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Abstract

Let Gbeagraphand A(G) the adjacency matrix of G. The spectrum of Gis
the eigenvalues together with their multiplicities of A(G). Chang et al
(2011) characterized the structures of all graphs with rank 4. Monsalve and
Rada (2021) gave the bound of spectral radius of all graphs with rank 4. Based
on these results as above, we further investigate the spectral properties of
graphs with rank 4. And we give the expressions of the spectral radius and
energy of all graphs with rank 4. In particular, we show that some graphs with
rank 4 are determined by their spectra.
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1. Introduction

All graphs considered in this paper are undirected, finite and simple. Let
G =(V (G), E(G)) be a graph with 1 vertices and m edges. For convenience,
the path, cycle and complete graph of order nare denoted by P,, C, and K,
respectively. Let Cbe a set, and the number of elements in Cis denoted by |C| ,
let ¢ (G) denote the number of cycles of length i
The adjacency matrix of Gis denoted by A(G) . The polynomial

¢(G,X):det|xl - A(G)| is called the characteristic polynomial of a graph G,
where 7is the identity matrix of order n. The spectrum of G consists of the ei-
genvalues together with their multiplicities of A(G). The spectral radius of G,
denoted by p(G), is the maximum eigenvalue of graph G. The nullity of G,
denoted by 7(G), is the multiplicity of zeros in the spectrum of G. Let r(G)
be the rank of A(G). Obviously, 7(G)=n-r(G). Two graphs G and H are
said to be cospectral (denoted by G ~ H ) if they share the same spectrum. A
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graph G'is said to be determined by its spectrum (DS for short) if for any graph
H, #(G,x)=¢(H,x) implies that His isomorphic to G.
The energy of Gfirst is defined by Gutman in 1978 as the sum of the absolute

values of its eigenvalues. That is,

E(G)=2 |4l

i=1
The theory of graph energy is well developed nowadays; its details can be found
in the book [1] and reviews [2] [3].

Definition 1.1. ([4]) Given a graph G with the set of vertices
\Y; (G):{Vl,vz,---,vp} and a vector of positive integers m =(ml,m2,---,mp) ,
denote by Gom(ml, m,,--, mp) (Gom for short) the graph obtained from G by
replacing each vertex V; of G with an independent set of M, vertices

m
i

Vi V2, VY and joining Vi with Vi if and only if V; and V, are adjacent
in G. The resulting graph Gom is said to be obtained from G by multiplication of
vertices. For graph G,,G,,--,G,, we denote by N(G,,G,,.--,G,) the class of
all graphs that can be obtained from one of the graphs in {G,,G,,---,G,} by
multiplication of vertices.

By Definition 2.1, Chang et al [4] characterized all connected graphs with
rank 4. That is, if Gis a connected graph with rank 4, then GeN(G,,-,G,),
the resulting graph, see Figure 1. Wu et al [5] studied further the spectral prop-
erties of graphs with rank 4. They computed the characteristic polynomials of all
graphs with rank 4. And they showed that some graphs with rank 4 are deter-
mined by their spectra. In particular, they proposed a problem: Which graphs
with rank 4 are determined by their spectra? Recently, Monsalve and Rada [6]
characterized spectral radius of all connected graphs with rank 4. A natural
problem is: How to characterize the spectral radius of all graphs with rank 4?2

In this paper, we intend to solve these two problems. Preliminaries are pre-
sented in Section 2. And we give the expressions of the spectral radius and ener-

gy of all graphs with rank 4 in Section 3. In Section 4, we consider which graphs

Vi1

\%
Vi V2 Vi Vi1 y v V2
. . v . Ve
V2 V2 V3 z Vs
V3 Vs V3 Vi :
.—. Vs Vs Vs Vs Vs Vs
G+ Gz Gs G4 Gs
Vi Vi V2 Vi V2
Vi Vs,
Vs
Gs G~ Gs Gs
Figure 1. G,,G,,G;,,G,,G;,G;,G,,G;,G,.
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with rank 4 are DS. More precisely, we prove that two classes of graphs with

rank 4 are DS. And some cospectral graphs with rank 4 are presented.

2. Some Lemmas

Several lemmas are of importance to the description and proof of our results lat-
er, and we list them below.

By the properties of vertex multiplication, Wu et al [5] computed the charac-
teristic polynomials with rank 4 as follows.

Lemma 2.1. ([5]) Let G be a simple graph on n vertices and n>4. Then
r(G)=4 ifanonlyif Ge(G,G,, ,G,), where the graphs G, --,G, are de-
picted in Figure 1.

Lemma 2.2. ([7]) Let G be a graph. For the adjacency matrix the following
can be deduced from the spectrum:

(i) The number of vertices.

(ii) The number of edges.

(iii) Whether G is regular.

(iv) Whether G is regular with any fixed girth.

(v) The number of closed walk of any length.

(vi) Whether G is bipartite.

Lemma 2.3. ([8]) Let G be a simple bipartite graph with e edges. Then

p(G)<+e

with equality if G is a disjoint union of a complete bipartite graph and isolated
vertices.

Lemma 2.4. ([5]) Suppose that G| = Giom[ml, m,,---, mpJ, where G, Is de-
picted in Figure 1, i=1,2,---,9, p =|\/(Gi)£6|, |m1|:a, |m2|:b, |m3|:C,
Im,|=d, |ms|=e, |m|=f. Then each of the following holds.

(i) ¢(G;, x)=x>orerd [x“ —(ab+cd)x® + abcd} .

(ii) ¢(Gj,x)=x>rerd [x“ —(ab+bc+bd +cd)x* — 2bcdx + abcd] )
$(G3,x) = x4 [ X! — (@b +ac+be+bd +ce) x* — 2abex

+abdc + abec + dbec]

xabrerdre-s [x“ —(ab+ae+be+bc+cd +de)x* - 2abex

(iii)

$(Gi.x)

(iv)
+abed +aecd + abcd + abec]

- #(Ge,x)= x*’“’*”“*“f"‘[x4 —(ab+bc+bf +cf +cd +de+ef )x* —2bcfx
\' .

+abed +abcd +bdec + abcf +abef +bcef + fbed + fbed |
#(Gg,x) = x7orerd [x“ —(ab+ac+ad +bc+bd +cd ) x?

—2(abc +abd +acd +bcd ) x —3abed |

(vi)
(vii)
$(Gj,x) = xPrerdrer T4 x" (@b +ac+af +bc+be+cd +df +de+ fe)x*

—2(abc +def ) x +abed + abdf +ache + aced + acef +afed
+abcd + fcde + abef + beef + fbed + fbed]
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(viii) @(Gy,x)=x>0red [x“ —(ab+bc+cd)x* + abcd] .
(ix) ¢(Gg,x) =X x* —(ab+bc+cd +de)x* +abcd +bcde + abde |

3. The Spectral Radii and Energies of Graphs with Rank 4

In this section, we give the spectral radii and energies of graphs with rank 4. All
the notation in this paragraph is followed in Lemma 2.4.
Theorem 3.1. Let GeN(G,,G,,--,G,) . Then the spectral radius of graph G

as follows:
(i) If GeN (G1)~ Then

o

(ii) If GeN(G,) andlet ¢'=ab+bc+bd+cd,d =bcd, e’ =abcd . Then

1

2

1 1
p(G):l (Ec'+Aj2+ %c’—A+4d’/(§c’+Aj2 ,

2|13
where
2
2 )3
A=| ¥a((e) +12e’)+[—2(c’)3 +108(d’) +72e'c’ + AZJ
1
193
/ 33/5(—2(c’)3+108(d’)2+7Ze’c'+ Azj :
where

A=-432¢'(c')’ +3456(e’)" (c')’ —432(d")*(c')’ +15552¢'c’(d')*
~6912(e’)’ +11664(d")*.

(iii) I Ge N(G,) andlet ¢'=ab+ac+bc+bd+ce, d'=abc,
e’ = abdc + abec + dbec . Then

1
2

1
p(G):% (§C'+Aj2+ %c'—A+4d’/(§c’+Ajz ,

where
2

133
a=| ¥4((c) +12e’)+(—2(c’)3 +108(d")’ +72e'c + AZJ

1

13
/ 33/5(—2(c’)3+108(d’)2+72e’c'+ AZJ :

DOI: 10.4236/am.2023.1411045 751 Applied Mathematics


https://doi.org/10.4236/am.2023.1411045

J. X. Luo

where
A=-432¢'(c')’ +3456(e’)* (c')’ —432(d")*(c')’ +15552e'c’(d')*
~6912(e')’ +11664(d’)".

(iv) If GeN(G,) andlet c'=ab+ae+be+bc+cd+de, d’'=abe,
e’ =abed + aecd + abcd + abec . Then

1
132

. 1
p(e)% (%c'wjz {:c —A+4d’ /(30 +Aj J ,

where
2
11\3
A= %/Z((c')2+12e')+[—2(c')3+108(d) +72e'c’ +A2j
1
133
/ 3%/5[—2(c')3+108(d')2+72e'c'+ AZ] :
where

A=-432¢'(c')’ +3456(e’)*(c')’ —432(d")*(c')’ +15552¢'c’(d')*
~6912(e')’ +11664(d")".

(v) If GeN(G,) andlet ¢'=ab+bc+bf +cf +cd+de+ef , d'=bef,
e’ = abed + abcd +bdec + abcf + abef +bcef + focd + fbed . Then

2

1 1
p(G):% (%c’+AJ2+[gc —A+4d’ /(30 +Ajz} ,

where
N
A= 3/1((0')2 +12e') + [—2(0’)3 +108(d’)2 +72e'c’ + AZT
L 1
2 \3
/ 33/5[—2(0’)3 +108(d’)2 +72e'c’ + AZJ ,
where

2

A=-432¢'(c')" +3456(e’)’ (¢')* —432(d")*(¢')’ +15552¢e'c’(d")
~6912(e’)’ +11664(d")*.

(vi) If GeN(Gg) andlet ¢'=ab+ac+ad +bc+hd +cd,
d'=abc+abd +acd +bcd, e =abcd . Then
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1

1 12
p(G):% (%c’+AJ2+[%c —-A+4d’ /[Bc +AJ } ,

where
L 2
3
A= 3/2((0’)2 —36e’)+(—2(c’)3 +108(d")* —216e'c’ + AZJ
1
3
/ 33/5(—2(c’)3+108(d ) —216¢'c’ +A2J :
where

A=1296¢'(c')" +31104(e')’ (¢')* —432(d")’(c')’ — 46656e'c’(d')’
+1886624(e')’ +11664(d")".

(vii) If GeN(G,) andlet ¢'=ab+ac+af +bc+be+cd+df +de+ fe,
d'=abc+def , e'=abed +abdf +ache+aced + acef + afed +abcd + fcde +
abcf +bcef + fbed + fhed . Then

1
2

1 1
p(G):% (%c'+Ajz+{%c ~A+4d’ /(30 +Asz ,

where
2
1133
A= M((c')z+12e')+(_2(c')3+1os(d) +72e'C +A2]
1
193
/ 3%/5[—2(c')3+108(d')2+72e'c'+ AZJ :
where

4

A=-432¢'(c')" +3456(e’)’ (¢')* —432(d")*(¢')’ +15552¢e'c’(d")
~6912(e’)’ +11664(d")*

2

(viii) If GeN (Gg). Then
1 2 2 %
p(G):E 2ab + 2bc + 2cd +2((ab+bc+cd) —4abcd)2 :
(ix) If GeN (Gg). Then

1
p(G)= %[2ab+ 2bc +2cd + 2de + 2((ab+bc+cd + de)2 —4(abed +bcde+::1bde))2}2 ,

Proof. Here we only consider the cases GeN(G,), Ge N(G,). The proof of
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other cases is quite similar to G e N(G,) and is thus omitted.

1
- —-271)2
Let GeN(G,). By Lemma 2.3, directly yields p(G)= QnTZJ [nTZ—D .
Let GeN(G,). By Theorem 2.4 (i), there exist 4 nonzero eigenvalues and all
other eigenvalues are 0. So we only need to input polynomial

x* —(ab+bc+bd +cd)x* — 2bcdx +abcd in maple 13.0, we can get the nonzero
eigenvalues of the graph Gas follows.

1

1!l 2 1 133 1
/11=E 5(ab+bc+bd+cd)+§ D+6E? | —3F /| D+6E?2

132
3

1 1

4 1 133 13
+ 5(ab+bc+bd+cd)—§ D+6E2 | +3F/| D+6E?2

1

2
1

1\3 1
+4bcd / %(ab+bc+bd+cd)+%(D+6E2J —3F/[D+6E2J

1
132
3

1

2

1

1112 1 ERF 1 %
/12=E 5(ab+bc+bd+cd)+§ D+6E2 | —3F /| D+6E?2

1 1

4 1 133 133
- 5(ab+bc+bd+cd)—§ D+6E2 | +3F/| D+6E?

1

2
1

2 1 1\3 1 %
+4bcd / 5(ab+bc+bd+cd)+§ D+6E2 | —3F /| D+6E?

1
2

1

2

1

1112 1 133 1 %
ﬂaz—z §(ab+bc+bd+cd)+§ D+6E2 | —3F/| D+6E?

1 1

4 1 173 13
+ 5(ab+bc+bd+cd)—§ D+6E2 | +3F/| D+6E?

1

2 1 133 1 %
—4bcd / 5(ab+bc+bd+cd)+§ D+6E2 | —3F/| D+6E?2

N
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1
1 2

1|] 2 1 13 1 ;
/14=—§ g(ab+bc+bd+cd)+§ D+6E2 | —3F /| D+6E?2

1 1

4 1 133 1
- E(ab+bc+bd+cd)—§ D+6E2 | +3F /| D+6E?

1

12
1 2

1\3 1
—4bcd / %(ab+bc+bd+cd)+%(D+6E2J —3F/(D+6E2J

1
3

where
D =-a’h® —b%® —b%d® - c®d® + 33a’b?cd + 30ab?c?d + 30ab’cd?
+33abc?d® - 6ab’cd - 3a’b’c - 3a’b’d — 3ab’c® - 3ab’d®
—3bc?d —3b%cd* —3b*c®d —3b’cd® —3bc®d® —3bc’d® + 48b°c?d?,
E =-3a’b’cd —12a*b°c’*d —12a‘b’cd® +12a’b*c’d® —18a’b°c’d
—39a’h°c’d® —18a°v°cd® +12a%v*c’d” +12a’b*c’d® —18a’b’c’d’
—12a’h°c*d — 45a°b°c*d?® — 45a°b°c’d® —12a°b°cd* —12a°b*c*d?
+75a%b*c®d® —12a%b*c?d* +12a’b’c*d® +12a’bc®d* +12a’b’c*d*
—3ab°c’d —21ab°c*d? —36ab’c®d*® — 21ab°c*d* —3ab°cd® —12ab*c®d?
+54ab*c*d® + 54ab’c®d* —12ab*c*d® —18ab’c°d® + 63ab’c*d*
—18ab’c®d® —12ab’c°d* —12ab’c*d® —3abc®d® - 3b°c’d® — 9b°c*d®
—9b°c®d* —3b°c*d® —9b*c®d® +63b*c*d* —9b*c®d® —9b’c®d*
—9b**d® —3p?c°d®,

14

F =——abcd —Eazb2 —gabzd L
9 9 9

—=b%c? —zbzcd
9 9
—lbzd2 —Zczbd —Ebcd2 —lczdz.
9 9 9 9

Due to 43,4, <0, A4,4,>0 and A >4,, we can obviously get A is the
spectral radius of graph G. Let ¢'=ab+bc+bd+cd, d'=bcd, e =abcd, due
to
D =-a’b® —b%® - b%d® - c®d® + 33a’b’cd + 30ab?c*d + 30ab?cd?
+33abc?d® - 6ab’cd - 3a’b’c — 3a’b’d — 3ab’c® - 3ab’d®
—3b%c’d —3b%cd?® —3b%c®d —3b’cd® —3bc®d? — 3bc?d® + 48b*c*d?
=—(ab+bc+bd +cd)’ +54(bed )’ +36abed (ab + b +bd +cd )
=—(c')’ +54(d")" +36e’c’
E = —3a°b°cd —12a*b’c’d —12a*b°cd? +12a’b*c*d? —18a°b°c’d
—39a’h°c’d? —18a’b°cd® +12a°b*c’d® +12a%v*c’d® -18a’b’c’d’
—12a’b°c*d —45a’b°c®d? —45ab°c?d® —12a’b°cd* —12a’b*c*d?
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+75a%b*c’d® —12a’b*c’d* +12a°b’c*d® +12a’h’c®d* +12a’b’c*d*
—3ab°c°d —21lab°c*d* —36ab’c’d® — 21ab’c*d* — 3ab°cd® —12ab‘*c’d?
+54ab*c*d® +54ab*c®d* —12ab‘c’d® —18ab’c°d® + 63ab’c*d*
—18ab’c®d® —12ab*c°d* —12ab’c*d® —3abc’d® — 3b°c’d? - 9b°c*d®
—~9b°c*d* —3b%c?d® ~ 9b*c’d® + 63b“c*d* — 9b’c’d® —9b%c’d*
-9b’c*d® - 3b*c’d®

——3abed (ab+bc+bd +cd)* +24(abed ) (ab + be +bd +cd )*
—~3(bed )’ (ab+bc +bd +cd )’ +108abed (ab +be + bd +cd )(bed )’
— 48(abed )’ +81(bed )’

=-3e'(c’)" +24(e') (¢')’ —3(d")* (c')’ +108e'c’(d")* — 48(e’)’ +81(d")’

= [—432e’(c')4 +3456(e')’ (¢')’ —432(d")* (c')’ +15552e'c’(d')’
~6912(e')’ +11664(d")" |/144

=A/144

2

—Zab’d L
9

F= —Eabcd —Eazb2 —Z=b%c? —zbzcd
9 9 9 9

“Lpeg2 - 2copg — 2ped? — Lezg?
9 9 9 9

- -%((ab +bo+bd + cd)’ +12abed )
= _%((c')2 +12e’).

Then we have

1 1
1 1\ 133
3 D+6E2 | —3F/| D+6E?

1 "3 "2 o 13
:g(—(c) +54(d")" +36e’c +6(A/144)2j

—3(—%(@')2 +12e')]/(—(c’)3 +54(d")’ +36e'c’ + 6( A/144)§j3
= ¥4((c)’ +12e’)+(—2(c')3 +108(d")" + 726 + A2 ]3

1
133
11332 (—z(c')g' +108(d’)* +72e'c’ + AZJ

=A

So we get

2 1 133 13
A== 5(ab+bc+bd+cd)+§ D+6E2 | —3F /| D+6E?
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1 1

4 1 133 133
+ g(ab+bc+bd+cd)—§ D+6E2 | +3F/| D+6E?

1

1Y2
1 2

2 1 13 1 %
+4bcd / 5(ab+bc+bd+cd)+§ D+6E2 | —3F /| D+6E?

1

:% (%(ab+bc+bd+cd)+Ajz

2

1
+ g(ab+bc+bd +cd)—A+4bcd/(§(ab+bc+bd +cd)+Aj2

1

1

2
_1 gc’+A g iC’—A+4d’/ gc'+A ’
2|\3 3 3

=p(G)

It is consistent with the spectral radius obtained as above.
This completes the proof. l
Example 1. Solve the spectral radius of graph G =G,0(5,6,3,4,6).
By employing maple 13.0 to calculate, we can get that 1.5808, —5.3747, —9.5359,
13.3297 are the nonzero eigenvalues of the graph G. By comparison, it is obvious
that 13.3297 is the spectral radius of the graph G.

Theorem 3.2. Let Ge N(G,,G,,---,G,). Then the energy of graph G as fol-
lows, where the notations is defined as same as above Theorem.
(i) If GeN (Gl). Then

E(G)=2(ab)z +2(cd)2.
(ii) If GeN (Gz). Then

(iii) If GeN (Gs).Tben
(iv) If GeN(G,). Then

(v)If GeN (G5). Then

DOI: 10.4236/am.2023.1411045
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1

E(G)z2(§0’+Ajz.

(vi) If GeN(Gg). Then

1

2

1 1
E(G)z(%c’+Aj2 + %c’—A+4d’/(§c’+Aj2

(vii) If GeN(G,). Then

1

E(e)=2[§c'+A]2.

(viii) If GeN(G,). Then

112
E(G):{Zab+ 2bc + 2cd +2((ab+bc+cd )2 —4abcd)21

112

+{2ab+2bc+20d —2((ab+bc+cd )2 —4abcd )2} )

(ix) If G e N(G,). Then

E(G) ={2ab+ 2bc +2cd + 2de + 2((ab+bc+cd +de)’ —4(abed + bede

1
+ abde))Z}2 + {Zab +2bc +2cd + 2de — 2((ab +bc+cd + de)2

1
—4(abcd +bede + abde))Z}2 .

Proof. Here we only consider the cases G e N(G, ). The proof of other cases
is quite similar to G eN(G,) and is thus omitted.

The proof of Theorem 3.2 follows from Theorem 3.1. So we have

1

N

1
31:1 [gc’+A]2+ ic’—A+4d'/(zc'+A)
23 3 3

1
2

1 1
A 1 (zc’+Aj2 - ic’—A+4d’/(zc’+Aj2
2 3 3

N

1 1
23:—1 [zc’+Aj2+ ic’—A—4d’/(zc’+Aj2 ,
21\3 3 3
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1

1
Ay -1 (zc'+Ajz - iC'—A—4d'/(EC'+Ajz
2 3 3

Dueto 4,4, <0, A4,4,>0, we get
E(G) =4+ |4 +[A] +] 4|
Ay = do =

1
=2(Ec’+Aj2
3

It is consistent with the energy obtained as above.

This completes the proof. U

4. The Spectral Characterization of Graphs with Rank 4

In this section, we will investigate which graph G e N (Gl,Gz,m,Gg) is DS and
find some cospectral graphs.

Theorem 4.1. Let G=G, UrK,, where a=b=e=1 in G,. Then Gis DS.

Proof. Suppose that Ghas 3+c'+d’+r vertices. Checking G, we note that it
only contains one triangle. This implies, by Lemma 2.2 (v), that if graph H is
cospectral with G, then A must contain one triangle. By Lemma 2.1 and Lemma
24, G,uUgK, (here b=c=d=1 in G;), G;umK, (here a=b=c=1 in
G;) and G, UWK; (here b=c="f =1 in G;) contains one triangle, respec-
tively. It has been proved that G, U gK, (here b=c=d=1 in G;) is DS. In
the following we consider two cases.

Case 1. Assume that Gand G; UmK| are cospectral andlet 1<d <e,
1<c’<d’. Therefore, Gand G; UMK, have the same vertices and coefficients
of their characteristic polynomials. By Lemma 2.4 (iv) and (iii), we have

3+c'+d'+r=3+d+e+m
3+c'+d'+cd'=3+d +e
c'+d'+2cd'=d +e+de

Solving the equation system as above, we obtain that r—m=c'd’=de, which
implies d=c'd’/e and r-m>0.By 3+c'+d'+r=3+d+e+m and
r—m> 0, we can obtain that d+e>c'+d’. Taking d=c'd’/e into
d+e>c'+d’, we obtain that e? — (c'+d")e+c'd">0. Solving this equation, we
obtain that e>d’ or e<c’'. However, by c'd'=de and 1<d<e, 1<c'<d’,
we obtain that ¢'<d <e<d’ or d<c'<d’'<e, which in contradict with e>d’
or e<c'.Hence Gand G;umK; are not cospectral.
Case 2. Assume that Gand G UWK; are cospectral. Therefore, Gand
G; UWK; have the same vertices and coefficients of their characteristic poly-
nomials. By Lemma 2.4 (iv) and (v), we obtain that
3+c'+d'+r=3+a+d+e+w
3+c'+d'+c'd'=3+a+d+e+ed
c'+d'+2c'd'=a+d+e+ad +ae+ 2ed +aed
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Solving the equation system as above, we have
w-r=ed-c'd’
c'd’=ad +ae+ed +aed
c'+d'+cd'=a+d+e+ed

By cd’'=ad+ae+ed+aed , we obtain that ¢'=(ad+ae+ed+aed)/d".
Taking ¢'=(ad +ae+ed+aed)/d’ into c'+d'+cd'=a+d+e+ed, we ob-
tain that d'’+(ad +ae+aed-a-d—-e)d’'+ad+ae+ed+aed =0. Supposing

the roots of the equation as above are d,;,d,,, we have

d,+d,=a(l-d)+d(1-ae)+e(l-a)
d,,d;, =ad + ae +ed + aed

By the definition of G¢, one has a,e,d >1, which implies that d;, +d,, <0,
d,d, >0.By d,d;, >0, we know that d,;,d,, are nonzero and have the same
sign. However, by d;; +d;, <0, we know that d,;,d;, <0. This contradicts the
fact d;;,d;, > 0. Thus, Gand G, UWK, are not cospectral.

Next, assume that G,0(1,1,¢',d’,1) and G,0(1,1,¢",d",1) are cospectral
and c¢”<c'<d’'<d"”. Therefore, they have the same vertices and coefficients of

their characteristic polynomials. By Lemma 2.4 (iv), we get that

3+c¢"+d"=3+c"+d’
3+c¢"+d"+c"d"=3+c'+d"+c'd’
c"+d"+2c"d"=c"+d"+2c'd’

Solving the equation system as above, we obtain that ¢”"+d"”=c"+d’,
¢"d”=c'd". By ¢"d”=c'd’, we obtain that c¢"=c'd’/d". Taking c"=c'd"/d"
into ¢”+d"=c'+d’, we have d"*—(c'+d’)d"”+c'd’=0. Solving this equa-
tion, we obtain that d”=c¢’ or d"=d’.If d"=c', ¢”"<d’, then we have
¢"+d"<c'+d’, acontradiction; If d”"=d’, ¢’>c", then we have
¢"+d"<c'+d’, a contradiction. Thus, G,0(1,1,¢’,d"1) and
G,0(1,1,c",d",1) are not cospectral.

From the argument above, we obtain that Gis DS. ]

Theorem 4.2. Let G=G,, where a=b=c=1 in G;. Then G is DS if and
only if w=ed or e”—(a+d+e+de)e’+ad+ae+de+aed =0 has no posi-
tive integer solution.

Proof. Suppose that Ghas 3+d'+e’ vertices. By Lemma 2.2 (v), we know if
graph H is cospectral with graph G, then A must contain one triangle. By Lem-
ma 2.1 and Theorem 2.4, G, U gK, (here b=c=d =1), G, UrK, (here
a=b=e=1)and G;UWK, (here b=c=f =1) contain one triangle, respec-
tively. It has been proved that G, U gK, (here b=c=d =1) is DS. In the fol-
lowing we consider two cases.

Case 1. Assume that Gand G, UrK, are cospectral and let 1<d’'<¢e’,
1<c<d. Therefore, Gand G, UK, have the same vertices and coefficients of

their characteristic polynomials. By Lemma 2.4 (iii) and (iv), we have
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3+d'+e'=3+c+d+r
3+d'+e'=3+c+d+cd
s+e'+de'=c+d+2cd

Solving the equation system as above, we obtain that r=cd =d'¢’, which im-
plies that d'=cd/e’ and r>0. By 3+d'+e'=3+c+d+r and r>0, we
can obtain that d'+e'>c+d. Taking d'=cd/e’ into d'+e'>c+d, we ob-
tain that e —(c+d)e’+cd >0. Solving the equation as above, we obtain that
e'>d or e <c.However, by cd=d®', 1<d'<e’, 1<c<d, we obtain that
c<d'<e’'<d or d'<c<d<e’, which in contradict with e'>d or e'<c.
Thus, Gand G, UrK, are not cospectral.

Case 2. Assume that Gand G, UWK, are cospectral. Therefore, Gand
G; UWK; have the same vertices and coefficients of their characteristic poly-
nomials. By Lemma 2.4 (iii) and (v), we have

3+d'+e'=3+a+d+e+w
3+d'+e'=3+a+d+e+ed
s+d'+d® =a+d+e+ad+ae+2ed +aed

Solving the equation system as above, we have
w=ed
de’=ad +ae+ed +aed
d'+e'=a+d+e+2ed

By de'=ad+ae+ed+aed, we obtain that d'=(ad+ae+ed+aed)/e’ .
Taking d'=(ad+ae+ed+aed)/e’ into d'+e’'=a+d+e+2ed, we obtain
that e?—(a+d+e+de)e’+ad +ae+de+aed=0.1f w=ed and
e?—(a+d+e+de)e’+ad +ae+de+aed =0 has positive integer solution are
satisfied at the same time, then G and G UWK; are cospectral. On the con-
trary, Gand G, UWK| are not cospectral.

Then, assume that G,0 (1,1,1, d ’,e’) and G,0 (1,1,1, d ”,e”) are cospectral
and let d"”<d’'<e’'<e". Therefore, they have the same vertices and coefficients
of their characteristic polynomials. By Lemma 2.4 (iii), we have

3+d'+e'=3+d"+¢e"
{d’+e'+d’e':d”+e”+d”e”

Solving the equation system as above, we obtain that d'+e'=d" +e",
de'=d"e"”. By de'=d"e"”, we have d'=d"e"/e’. Taking d'=d"e"/e’ into
d'+e’'=d"+e"”, we have e?—(d”+e")e’+d"e”"=0. Solving the equation as
above, we obtain that e'=d"” or e'=e"”.If e'=d”, d’'<e”.Then we have
d'+e'<d” +e", which in contradict with d’'+e'=d"” +e"”; When e =e",
d'>d"”.Then we have d'+e'>d"”+e", which in contradict with
d'+e'=d"”+e"”. Thus, G30(1,1,1, d’, e’) and G30(1,1,1, d", e”) are not cos-

pectral.

In conclusion, we obtain that Gis DSif and only if w=ed or
e?—(a+d+e+de)e’+ad +ae+de+aed =0 has no positive integer solution.

O

DOI: 10.4236/am.2023.1411045

761 Applied Mathematics


https://doi.org/10.4236/am.2023.1411045

J. X. Luo

Figure 2. Gand H.

Corollary 4.3. Let G=G; where a=b=c=1 in G, and H=G,UKK,
where b=c=d =e=1f =1 in G;. They are cospectral if and only if k=1 and
e” —(a+3)e'+3a+1=0 has positive integer solution, where the graphs G,H
are depicted in Figure 2.

Proof. By Theorem 4.2, we can obtain it obviously. U

5. Conclusion

In this paper, we give the expressions of the spectral radius and energy of all graphs
with rank 4. At the same time, we investigate some graph G e N (Gl, Gz,---,Gg)
is DSand find some cospectral graphs.
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