multi-resolution multi-sensor fusion network 
that fuses current and vibration signals for asynchronous motor status monitor-
ing [30]. Fu et al. investigated a dynamic-routing based multi-mode network 
that could adaptively assign weights to different modes to monitor induction 
motor status after fusion [31]. One problem with these methods is that they all 
extract the features of different modes separately. Once the features have been 
extracted, any shared information among the modes is lost. In addition, all these 
methods use the stacked extracted features directly for status monitoring and do 
not consider the situation when feature qualities from different data sources dif-
fer greatly, resulting in feature collisions. 

Presently, vibration signals are widely used for machinery health condition 
monitoring. However, the literature on current signal-based methods is sparse 
[32]. Although the damage features of the current signal are markedly weaker 
than those of the vibration signal, it is not only easier to acquire than other sig-
nals, but also contains rich information about machinery health condition. There-
fore, to obtain more comprehensive information, vibration and current signals 
were selected for fusion analysis. 

For this purpose, a new deep structure has been proposed—a fusion model 
based on an adaptive deep coupling convolutional auto-encoder (ADCCAE). This 
approach not only ensures the effective utilization of the original multi-mode 
data to extract common feature information, but also solves the problem that 
arises when the features of different data sources vary widely. 

The main contributions of this paper can be summarized as follows:  
1) A coupling convolutional auto-encoder has been designed to synchronous-

ly extract individual and compound features from multi-mode data; 
2) Vibration and motor current signal were used to the health status moni-

toring system synchronously; 
3) A GWO algorithm was used to optimize the coupling coefficients and net-

work parameters in a closed loop to obtain an optimal model, which has some 
extent solved the problem that the features of current and vibration signals differ 
greatly. 

The rest of the paper is organized as follows: Section 2 introduces network ba-
sics. Section 3 describes the details of the ADCCAE fusion model. Section 4 de-
monstrates the application of the proposed deep fusion network in classifying 
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the health status of motor bearings using vibration and current data, and com-
pares the results with other methods. Finally, in Section 5, conclusions are drawn, 
and future research prospects are discussed. 

2. Convolution Auto-Encoder 

A convolution neural network (CNN) is a typical feed forward neural network. 
It contains multiple filters to extract features from input data [33] [34] [35] [36]. 
Through a local receptive field, shared weights, and sub-space sampling, a CNN 
can maintain the features of theoriginal data, or in other words, it is translation 
invariant [24]. The convolutional auto-encoder (CAE) possess the characteristics 
of both a CNN and an auto-encoder (AE). It is a neural network model with 
hidden layers in which the output layer recovers the original input data. The 
central hidden layer performs dimension reduction and feature extraction on the 
input data. Therefore, it usually has fewer neurons than the input layer. For a 
mono-channel input x the latent representation of the kth feature map can be 
written as [37]: 

( )k k kh f x W b= ∗ +                            (1) 

where the bias kb  is encoding layer bias, kW  is the weight matrix, f is the ac-
tivation function (the LeakyRelu function is used in this paper), and ‘*’ denotes 
the 2D convolution. The output of the hidden layer can be reconstructed and 
recovered in the form: 



kk

k H
y f h W c

∈

 = ∗ + 
 
∑                          (2) 

where again there is one bias c per input channel. H identifies the group of latent 
feature maps;  k

W  identifies the flip operation over both dimensions of the 
weights. When the CAE is trained, the parameters are obtained through the 
minimized reconstruction error, which can be written as: 

( )
1

arg min ,
n

i i
i

L x yθ
=

= ∑                          (3) 

where θ  represents the model parameters, ix  is the ith training sample, nis the 
number of training samples, and L  is the reconstruction error function. In this 
study, the mean squared error was used to calculate the reconstruction error: 

( ) ( )2

1

1,
2

n

i i i i
i

L x y x y
n =

= −∑                        (4) 

As in standard networks, the back-propagation algorithm and the Adam op-
timizing algorithm were used to update the parameters to minimize L [38]. 

3. ADCCAE Fusion Strategy 
3.1. DCCAE Framework 

Because intrinsic correlation exists among the multi-mode data acquired from 
various types of sensors on the subject under monitoring, it is necessary to ex-
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tract compound features during learning. Therefore, the Deep Coupling Convo-
lutional Auto-Encoder (DCCAE) fusion framework was constructed in this study 
to process multi-mode data, as illustrated in Figure 1. The DCCAE fusion frame-
work comprises a coupling convolutional auto-encoder (CCAE) module con-
structed from two CAEs, and a feature fusion and compression module con-
taining the encoding part of CCAE, consisting of two full convolution layers and 
two full connection layers. 

In the CCAE structure, each CAE extracts the features from individual sin-
gle-mode data. In addition, to obtain the compound information, the two CAEs 
couple the pre-defined similarity measures of the reconstructed output to cap-
ture the correlation between different types of data. Although these two types of 
CAE share the same architecture, their internal parameters for learning are dif-
ferent. The compound information obtained from the trained model is fed to the 
second part (the fusion and compression module) for fusion, resulting in fused 
data that contain more comprehensive information. 

Let the reconstructed data obtained from two different sensor data inputs be 
defined as ( ),v v vz x θ  and ( ),c c cz x θ , where vz  and cz  are the reconstructed 
outputs of the vibration and current signals and vθ  and cθ  are the parameters 
of each model. The similarity between the reconstructed outputs of the two 
CAEs can be formulated as: 

( ) ( ) ( ) 2
, ; , , ,v c v c v v v c c cS x x z x z xθ θ θ θ= −                 (5) 

where vx  and cx  are the vibration and current signals, respectively. To un-
derstand the correlation between two types of data from the same subject, a 
coupling loss function was constructed to simultaneously train the two CAE 
models. This coupling loss function can be written as [39]: 

( ) ( ) ( ) ( )

( )

( )

2

2
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       (6) 

where vL  and cL  are the reconstruction losses for the vibration CAE and the 
current CAE respectively; ε , η , and λ  are the parameters that control the 
coupling between the reconstruction loss function and the similarity loss func-
tion. λ  is the control parameter that measures the similarity between the two 
types of data. 

Training can be carried out through back-propagation. The gradient of the 
model loss function can be computed as: 

v

v v v

c

c c c

LL S

LL S

ε λ
θ θ θ

η λ
θ θ θ

∂∂ ∂
= +

∂ ∂ ∂
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Figure 1. Architecture of DCCAE. 

3.2. ADCCAE Fusion Model 

Because the quality of the features of different data types (vibration and current) 
can vary greatly, it is difficult to determine the parameters of the coupling loss 
function used by the ADCCAE fusion framework. As a result, a high-efficiency 
fusion model is hard to obtain. 

The GWO algorithm is a popular optimizing method that imitates the preda-
tory behavior of gray wolves. Compared to other optimization methods, it is 
more robust, stronger in generalization, and capable of finding the global opti-
mum [40] [41]. An ADCCAE fusion model was therefore proposed. The model 
selects weight coefficients for the coupling loss function as the objective and 
seeks the optimum through automatic iterations with GWO.  

The fusion model with optimal parameters is obtained as a result. As illu-
strated in Figure 2, the model contains four modules. Module A is the section 
that collects and pre-processes the data. It standardizes the input and sequen-
tially converts the 1-D synchronous vibration and current data into a 2-D ma-
trix. Module B is the fusion network of ADCCAE. It consists of the coupling 
convolutional auto-encoder network, the feature fusion and compression net-
work module, the fusion feature visualization network module, and the perfor-
mance validation module. Its main function is to fuse the pre-processed mul-
ti-mode data and evaluate the fusion. The fusion performance validation module 
contains a Softmax network. Module C is the GWO algorithm module that seeks 
to optimize the unknown parameters; module D displays the results of model 
optimization for overall model performance evaluation. Suppose that there are K 
labels; the Softmax module can then be defined as: 
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Figure 2. The framework of the proposed method. 

 
where ( )1θ , ( )2θ ,…, ( )Kθ  are model parameters and jO  is the evaluation re-
sult of the DCCAE fusion model. 

The operation steps are as follows: (1) Input the data into module A for pre-
processing and initialize the coupling weight parameters; (2) Input the pre-owned 
data into Module B for fusion compression to evaluate the fusion effect; (3) With 
the coupling weight coefficient as the positioning parameter of GWO and the 
maximum fusion verification accuracy as the optimization objective of GWO, 
the fusion network is trained to optimize the coupling weight parameters, and 
this step is repeated until the model converges and the model optimization re-
sults are displayed. 

Figure 3 illustrates the flowchart. 
To summarize, the ADCCAE fusion model has two important characteristics: 

(1) it differs from other methods in which representation and fusion are based 
on a single feature and can learn similar features from different sources through 
mapping multi-mode data into the same representational space, resulting in 
fused data that contain more comprehensive information about the equipment; 
and (2) it optimizes key model parameters through GWO to achieve the best fu-
sion performance. 

4. Experimental Results 

To validate the effectiveness of the ADCCAE multi-mode data fusion strategy, 
experiments were conducted with public bearing damage data sets from the Uni-
versity of Paderborn, Germany [42]. 

https://doi.org/10.4236/jst.2023.134007


X. X. Feng, J. H. Liu 
 

 

DOI: 10.4236/jst.2023.134007 76 Journal of Sensor Technology 
 

 

Figure 3. Flowchart illustrating of the proposed method. 

4.1. Data Collection 

The datasets employed in this experiment consist of synchronous vibration and 
current data obtained from bearing accelerated lifetime tests conducted by the 
University of Paderborn on a practical scientific experimental platform. 

The platform analyzes the impacts of operating parameters under various 
working conditions, including the rotational speed, the axial force, and the 
system load torque. This study used the data with rotational speed N = 900 
RPM, load torque T = 0.7 Nm, and axial force F = 1000 N as the working con-
ditions. To validate fusion effectiveness, first-class single-point fatigue pitting 
damage to the outer ring (KA04), first-class plastic deformation indentation 
damage (KA15), first-class single-point fatigue pitting damage to the inner ring 
(KI21), and normal bearing data (K001) were used for model validation. KA04, 
KA15, and K001 were the data sets for Experiment I, and KA04, KI21, and K001 
were the data sets for Experiment II. Figure 4 illustrates the vibration and cur-
rent data for bearings under three health conditions. Clearly, there are obvious 
differences between the damage features of the two data types. The damage fea-
tures of the vibration data are obvious, and the damage features of the current 
data are weak. 

4.2. Fusion Performance Validation Experiment 

Two groups of experiments were conducted: Experiment I was designed to test 
the model's classification capability for various types of damage that occur on 
the outer ring of the bearing; Experiment II was intended to test the classifica-
tion capability of the model for pitting damage occurring on the inner or outer 
rings. The operating environment was configured as follows: (1) a processor 
(AMD Ryzen 5 2600X six-core processor, 3.60 GHz); (2) memory (16G); (3) a 
graphic card (NVIDIA GeForce GTX 1660, 6G); and (4) a code execution envi-
ronment (Pytorch = 1.2.0, Python = 3.7.9). 

When using the ADCCAE fusion model, the partitioning of the data sets, the  
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Figure 4. Vibration and current signals of 4 health conditions: (a) normal, (b) OR indentations, (c) OR pitting, (d) IR pitting.  

 
number of neurons, and the selection of hyperparameters are important factors 
that affect the quality of feature extraction and fusion. For fair and effective 
comparisons, the first 160,000 samples of the data set were partitioned into a 
training set and a test set with a ratio of 3:1. By manipulating the seed, the se-
quence of each data withdrawal was kept the same. In addition, to simplify pa-
rameter selection, the network parameters of the two CAE were configured to be 
the same as those listed in Table 1, where Conv_1 and Conv_2 and pool_1 and 
pool_2 are the encoding section of the CAE and Conv_3, Conv_4, and F. inter-
polate form the decoding section. F. interpolate implements up-sampling for the 
decoding operation. 

In the compression module of feature fusion, the network parameters were 
configured according to Table 2. The input of this module is the stacking of 
the output from the two CAE encoding layers. Due to the overly concentrated 
information within each data type and the overly absolute distance between 
the two data types, the fusion section was designed as two multi-channel full- 
convolutional layers to simultaneously perform semantic extraction and fu-
sion, thus achieving superior fusion performance. Finally, two full-connection 
layers were designed as a compression section for easier validation and visua-
lization. 

It is worth mentioning that when the ADCCAE fusion network was trained,  
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Table 1. Network structure parameter (CAE). 

Structure Parameter 

Conv_1 (Leaky_relu) in_channels = 1, out_channels = 4, kernel = (3*3), stride = (1, 1), padding = 1 

Maxpool_1 kernel = (2*2), stride = (2, 2), padding = 0 

Conv_2 (Leaky_relu) in_channels = 4, out_channels = 8, kernel = (3*3), stride = (1, 1), padding = 1 

Maxpool_2 kernel = (2*2), stride = (2, 2), padding = 0 

F. interpolate scale_factor = 2, mode = 'nearest' 

Conv_3 (Leaky_relu) in_channels = 8, out_channels = 4, kernel = (3*3), stride = (1, 1), padding = 1 

F.interpolate scale_factor = 2, mode = 'nearest' 

Conv_4 (Leaky_relu) in_channels = 4, out_channels = 1, kernel = (3*3), stride = (1, 1), padding = 1 

 
Table 2. Feature-fusion network structure parameters. 

Structure Parameter 

Conv_5 in_channels = 16, out_channels = 32, kernel = (3*3), stride = (1, 1), padding = 1 

Conv_6 (Leaky_relu) in_channels = 32, out_channels = 64, kernel = (3*3), stride = (2, 2), padding = 1 

Linear_1 (Leaky_relu) input = 576, output = 128 

Linear_2 input = 128, output = 3 

 
the coupling loss weight ε , η , and λ  were first set as the location parameters 
of GWO. The returns from GWO were used as initial values for CCAE, which 
was then trained with a 0.001 learning rate. Then the outputs from the trained 
CCAE were stacked and fed to the back-end network. The fusion compression 
and fusion validation networks were then trained with a 0.0001 learning rate. 
Finally, with best classification performance as the objective, GWO was used 
iteratively to optimize network parameters and coupling weights. 

The training data for Experiments I and II were then fed into the network. 
Figure 5 illustrates coupling loss, training loss, and training accuracy. Evidently, 
the network can accurately perform inferencing on the training data. 

The returned coupling weights were then applied to DCCAE and the fusion 
data fed into Pytorch.Axes3D for fusion visualization, as illustrated in Figure 6. 
It is apparent that the fusion network can effectively fuse the features of the three 
categorical samples in Experiments I and II. 

Finally, the test data of Experiments I and II were applied to the network. 
Figure 7 presents the resulting confusion matrix, and Figure 8 presents the re-
sulting ROC curve. Clearly, the ADCCAE fusion model not only can discrimi-
nate outer-ring pitting and indentation damage, but also can identify the same 
damage type in the inner or outer ring. In addition, it can be seen from the ROC 
curve and AUC that the model has better precision and recall than previous 
models. 

4.3. Comparison and Discussion 

The test data sets from Experiments I and II were fed into the CAE classifier and  
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Figure 5. Visualization of the training process: (I) pitting and indentation of the bearing outer ring; (II) pitting damage of 
the inner or outer rings. 

 

 

Figure 6. Visualization of the fused data of the test samples. 
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Figure 7. Confusion matrix of 3 health conditions. 

 

 

Figure 8. ROC curve of 3 health conditions. 

 
the ADCCAE model. Table 3 and Table 4 present the test results. It can be seen 
that the characteristic quality of vibration data is obviously better than that of 
current data, and the performance of the fusion model is also better than that of 
the single model. 

To validate the GWO fusion model, a PSO-ADCCAE optimization model was 
designed and compared to GWO-ADCCAE, as shown in Figure 9. It is evident 
that GWO-ADCCAE converges more efficiently to the global optimum. 

Figure 10 presents a comparison of all methods investigated in this study. It is 
clear that the ADCCAE fusion model outperformed traditional multi-mode fu-
sion models on data from Experiments I and II because [43] [44]: 

(1) traditional methods did not consider correlated information among the 
data types; 

(2) when an independently extracted feature did not fall into the correspond-
ing feature space, the classifier found it difficult to draw a reliable decision 
boundary.  

Therefore, the data fusion strategy proposed in this study is of great impor-
tance for analyzing multi-mode data, and the ADCCAE fusion model is a good 
choice for multi-mode data fusion. 

5. Conclusion 

This study highlights the challenges in multi-modal data fusion and the significant  

https://doi.org/10.4236/jst.2023.134007


X. X. Feng, J. H. Liu 
 

 

DOI: 10.4236/jst.2023.134007 81 Journal of Sensor Technology 
 

Table 3. Pitting and indentation of the bearing outer ring (Experiment I). 

Type of data Method Accuracy 

Vibration DCAE Model 90.33% 

Current DCAE Model 74.67% 

Vibration,Current DCAE Fusion Model 95.67% 

Vibration,Current GWO-ADCCAE Fusion Model 98.67% 

 
Table 4. Pitting damage of the inner or outer rings (Experiment II). 

Type of data Method Accuracy 

Vibration DCAE Model 91.67% 

Current DCAE Model 73.67% 

Vibration,Current DCAE Fusion Model 93.67% 

Vibration,Current GWO-ADCCAE Fusion Model 96% 

 

 

Figure 9. A comparison of two optimization algorithms. 
 

 

Figure 10. Comparison of accuracy of different methods. 
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variations in feature quality, and introduces a novel ADCCAE fusion model to 
address these issues. The model employs a deep learning strategy that involves 
three steps: initially, it utilizes a coupling convolutional auto-encoder to extract 
individual and compound features from various sensor data. The extracted fea-
tures are then fused and compressed for classification evaluation; finally, the 
coupling weights and network parameters are adaptively optimized with the 
GWO algorithm. The experimental results demonstrate that this method can 
more accurately determine the health status of motor bearings compared to ear-
lier approaches, demonstrating its superior performance in multi-modal data fu-
sion. Our future research focus will be on exploring data fusion approaches for 
multi-source heterogeneous data and investigating fusion strategies with broader 
applicability. 
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