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Abstract 
In this article, we present a method for solving the Navier-Stokes equations. 
They started by finding an analytical solution of the nonlinear convective term 
∇v v . They solved the Navier Stokes equations as a differential equation. Final-

ly they made a numerical and experimental verification which shows that the 
two solutions converge, after having found the analytical solution. Underly-
ing principles study, those various phenomena in universe are intercon-
nected logic for the development of new technologies as an example: news 
engines, applied fluids mechanics. This study’s applications are exception-
ally wide such as External aerodynamics: airplane, glider, missile, launcher, 
space probe, automobile, flying insects, buildings and bridges; Hydraulics: 
pipes, open channels, waves, rivers, blood circulation; meteodynamics: mete-
orology, climatology. 
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1. Introduction 

Navier-Stokes equations are partial differential equations governing the in-
compressible fluids motion [1]. These equations constitute the basic equa-
tions of fluid mechanics [2]. They are named after Claude Navier and George 
Stokes, two 19th century physicists. These equations are described as below 
read [3] [4] [5]: 
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It is difficult to model a fluid as a single-phase continuous medium at the res-
olution of these equations. The mathematical existence of Navier-Stokes equa-
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tions solutions was not demonstrated because, it is such a difficult problem to 
solve and so important (because its equations govern the water flow in a pipe, 
the ocean currents, the air movements in the atmosphere) [6] [7]. The complica-
tion comes from ∇v v  term. This term varies as velocity field square, and it has 
done the equation mathematically inextricable. We approach this by trying to 
find an analytical way of solving ∇v v . After numerical verification, the solution 
and ∇v v  converge. Then we finish by resolving by this solution the Navi-
er-Stokes equations as a differential equation. Finally we find an analytical solu-
tion that can help to resolve many fluid mechanics problems. 

2. Methods 

After a series of numerical and experimental studies [8] [9] [10], we have found 
that ∇v v  converge as:  
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After simulation we obtain this Area 1 for ( )F v  with v random Figure 1: To 
compare with the Area 2 generates numerically by ∇v v  with v random, we si-
mulate it with python Figure 2: We can see that the two areas are the same, 
which confirms that:  
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3. Results and Discussion 

Then Navier Stokes equations become with ν α=  the viscosity constant:  
 

 
Figure 1. Area 1. 
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Figure 2. Area 2. 
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Let ( ) ( )v h t g r=  with { }, ,r x y z∈  a coordinate:  
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with 21 K
h t
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= −
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h ; 2 1
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K
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=  the temporal decay, we obtain:  
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with ( )expg ar=  we have d dv av r=  that implies 1 dd vr
a v

= , then we get:  
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with aλ = , we get: 
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cτ  must be determined experimentally according the type fluid. 

{ }( ) ( ) ( )
( )

1 2
2 2 2

2
1 1 1

1
2

1

2
500 2

, , 10
2 ! ! ! 500 1 2

d
!

n

jj
c c

n n j c

nn
n

cc

n

tr
n t fr Prv r x y z N r

n n j n t

trr
r

t n

λ
τ τ

λ α λ λ λ
τ ρ ω

λ
τλ τ

−+∞ +∞ +∞

= = =

−
−

+∞

=

    −  
 +    ∈ = − − − + −  +   
 
 

 
− 

 +

∑ ∑∑

∑∫

  

(18) 

The analytical method only compensates solutions in which non-linear and 
complex structures in the Navier-Stokes equations are ignored within several 
assumptions [11] [12] [13]. Our analytical solution is only valid for fundamental 
cases such as fluids dynamics under an evenly distributed force and constant 
Volumic mass.  
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Scope of Future Work 

The TOUGMA’s solution is crucial to understand the fluid properties. The range 
of applications is extraordinarily broad [14] [15]:  

1) External aerodynamics: airplane, glider, missile, launcher, space probe, au-
tomobile, flying insects, buildings and bridges;  

2) Enternal aerodynamics: aircraft engines, gas turbines, rocket engines, air 
conditioning;  

3) Hydrodynamics: boat, submarine, marine propulsion;  
4) Hydraulics: pipes, open channels, waves, rivers, blood circulation; meteo-

dynamics: meteorology, climatology;  
5) Astrophysics: formation of stars, stellar systems, galaxies, the universe, stel-

lar jets;  
6) Armament: explosions;  
7) Safety: table fires, forest fires and confined fires; 
The present investigation will be very helpful to the researchers who are en-

gaged for those area research works in earth and in Universe. 
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List of Symbols  

P: Position  
v: Velocity  
α : is the fluid coefficient viscosity  

cτ : Experimental time  
2K : Temporal decay  

λ : Flux wave length  

cl : Experimental critical length  
ρ : Volumic mass  
D
Dt

: is a material derivative, stated as v
t
∂
+ ⋅∇

∂
  

∇ : Divergence 
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