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Abstract 
The physical transformations in terms of contraction of okra dimensions 
during convective drying were examined. During drying, the lateral and lon-
gitudinal dimensions of okra decrease over time. The lateral dimensions go 
from their initial value to around 53%, 65% and 66% of this value after 530 
min. The length of the two samples used goes from 8.65 and 9.02 cm to 6.79 
and 7.52 cm after 14,300 min, i.e. a variation of 78.50% and 83.37%. All the 
two directions give variations almost linear depending on the water content. 
These linear contractions result in a volume contraction of the okra. It consi-
derably decreases in volume during the drying process. The volume goes 
from 831.32 cm3 to 367.57 cm3 in min, a variation of 44.22%. The isotropic 
index reveals that okra does not behave the same in the lateral and longitu-
dinal directions. It contracts its diameter more than its length.  
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1. Introduction 

Shrinkage during drying has usually been assumed negligible to facilitate solving 
heat and mass transfer equations; however, such an assumption is not valid for 
all substances in all moisture ranges [1]. It has been shown that both volumetric 
shrinkage [2] and dimensional shrinkage [3] are dependent on moisture content. 
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Mathematical models relating shrinkage to moisture content are required for 
future use. The theoretical basis for shrinkage should involve mechanical laws 
that take material stresses into account and deformations during dehydration 
[4]. However, analysis of agri-foods material physical behavior is extremely 
complicated because of the multiphase and cellular nature of the system. In or-
der to model shrinkage of agri-foods from this point of view, a knowledge of the 
structural, mechanical and elastic properties of each phase of the system, and the 
variation of water content and temperature, is required. Therefore, a practical 
approach to the study of agri-food shrinkage is experimentally based. 

The aim of this work is to examine the okra physical behavior during its con-
vective drying. Linear dimensions variation and volumic shrinkage characteris-
tics of whole okra during convective drying are evaluated. Okra isotropicity is 
examined to compare longitudinal and lateral directional behavior. 

2. Material and Methods 
2.1. Okra 

We consider okra to be a structurally complex product. It has three constituents 
of different natures. As shown in Figure 1, the dark green skin constitutes an 
outer covering. It contains more or less spherical seeds which are attached to a 
spongy material constituting the central axis of the okra. Okra contains fibers 
that are oriented lengthwise [5]. It is therefore necessary to characterize the iso-
tropicity of okra. For these experiments, fresh okra was purchased from a local 
market in Burkina Faso. They were kept in a refrigerator at 12˚C between 2 and 
3 days, the time necessary to carry out these experiments. 

2.2. Sample Processing 

Convective drying of okra was carried out in an oven. The temperature is set at 
70˚C. As soon as thermal equilibrium is reached, the samples are introduced in-
to the oven enclosure. On each okra, we mark with indelible ink three geometric 
locations where the diameter measurement will be carried out. Then, the diame-
ter considered is the average of these three measurements. The samples are re-
moved from the oven, at a time interval predefined by preliminary tests, for  
 

 

Figure 1. Anisotropicity of okra: L = length or fibers direction, d = lateral or direction 
perpendicular to fibers. 
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measurements to be taken. We minimize the measurement time so as not to 
disturb the thermal balance already established in the product. Geometric cha-
racterization of the samples is done by initially measuring the diameters of a few 
sections along the entire length of the okra as well as the length of the entire okra 
over the drying time. For some samples, we measure the length of the sections 
that have been marked during drying. To do this, we use the digital micrometer 
(MITUTOYO, Japan, precision 2 × 10−5 m). 

2.3. Sample Processing 

Contraction 
During the drying of okra, the product undergoes physical deformations, as 

shown in (Figure 2.). In the case of drying, contraction (shrinkage) is a conse-
quence of the loss of water from the solid matrix of the product. The models in 
the literature are mainly empirical and cannot be transposed from one product 
to another or to other experimental conditions [6]-[12]. There are nevertheless 
basic theories in the literature [13]. The multiplicity and diversity of products 
and their physical properties (density, material concentration, contraction coef-
ficient, collapse, porosity, change in dimensions, etc. make comparisons very 
difficult [14]-[19]. 

From experimental data, contractions are represented by the following rela-
tionships (Equations (1)-(3)): 
 Volume: 

0 0
v V

V Xa b
V X

= +                        (1) 

 Length: 

0 0
L L

L Xa b
L X

= +                        (2) 

 Diameter: 

0 0
d d

d Xa b
d X

= +                        (3) 

 

 

Figure 2. Physical change observing during okra convectif drying, 70˚C. 
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where a and b are constants deduced graphically, the indices v, L and d being re-
lated respectively to the volume, length and diameter. These models have been 
used by certain authors for different products and applications: for carrots [20] 
[21], potatoes [22], apples [23], grapes [24], hammered [25] potatoes and carrots 
(okra [21] [26] [27] [28] [29] [30]). 

Shrinkage isotropicity. 
The difficulty linked to agri-food product drying study comes from the great 

diversity in the field. Added to this is the structural factor, heterogeneity and 
anisotropicity of the agri-food product giving it, during its drying, very complex 
physical and mechanical characteristics. We can distinguish three main direc-
tions: 
 The longitudinal direction (L), which is that of the fibers; 
 The tangential direction (T), perpendicular to the plane containing the fibers; 
 The radial direction (R), is perpendicular to the longitudinal and centripetal 

axis. 
The isotropicity index makes the comparison of the contraction of samples in 

two directions during drying. 
For drying times different from the initial time, the shrinkage isotropicity be-

tween X and Y directions was defined as the ratio of the reduction in X divided 
by the ratio of the reduction in Y. 

For these directions, we define the isotropicity index XY by the following rela-
tion: 

0

0

0

0

XY

X X
XI Y Y
Y

−

=
−

                          (4) 

Thus, the radial-axial isotropicity index is defined by the following relation-
ship, in the case of a cylindrical sample where equation 4 becomes Equation (5) 
[19]: 

0

0

0

0

dL

d d
dI L L
L

−

=
−

                          (5) 

where d0, d are respectively the initial and the current values of the sample di-
ameter and L0, L respectively the initial and the current values of the sample 
length. 

3. Results and Discussions 
3.1. Lateral Contractions 

During drying, the lateral dimensions of okra decrease over time. As the product 
loses its water it undergoes a collapse of the material which compensates for the 
loss of water. Consequently, its diameter decreases. Figure 3(a) indicates that for 
diameters 1, 2 and 3 the lateral dimensions increase from their initial value to  
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Figure 3. Anisotropicity of okra in lateral d direction during its convective drying, 70˚C. 
 
around 53%, 65% and 66% of this value after 530 min. We nevertheless notice 
that at the first moments, before the first 100 minutes, the lateral dimensions in-
crease and slightly exceed the initial values. This is certainly due to the increase 
in internal pressure. Indeed, the water from the seeds and the central material 
that evaporates remains trapped by the skin. The water vapor increases the 
pressure which swells the skin. This phenomenon increases the values of the lat-
eral dimensions. A few moments later, this water vapor escapes and the pressure 
drops. In addition, the skin becomes rigid and no longer swells. The variation of 
d/d0 as a function of X/X0 is quasi-linear after the first 100 minutes. Considering 
the overall drying time, the linear modeling has a deviation of 2 0.640R = , 
which is not satisfactory (Figure 3(b)). This poor correlation is linked to the 
complex structure of okra. Consequently, the lateral contraction curve which 
should be linear contains enormous irregularities. Lateral contraction can only 
be considered linear after a certain time necessary to establish a stationary trans-
fer regime. 

3.2. Longitudinal Contractions 

The loss of water from okra during convective drying results in a contraction of 
the longitudinal dimension. As shown in Figure 4(a), the length of these sam-
ples increases, on average, from 8.65 and 902 cm to 6.79 and 7.52 cm after 14,300 
min, i.e. a variation of 78.50% and 83.37%. 
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Figure 4. Anisotropicity of okra in L = length direction during its convective drying, 
70˚C. 
 

The variation of L/L0 as a function of X/X0 is quasi-linear (Figure 4(b)). Li-
near modeling gives the equation: 

0 0

0.0001 0.9227L X
L X

= +−                      (6) 

With 2 0.5192R = . 
This correlation can be considered unsatisfied and highlights the complex na-

ture of okra. 

3.3. Volume Change 

The shrinkage data obtained during convective drying were also analyzed in 
terms of the bulk shrinkage coefficient. Figure 5(a) shows the volume change as 
a function of moisture content. As shown, sampling again exhibits a linear 
shrink relationship with moisture content. 

Considering the okra as having a cylindrical shape, the volume is calculated at 
each moment of drying. The results in Figure 5(a) shows that okra significantly 
decreases in volume during the drying process. The volume goes from 831.32 cm3  
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Figure 5. Okra bulk shrinkage during convective drying, 70˚C. (a) volume reduction at 
any water content value; (b) bulk shrinkage coefficient V/V0 versus X/X0. 
 
to 367.57 cm3 in min, a variation of 44.22%. Considering the relationship be-
tween V/V0 and X/X0 Figure 5(b) gives us a quasi-linear relationship. This li-
nearity follows the equation: 

0 0

0.5443 0.4621V X
V X

= +                       (7) 

with 2 0.9923R = , the linear relationship will be considered acceptable. 

3.4. Insitropicity Index Id-L of Okra 

Examination of the lateral and longitudinal contractions of the okra during its 
convective drying seems to show a difference in behavior according to these di-
rections. The samples give, on average, final lateral contractions of 53.65% and 
66%, which are clearly different from the longitudinal contractions of 78.5% and 
83.37%. These remarks lead us to examine the isotropicity of okra. The isotro-
picity index at the diametric direction versus the longitudinal one is significantly 
above 1 which is the isotropicity index of an isotropic product (Figure 6). How-
ever, from the first moments of drying, there is an inversion where the length  
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Figure 6. Lateral-longitudinal isotropicity index of okra during convective drying, 70˚C. 
 
seems to contract more than the diameter. Which is characterized by a curve 
below the ideal Id-L = 1 

Thus, the okra contracts more in diameter than in length. As can be seen in 
Figure 6, this isotropicity is not linear. We can explain these results by taking 
into account the difference in structure between the directions. Indeed, the fibers 
of okra are oriented in the longitudinal direction. These fibers can withstand 
more contraction stress, thereby reducing the decrease in length. On the other 
hand, these fibers parallel to each other can collapse and do not prevent the re-
duction in diameter. 

4. Conclusion 

During drying, the lateral dimensions of okra decrease over time. As the product 
loses its water it undergoes a collapse of the material which compensates for the 
loss of water. Consequently, its diameter decreases. The lateral dimensions go 
from their initial value to around 53%, 65% and 66% of this value after 530 min. 
During the first 100 minutes of drying, the lateral dimensions increase and 
slightly exceed the initial values. This is explained by the increase in internal 
pressure. This is because the water vapor coming from inside the okra is trapped 
by the skin. After these moments of turbulence, the variation of tau d/d0 as a 
function of tau X/X0 is quasi-linear. During convective drying, okra also con-
tracts its longitudinal dimensions. The length of the two samples used goes from 
8.65 and 9.02 cm to 6.79 and 7.52 cm after 14,300 min, i.e. a variation of 78.50% 
and 83.37%. The variation of tau as a function L/L0 of tau X/X0 can be modeled 
linearly. These linear contractions result in a volume contraction of the okra. It 
considerably decreases in volume during the drying process. The volume goes 
from 831.32 cm3 to 367.57 cm3 in min, a variation of 44.22%. The relation be-
tween V/V0 and X/X0 gives approximately a straight line. Examination of the re-
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sults in terms of isotropicity index reveals that okra does not behave the same in 
the lateral and longitudinal directions. It contracts its diameter more than its 
length. These results may be related to the direction of the fibers. Indeed, the fi-
bers of okra are oriented in the longitudinal direction. These fibers can with-
stand more contraction stress, thereby reducing the decrease in length. On the 
other hand, these fibers parallel to each other can collapse and do not prevent 
the reduction in diameter. 
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