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Abstract 
The role of cocoa systems for climate change mitigation and adaptation has 
increased substantially because of their capability to trap carbon dioxide from 
the atmosphere and deposited in the cocoa trees as carbon. Development of 
aboveground biomass (AGB) models for cocoa plantations is crucial for ac-
curate estimation of carbon stocks in the cocoa systems, however, allometric 
models for estimating AGB for cocoa plantations remain a challenge for co-
coa producing countries in Sub-Saharan Africa especially Ghana. The aim of 
this study is to develop allometric model that can be used for the estimation 
of AGB for cocoa plantations in Ghana, as well as West Africa. Destructive 
sampling was carried out on 110 cocoa trees obtained from the cocoa rehabil-
itation exercise for the development of the allometric models. Diameter at 
breast height (D), total tree height (H) and wood density (ρ) were used as 
predictors to develop seven models. The best model was selected based on 
coefficient of determination (R2), index of agreement (IA), root mean squared 
error (RMSE), bias (E%), mean absolute error (MAE) and corrected akaike 
information criterion (AICC) and percentage relative standard error (PRSE) 
of the estimated parameters. The selected model, which was the one with the 
predictors D and ρ, was given as; AGB = 0.7217ρ(D2)0.921. It was compared 
with the Yuliasmara et al. (2009) cocoa model using equivalence test and 
paired sample t-test. The two models were found to be equivalent within 
±10% of their mean predictions (p < 0.0001) for one-tailed tests for both 
lower and upper limits, while the paired sample t-test rejected the null hypo-
thesis with mean difference of 14.16 kg between the two models. This study is 
significant because it has provided a model to estimate AGB for the cocoa 
plantations in Ghana which is very important for the Ghana Cocoa-Forest 
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REDD+ Programme and also can be used by other West African cocoa pro-
ducing countries. 
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Carbon Stocks, Diameter at Breast Height, Wood Density, Tree Height,  
Cocoa Landscape 

 

1. Introduction 

The world’s foremost environmental issue is the climate change, which has a 
significant impact on both human activity and natural ecosystems (Watson et 
al., 2002; Mohanty and Mohanty, 2009) [1] [2]. A significant amount of the 
world’s carbon emissions come from fossil fuels and a sizeable portion comes 
from deforestation and forest degradation (Lu, 2006) [3]. Large amount of car-
bon is stored by natural forests and other woody vegetation in their sinks, which 
eventually help in climate change mitigation (Chave et al., 2005) [4].  

Ghana’s main cash crop, cocoa (Theobroma cacao) contributes significantly 
to the economy of Ghana as it contributes about 25% of the country’s gross do-
mestic product through export and employ approximately 800,000 farming 
households (Peprah, 2015; Kolavalli and Vigneri, 2003) [5] [6]. Apart from the 
economic benefit, cocoa plantations also provide ecosystem services (Supriadi et 
al., 2022) [7]. The role of cocoa systems for climate change mitigation and adap-
tation has increased substantially because of their capability to trap carbon dio-
xide from the atmosphere and deposited in the cocoa trees as carbon (Acheam-
pong et al., 2014) [8]. According to World Bank assessment with an estimated 
size of approximately 1.6 million hectares, cocoa farming in Ghana is one of the 
country’s most important land uses (Ghana Investment plan for FIP, 2012) [9]. 
Based on this large area of cocoa plantations in Ghana, the cocoa sector could 
store large amount of carbon in cocoa trees, thereby reducing the concentration 
of greenhouse gases in the atmosphere (Askia et al., 2016) [10]. In Ghana, cocoa 
farming has been known to be a key driver of deforestation, responsible for the 
loss of about 1.45 million hectares of the country’s forest cover (Ashiagbor et 
2020) [11]. The Ghana Cocoa-Forest REDD+ Programme (GCFRP) is a 
ground-breaking initiative with the purpose of alleviating Ghana’s deforestation 
and forest degradation while simultaneously increasing sustainable cocoa pro-
duction. The GCFRP’s main goal is to combat deforestation and forest degrada-
tion, promoting climate-smart cocoa production which aims to create a number 
of opportunities for farmers’ livelihoods and general well-being in the co-
coa-producing regions of Ghana (GCFRP, 2016) [12]. For the GCFRP to realize 
its dual goals of increasing sustainable cocoa production and forest conservation, 
an accurate estimation of carbon stocks in cocoa agroforestry systems is essen-
tial. In this regard, estimation of carbon stocks in the cocoa trees is made possi-
ble with the use of cocoa allometric models.  
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Biomass and carbon stock estimation for tropical forests and other woody vege-
tation has attracted a lot of scientific interest lately as the change in biomass is 
viewed as a key factor in climate change (Basuki et al., 2013) [13]. Accurate bio-
mass and carbon estimations are hinged on allometric models, without these 
models carbon assessment cannot be successfully realized (Henry et al., 2011; 
Adu-Bredu and Birigazzi, 2014) [14] [15]. These models serve as basic tools for 
assessing biomass based on a tree’s diameter at breast height, total height and 
wood density, which are all readily observable quantities (Roxburgh et al., 2015) 
[16]. Accurate estimations and analysis of biomass are essential steps in assessing 
carbon stocks and sequestration rates and evaluating potential effects of climate 
change (Temesgen et al., 2015) [17]. Ghana is formulating Good Practice Guid-
ance (GPG) to measure, track, and report on changes in carbon stocks and green-
house gas emissions for Land Use, Land-Use Change, and Forestry (LULUCF) ac-
tivities, which includes cocoa plantations (IPCC, 2003) [18]. Therefore there is the 
need to develop allometric models for accurate estimation of carbon stocks in 
the various ecosystems which includes the cocoa plantations in Ghana which has 
high potentials to sequestrate large amount of carbon from the atmosphere. 

Some allometric models have been developed for estimation of AGB of cocoa 
such as; Smiley and Kroschel, 2008 [19]; Santhyami et al., 2018 [20]; Yuliasmara 
et al., 2009 [21], all these models from Indonesia and Somarriba et al., 2013 [22] 
from Guatemala. Allometric models for estimating AGB for cocoa plantations 
remain a challenge for cocoa producing countries in Sub-Saharan Africa because 
quantification of AGB of cocoa is done using allometric equations developed 
outside the individual countries. Some studies used Chave et al. (2005) [4] allo-
metric equation for estimation of AGB of cocoa in Central Cameroon (Saj et al. 
2013) [23] and Chave et al. (2005) [4] model is to be used for moist and dry for-
est stands. Also others used Aabeyir et al., (2020) [24] which is meant for Sa-
vannah woodlands was used to estimate plot level AGB of cocoa in southern 
Côte D’Ivoire (Kanmegne et al., 2022) [25] and Torres et al., (2014) [26] was 
used to quantify AGB of cocoa farms in Sefwi Juaboso of Ghana (Afele et al., 
2020) [27]. These models are usually limited in their uses by the diameter range 
used for the models standardization, the kind of tree species used to construct 
the models and the ecological zones under which these models were developed 
often limit the models applicability (Aabeyir et al., 2020) [24]. In Ghana, cocoa is 
cultivated in nine out of the sixteen regions, which cover large land mass (Ayub, 
2020) [28] but information on AGB of cocoa is scanty due to non-availability of 
local AGB allometric models for cocoa plantations. Right now, there is no local 
allometric model available to quantify AGB for the cocoa plantations in Ghana, 
where cocoa production significantly affects the AGB of the landscape. Hence, 
assessment of AGB for the cocoa plantations will require the use of models de-
veloped outside Ghana. However, a significant drawback of applying these equa-
tions is that they yield different outcomes when applied to places outside the lo-
cations in which they were developed (Chambers et al., 2001; Zianis et al., 2005) 
[29] [30], therefore there is the need to develop AGB cocoa allometric models in 
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order to accurately estimate AGB of cocoa plantations in Ghana. 
Hypothesis testing has been an essential tool in statistical analysis that is used 

to make decisions about a population based on sample data (Qualitygurus, 2023) 
[31]. It is used to determine the likelihood that a particular claim is true. Nor-
mally, there are two types of hypotheses used in hypothesis testing: the null hy-
pothesis (Ho) and the alternative hypothesis (Ha) (Pereira and Leslie, 2009; 
Noonan, 2022) [32] [33]. Comparing means such as paired sample t-test is one 
of the common methods used in hypothesis testing (Qualitygurus, 2023) [31]. 
The paired sample t – test simply known as paired t-test is a statistical method 
used to determine whether the mean difference between 2 sets of observation is 
zero. If the p-value is less than the chosen significance level (e.g., 0.05), the null 
hypothesis is rejected in favour of alternative hypothesis (Jim, 2022) [34]. 

Equivalence testing has been one of the statistical methods used to demon-
strate that something is close enough to the ideal to be acceptable (Pardo, 2014) 
[35]. Equivalence testing uses the same methodology as conventional hypothesis 
testing, but the null and alternate hypotheses are modified so that the null is that 
the systems are distinct (i.e., the difference between them is large).This means 
that, if the difference between two methods is reasonably small, the null hypo-
thesis is rejected in favour of the alternative. In conducting equivalence testing, 
the user must state an equivalence region which is the set of population mean 
differences that are deemed comparable to zero. (Dixon et al., 2018) [36]. The 
two-one sided test of equivalence (TOST) is usually employed in equivalence 
testing because of its simplicity and widespread use in other scientific disciplines 
(Schuirmann, 1987) [37]. In the Two-One-Sided-Tests (TOST) method (Schuir-
mann, 1987) [37], the null hypothesis of non-equivalence, is divided into two 
one-sided null hypotheses Ha and Hb. A one-sided test at level α is used to eva-
luate each hypothesis, Ha and Hb. The null hypothesis is rejected at level α only 
if both one-sided null hypotheses (Ha and Hb) are rejected at level α, then the 
alternative hypothesis of equivalence is accepted (Dixon et al., 2018; Aabeyir et 
al., 2020) [24] [36]. 

The objectives of this study are to 1) develop allometric model to estimate 
AGB in the cocoa plantations of Ghana, and 2) evaluate if there is a major dif-
ference between the estimates of the best model developed under this study and 
the Yuliasmara et al. (2009) [21] cocoa model. This model was developed in In-
donesia and was chosen for comparison because the model makes use of diame-
ter at breast height (1.3 m) as its predictor which is the standard measurement of 
diameter while other cocoa allometric models like Smiley and Kroschel (2008) 
[19], Santhyami et al. (2018) [20], both from Indonesia and Somarriba et al. 
(2013) [22] from Guatemala make use of diameter measurement at 30 cm as 
predictor in their models. 

2. Materials and Methods 
2.1. Study Area 

Juaboso and Bia West districts were chosen as the study area is in Ghana’s cocoa 
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landscape and are among the highest cocoa producing districts in the Western 
North region of Ghana and this region is the largest cocoa producing region in 
Ghana. The majority of inhabitants in these districts are involved in cocoa 
farming which employs about 70% of the population with nearly 26% of the 
working population is employed in the service sector, and the remaining 4% is in 
small-scale businesses (Ghana Statistical Service, 2014) [38].  

Juaboso and Bia West districts (Figure 1) is located between latitude 6˚13'N to 
6˚50'N and longitude 2˚40'W to 3˚16'W. It shares boundaries with Bia East, 
Asunafo North, Asunafo South, Sefwi Wiawso, Bodi, Suaman districts and Côte 
D’Ivoire. The study area covers an area of 2571.26 square kilometers. Cocoa is 
the major land-use system, which occupies greater percentage of the land in the 
area. Apart from cocoa farms, other land use which include food crop farms, 
fallowlands and other tree crops like oil palm, citrus and patchiness of grassland 
also occur with communities in relatively low lying areas. Within the study area 
is Krokosua Hills forest reserve, portion of Bia Tributaries North forest reserve 
and Bia National Park (game reserve) which also cover reasonable portion of the 
area (Ghana Statistical Service, 2014) [38]. 

With a mean annual temperature between 25.5˚C and 26.5˚C, the area has a 
tropical climate marked by warm temperatures. The annual rainfall levels are 
between the ranges of 1250 - 2000 mm with June and October as its peak 
months. The area is very undulating with the elevation of the terrain ranges be-
tween 137 - 594 m above mean sea level. The study area falls within Moist Ever-
green, Moist Semideciduous North West and Moist Semideciduous South East 
subtypes ecological zones (Hall and Swaine, 1981) [39]. The soils are mainly 
Oxysols and Ochrosols (Anim-Kwapong and Frimpon, 2004) [40] with under-
lying Birimian and Hornblende parent rocks.  

2.2. Destructive Sampling 

Destructive sampling data collection was carried out between October 2019 and 
February 2021. The Ghana Cocoa Board is undertaking cocoa rehabilitation 
project in the Western North Region of Ghana, in which cocoa trees in farms 
infected with cocoa swollen shoot viral disease are cut and replanted. Advantage 
was taken of the rehabilitation exercise to select some cocoa trees for destructive 
sampling. In cocoa farms that have been earmarked for destruction, some 
healthy cocoa trees were selected for the study and the selection was done to 
cover a wider diameter class. The coordinates of the sampled cocoa trees were 
picked before they were felled and the felling was done close to the ground level.  

The trees were destructively sampled from seven sites within three different 
ecological zones in the study area (Table 1). Total length of the felled tree was 
measured using linear tape and diametres were taken starting from the butt end 
of the main stem at 0.3 m, 1.0 m, 1.3 m, which is the diameter at breast height, 
2.0 m, and thereafter at 2.0 m interval using diameter tape. The tree was strati-
fied into the various organs of stem, branches and foliage. The respective organs 
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were weighed with hanging scale, with the foliage being put into sack before be-
ing weighed. Disks samples were collected from the base, middle and the top of 
the stem and also from large branches for dry mass and wood density determi-
nation. The wood disk samples were taken close to the base, mid and top sec-
tions of both the stem and big branches. This is to capture the variation of the 
wood density along the trees, since density is typically greater at the base of the 
stem than at its top (Weber et al., 2018) [41]. The disks were labelled, and their 
fresh masses determined using digital weighing scale and diameter at both ends 
as well as lengths were taken. These measurements were used to determine the 
disk sample green volumes. Foliage samples were also taken. The samples were 
taken to the laboratory for dry mass, as well as wood density determination. The 
destructive sampling processes are shown in Appendix A. 

 

 
Figure 1. Map of the study area showing the cocoa mosaic landscape of Juaboso and Bia West 
districts of Ghana. The red star points are the destructive sampling sites (Image source: Landsat 
and Copernicus from goggle earth engine). 
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Table 1. Distribution of sampled cocoa trees per site and ecological zone. 

 
Ecological Zone 

Site 
Moist  

Evergreen 
Moist Semideciduous 

North West 
Moist Semideciduous 

South East 
Total 

Adjoafua 
 

10 
 

10 

Afere 40 
  

40 

Atakrom 
  

10 10 

Goka Adiembra 
 

13 
 

13 

Koonum 
 

6 
 

6 

Nsonyameye 5 
  

5 

Ofori Junction 
 

26 
 

26 

Total 45 55 10 110 

 
Few cocoa trees were obtained in the Moist Semideciduous South East eco-

logical zone. As at the time of collecting destructive sampling data in this zone, 
only these cocoa trees which were in good conditions were available. The num-
ber of cocoa trees for the destructive sampling depends on availability of cocoa 
trees which have been earmarked for destruction with the consent of the farm 
owners. 

2.3. Laboratory Work 

The disk samples taken from the stems and branches were oven-dried to con-
stant mass at 105˚C in the laboratory, according to Williamson and Wiemann’s 
(2010) [42] recommendation that wood will release bound water at tempera-
tures between 101˚C and 105˚C. The dry mass was determined with an elec-
tronic weighing scale. The leaves samples were put in envelopes, labelled and 
oven-dried to constant mass at 60˚C, and the dry mass determined using weigh-
ing scale. 

2.4. Determination of the Phytomass for the Individual Cocoa  
Trees 

The total dry mass of the various organs, namely stem, branch and foliage of 
each tree was determined from the total fresh mass and the sample dry to fresh 
mass ratio. The dry mass of an organ was therefore calculated as (Basuki et al., 
2022) [43] (Equation (1)); 

DS
TD TF

FS

M
M M

M
= × .                       (1) 

where MTD is the dry mass of an organ, MDS is the dry mass of the sample, MFS is 
the fresh mass of the sample and MTF is the total fresh mass of an organ. The to-
tal dry mass (phytomass) of a tree was obtained by the summation of the dry 
mass of the various organs (Kebede and Soromessa, 2018) [44] (Equation (2)); 

M TDS TDB TDLTP M M M= + +                    (2) 
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where PM is the tree phytomass, MTDS is the total dry mass for stem component, 
MTDB is the total dry mass for branch component and MTDL is the total dry mass 
for leaf component. 

2.5. Wood Density Analysis 

Green volume of the sample disks was calculated using truncated cone formula 
(Adu-Bredu et al., 2008) [45] (Equation (3)); 

( )2 2

12G
LV D Dd dπ

= + +                     (3) 

where D and d are the diameter of the larger and smaller end of the disk, respec-
tively, while L is the length of the disk. Wood density (ρd) of each disk sample 
was calculated from the dry mass (MD) and the green volume (VG) (Islam et al., 
2021) [46] (Equation (4)); 

D
d

G

M
V

ρ = .                         (4) 

The wood density of each cocoa tree was computed using weighted average 
approach. The average wood density of the stem and branch for a tree was 
computed separately using Branch Mass Ratio (BMR) and Stem Mass Ratio 
(SMR) (Beck, 2018) [47] using Equations (5) and (6), respectively as; 

BMBMR
BM SM

=
+

                      (5) 

SMSMR
BM SM

=
+

                      (6) 

where BM and SM is the total branch and stem dry mass, respectively. The 
weighted average wood density (ρ) for each cocoa tree was computed as (Ganti, 
2023) [48] (Equation (7)); 

( ) ( )BMR SMRB Sρ ρ ρ= × + × ,               (7) 

where ρB and ρS are the average density for the branch and stem disks, respec-
tively. 

2.6. Allometric Modelling Process 
2.6.1. Model Fitting  
The data used for the development of allometric models included diameter at 
breast height (D, cm), total tree height (H, m) and wood density (ρ, g·cm−3) of 
110 cocoa trees as control variables, and the corresponding phytomass as the re-
sponse variable. Allometric models development and fitting can be done by us-
ing linear or nonlinear regression methods for estimating model parameters 
(Packard, 2013; Mascaro et al., 2011) [49] [50]. Nonlinear regression method 
usually produces least model bias and error as well as good estimate of unknown 
parameters in a model with moderately small data set (Hui and Jackson, 2007) 
[51]. Nonlinear power function regression model constitutes the foundation of 
an allometric model, which uses diameter at breast height, full tree height and 
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wood density as biomass predictors (Aabeyir et al., 2020) [24]. 
In this study the model fitting was done using nonlinear power function mod-

el (Equation (8)); 
bY aX=                            (8) 

where a is non-zero coefficient (a ≠ 0) and b is a real number. The selected mod-
el predictors and model parameters are significant because they constitute sub-
stantial source of error in biomass assessment (Djomo et al., 2010; Sileshi, 2014) 
[52] [53]. 

In this study, seven different forms of allometric models were developed based 
on different combinations of the predictors; diameter at breast height (D, cm), 
height (H, m) and wood density (ρ, g·cm−3) as D2, D2ρ, D2H and D2ρH. These 
seven models were categorized into four based on the combinations of the pre-
dictors (Table 2). 

Where a1, a2, a3, a4, a5, a6 and a7 are allometric coefficients and b1, b2, b3, b4, b5, 
b6 and b7 are allometric exponents. The models were parameterized using Statis-
tical Analysis Software (SAS) SAS ONDEMAND FOR ACADEMICS. 

2.6.2. Model Evaluation, Comparison and Selection  
Model assessment was done using both graphical and statistical methods to eva-
luate the goodness-of-fit of the models because no single method is perfect (He-
via et al., 2013; Tewari et al., 2014) [54] [55].  

The statistical methods used are efficiency-based and error–based measures to 
evaluate the models. The efficiency-based measures considered in this study in-
clude coefficient of determination (R2) (Equation (9)) and index of agreement 
(IA) (Equation (10)).  

The error-based measures used include the root-mean-squared error (RMSE) 
(Equation (11)), bias (E%) (Equation (12)) and mean absolute error (MAE) 
(Equation (13)). The R2 measures the total variation explained by the model. It 
provides a performance index for the model, with 1.0 denoting perfect fit and 
zero means no correlation (Hevia et al., 2013; Soares and Tome, 2007) [54] [56].  

 
Table 2. Model forms and combinations of predictors.  

Category Predictor(s) Model label Model form 

I D M1 ( ) 12
1

b
a D  

II D, H 
M2 ( ) 22

2

b
a D H  

M3 ( ) 32
3

b
a H D  

III D, ρ 
M4 ( ) 42

4

b
a D ρ  

M5 ( ) 52
5

b
a Dρ  

IV D, ρ, H 
M6 ( ) 62

6

b
a D Hρ  

M7 ( ) 72
7

b
a D Hρ  
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The R2 is calculated as (Mukuralinda et al., 2021) [57] (Equation (9)); 

( )
( )

2
2 1

2
1

ˆ
1

n
i ii

i i
n
i

y y
R

y y
=

=

−
= −

−

∑
∑

                      (9) 

The index of agreement (IA) denotes the ratio of the mean square error to the 
potential error. The index of agreement range is similar to that of R2 and lies 
between 0 indicating no correlation and 1 being perfect fit (Krause et al., 2005) 
[58]. The IA is defined as (Adhikary and Dash, 2017) [59] (Equation (10)); 

( )
( )

2
1

2

1

ˆ
1

ˆ
i ii

A

i i i ii

n

n

y y
I

y y y y
=

=

=
−

−
− + −

∑
∑

                  (10) 

The root mean squared error (RMSE) measures the average magnitude of 
prediction errors. Accurate predictions have RMSE value close to zero (Adhikary 
and Dash, 2017). The RMSE is calculated as (Stovall et al., 2018) [60] (Equation 
(11)); 

( )2
1

1 ˆRMSE i
N

ii y y
n =

= −∑                     (11) 

Bias is a measure of systematic deviation of model predictions from observed 
data. Haung et al. (2003) [61] recommended that bias % < ±10% at 95% confi-
dence level is acceptable. Bias (E%) is calculated as (Aabeyir et al., 2020) [24] 
(Equation (12)); 

( )1

1

ˆ
E% 100

ˆ

N
i ii

ii
N

y y

y
=

=

−
= ×∑

∑
                    (12) 

Mean absolute error (MAE) is the average of all absolute errors. Reliable pre-
dictions have MAE value close to zero (Schneider and Xhafa, 2022) [62]. The 
formula for MAE is defined as (De Cáceres et al., 2019) [63] (Equation (13)); 

1 ˆMAE i iy y
n

= −∑                      (13) 

where iy , ˆiy  and iy  represent the measured, predicted and mean above-
ground mass (AGM), respectively, whereas n is the sample size. Corrected 
Akaike Information Criterion (AICC) was used to compare and choose the best 
model from various models. Lower AICC scores are desirable and AICC punishes 
models that use more parameters. So if two models have the same AICC score, 
the one with fewer parameters will be regarded as the better model (Cai et al., 
2013; Migliavacca et al., 2012) [64] [65]. AICC is calculated as (Aabeyir et al., 
2020) [24] (Equation (14)); 

( ) ( )2
C

2 1
AIC log RMSE 2

1
k k

n k
n k

+
= + +

− −
             (14) 

where n is the sample size, k is the number of model input parameters and 
RMSE is the root mean squared error  

The graphical evaluation was done by analysis of goodness-of-fit of the mod-
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els by 1) plotting observed AGM against the predicted AGM of the best models 
in each category using linear regression method (Pineiro et al., 2008) [66] and 2) 
examination of residual plots to assess the quality of the best models in each 
category. The Student’s t-test of intercept equal to zero and a gradient of unity 
were used to assess the quality of the predictions (Adu-Bredu et al., 2008) [24]. 

2.6.3. Model Validation  
Validation of the models was done by assessing 1) the model parameters using 
Percentage Relative Standard Error (PRSE) method 2) Hypothesis testing by 
evaluating the mean difference of the observed against each of the predicted 
AGM of the seven models developed under this study 3) Equivalence testing of 
the predictions of best model with that of Yuliasmara et al. (2009) [21] model. 

Percentage Relative Standard Error (PRSE) is measure of the reliability of the 
estimates of the parameters. A PRSE values less than 20% are recommended (Si-
leshi, 2014) [53]. Smaller PRSEs are indicative of more reliable results and larger 
one means less reliable results, and estimated as (Cabrera et al., 2018) [67] (Equ-
ation (15));  

SEPRSE 100
θ

= ×                        (15) 

where θ the estimated parameter and SE is the corresponding standard error of 
the estimate. 

The hypothesis testing to evaluate the mean difference of the observed and 
predicted AGM was done using the paired sample t-test. In this hypothesis test-
ing, the null hypothesis (Ho) being tested is that the mean difference between 
the estimates of the observed against each of the predicted AGM of the seven 
models developed in this study is zero, with the alternative hypothesis (Ha) be-
ing that the mean difference is not zero (Majaski, 2023) [68] and stated below as: 

Ho : 0dµ =                         (16a) 

Ha : 0dµ ≠                         (16b) 

The Two-One Sided Tests of equivalence (TOST) was used for the equivalence 
testing which compared the best model (M5) with Yuliasmara et al. (2009) (Y) 
[21] and Yuliasmara et al. (2009) [21] model is represented as (Equation (17)) 

1.98AGB 0.1208 D= ×                      (17) 

where D is diameter at breast height 
With equivalence margin of ±10%, the mean of the predictions of the best 

model (M5) and Yuliasmara et al. (2009) (Y) [21], the equivalent bounds are 
represented as (Dixon et al., 2018) [36];  

5 0.9M Yµ µ <                       (18a) 

5 1.1M Yµ µ > .                      (18b) 

Testing two one-sided hypotheses of Equations (18a) and (18b) and calculat-
ing DM5 as upper bound for each member and DY as the lower bound for each 
participant yields (Dixon et al., 2018) [36]; 
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5 5 0.9M M YD Y Y= −                    (19a) 

5 1.11Y M YD Y Y= −                    (19b) 

where YM5 is the value of prediction for model M5 and YY is the value of predic-
tion for Yuliasmara et al. (2009) [21] model. One-sample T-tests were performed 
using both DM5 and DY values. 

In addition, hypothesis testing was done to assess the mean difference of the 
predictions of the best model (Model M5) in this study with the predictions of 
Yuliasmara et al. (2009) [21] model using paired sample t-test method. In this 
hypothesis testing, the null hypothesis (Ho) being tested is that the mean differ-
ence between the estimates of the best model (Model M5) and the predictions of 
Yuliasmara et al. (2009) [21] is zero, with the alternative hypothesis (Ha) being 
that the mean difference is not zero as stated in Equations (16a) and (16b). 

3. Results 
3.1. Dataset for Allometric Modelling 

The dataset used for the allometric modelling include diameter at breast height 
(D, cm), total tree height (H, m) and wood density (ρ, g·cm−3) (Table 3) and 
phytomass of 110 cocoa trees (Table 4) from seven sites in the study area. 

The diameter at breast height (dbh) of 1.3 m aboveground of the destruc-
tively sampled cocoa trees ranged from 5.3 to 21.5 cm. The sampled trees were 
dominated by the 10 - 14.9 cm diameter class, followed in a decreasing order 
by the 15 - 19.9, 5 - 9.9 and above 20 cm diameter classes, with the proportion 
being 51.8, 29.1, 17.3 and 1.8%, respectively (Table 3). The total height ranged 
from 2.55 to 7.62 m. The bulk of the tree heights fall within 4 - 5.9 m, followed 
by the 6 - 7.9 and 2 - 3.9 m height class, with the distribution being 67.3, 18.2 
and 14.5%, respectively. Wood density varied from 0.333 to 0.533 g·cm−3. The 
bulk of the wood density was within the 0.40 - 0.49 range, followed by 0.30 to 
0.39 and 0.50 to 0.59 g·cm−3, with their proportion being 63.6, 33.6 and 2.7%, 
respectively.  

The phytomass varies along the tree, with the stem having higher phytomass 
than the branches and leaves components as observed in Table 4. 

 
Table 3. Class distribution of diameter at breast height, height and wood density for 
sampled cocoa trees. 

Diameter Class 
(cm) 

N Height class(m) N 
Wood Density class  

(g·cm-3) 
N 

5 - 9.9 19 2 - 3.9 16 0.3 -0.39 37 

10 - 14.9 57 4 - 5.9 74 0.4 - 0.49 70 

15 - 19.9 32 6 - 7.9 20 0.5 - 0.59 3 

20 - 24.9 2 
    

Total 110 
 

110 
 

110 

Note: N is number of cocoa trees. 
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Table 4. Mean phytomass of sampled cocoa trees per site. 

Site N 
Mass (kg) 

Stem Mean ± SE Branch Mean ± SE Leaves Mean ± SE Total Mean ± SE 

Adjoafua 10 23.80 ± 1.92 18.88 ± 2.41 1.54 ± 0.34 44.12 ± 3.45 

Goka Adiemra 13 31.73 ± 3.57 17.47 ± 2.89 1.34 ± 0.33 50.54 ± 4.23 

Koonum 6 24.55 ± 4.54 5.01 ± 1.07 0.44 ± 0.18 30.01 ± 5.46 

Ofori Junction 26 28.58 ± 2.12 17.83 ± 2.43 0.55 ± 0.16 46.96 ± 4.27 

Afere 40 16.81 ± 2.02 9.32 ± 2.69 0.80 ± 0.16 19.23 ± 2.48 

Nsonyameye 5 22.91 ± 4.23 16.38 ± 3.97 0.37 ± 0.06 39.66 ± 6.83 

Atakrom 10 24.98 ± 3.02 18.45 ± 3.38 0.92 ± 0.20 44.35 ± 6.12 

TOTAL 110 
    

3.2. Allometric Models Parameters 

The models parameters based on different combination of the predictors is 
shown in Table 5. 

3.3. Model Evaluation 
3.3.1. Statistical Goodness-of-Fit of the Models 
Statistical goodness-of-fit of the models based on coefficient of determination 
(R2), index of agreement (IA), root mean squared error (RMSE), bias (E%), mean 
absolute error (MAE) and Corrected akaike information criterion (AICC) are 
shown in Table 6.  

For the efficiency-based measures; R2 ranged from 70.8% to 84.9% with model 
M3 explained 70.8% of variation in AGB and model M5 had 84.9% of variability 
in AGB. The performance of model M4 is close to that of model M5 with R2 of 
84.8%, these two models use diameter and wood density as their predictors. The 
index of agreement, IA, ranged from 85% for model M3 to 91% for model M5 
while that of model M4 was 90%. The efficiency-based results revealed that 
models that used only diameter and wood density as their predictors (M4 and 
M5) performed better than those models without wood density, and also that of 
wood density with height. 

For the error-based measures; RMSE has minimum value of 11.61 for model 
M5 and maximum of 12.91 for model M6 and model M4 with value of 11.62. 
The model bias(E%) reveals that models M1, M2, M4, M5, M6 and M7 un-
der-predict the average AGB, while model M3 over-predict it. However all the 
seven models are accepted based on the criterion of Huang et al. (2003) [61] that 
bias of less than 10% is acceptable. The best model in terms of bias is M6, which 
has least bias% of −0.42%, and the worst is M3 with value of 3.2819%, neverthe-
less the difference between M6 and M1, M2, M4, M5 and M7 are very minimal. 

The mean absolute error, MAE, ranged from 8.75 for model M5 to 10.34 for 
model M2, and model M4 had a value of 8.77. With respect to RMSE and MAE, 
models (M4 and M5) had the smallest errors and performed better than the rest 
of the models.  
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Table 5. Model results using different predictor(s) combinations. 

Predictor(s) Model label Model Form a b Model 

D M1 a(D2)b 0.2411 0.9586 0.2411(D2)0.959 

D, H 
M2 a(D2H)b 0.1938 0.7617 0.1938(D2H)0.762 

M3 aH(D2)b 0.0600 0.8995 0.0600H(D2)0.899 

D, ρ 
M4 a(D2ρ)b 0.6484 0.9296 0.6484(D2ρ)0.930 

M5 aρ(D2)b 0.7217 0.9214 0.7217ρ(D2)0.921 

D, ρ, H 
M6 a(D2ρH)b 0.3710 0.7675 0.3710(D2ρH)0.767 

M7 aρ(D2H)b 0.5412 0.7437 0.5412ρ(D2H)0.744 

 
Table 6. Statistical goodness-of-fit of the models. 

 
Efficiency Error Comparison 

Category Modal Label Model R2 IA RMSE E (%) MAE AICC 

1 M1 AGB = 0.2411(D2)0.959 0.821 0.89 12.14 −0.43 9.13 169.63 

2 
M2 AGB = 0.1938(D2H)0.762 0.744 0.86 13.49 −0.54 10.34 178.78 

M3 AGB = 0.0600H(D2)0.899 0.708 0.85 14.07 3.28 10.22 181.61 

3 
M4 AGB = 0.6484(D2ρ)0.930 0.848 0.90 11.62 −0.43 8.77 168.80 

M5 AGB = 0.7217ρ(D2)0.921 0.849 0.91 11.61 −0.47 8.75 168.77 

4 
M6 AGB = 0.3710(D2ρH)0.767 0.778 0.87 12.91 −0.42 9.66 178.01 

M7 AGB = 0.5412ρ(D2H)0.744 0.783 0.88 12.81 −0.71 9.59 177.49 

 
Corrected akaike information criterion (AICC) values ranged from 168.77 

(M5) to 181.61 (M3) and this shows that M5 is the best performing model based 
on AICC. The AICC values of models M4 and M5 are almost the same, however 
based on corrected akaike information criterion, if two models are being com-
pared, the one with lower AICC score is the best and will be regarded the better 
fit model (Cai et al., 2013; Migliavacca et al., 2012) [64] [65]. The R2, IA, RMSE 
and MAE within each category of the models were almost the same, but there 
are variations between the different categories. However, the bias (E%) values 
varies within the same category of the models as well as among the different 
categories. The AICC values have small variations within the same category of 
the models with some difference between different categories. 

3.3.2. Evaluation of Goodness-of-Fit of the Plots 
The plot of observed AGB against predicted AGB of the models (Figure 2) is 
centred on models M1, M2, M5 and M7 which are the best models in each cate-
gory based on AICC. 

From Figure 2, the regression line is shown blue colour, the 95% confidence 
interval (CI) is in grey band and the prediction interval is the red dotted lines. 
From the graphs which are linear regression of observed AGB versus predicted 
AGB showed that all the four models exhibited heteroscedasticity. 
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Figure 2. Relationship between observed AGB and predicted AGB. 

 
Analysis of residuals is a key part of all statistical modelling and residual plots 

can be used to assess the quality of a model. Examining the histogram of the re-
siduals of the models revealed that the distribution of the residuals exhibit the 
bell –shaped pattern of the normal distribution (Figure 3), this suggest that the 
models underlying assumptions have not been violated. 

Plotting of standardized residuals against predicted AGB revealed that models 
M2, M5 and M7 revealed heteroscedasticity, while M1 exhibited homoscedastic-
ity with one outlier point (Figure 4). Positive values for the standardized resi-
dual (on the y-axis) signify that the prediction was too low, and negative values 
indicate that the prediction was too high; 0 denotes the prediction was precisely 
correct. In practice, it is often considered any standardized residual with abso-
lute value greater than 3 to be an outlier. 
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Figure 3. Histogram of residuals of the models. 

https://doi.org/10.4236/ojapps.2023.139126


E. Donkor et al. 
 

 

DOI: 10.4236/ojapps.2023.139126 1604 Open Journal of Applied Sciences 
 

 
Figure 4. Standardized residuals versus predicted AGB of the models. 

3.4. Model Validation 
3.4.1. Percentage Relative Standard Error  
The Percentage Relative Standard Error (PRSR) for the allometric coefficients 
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(ai) and exponents (bi) of the seven models are presented in Table 7. 
The Percentage Relative Standard Error (PRSR) for the allometric coefficients 

ranged from 11.38% for M4 to 19.83% for M3 while PRSR values for allometric 
exponents varied from 7.59% to 10.29% for M4 and M3, respectively. All the 
PRSR values are less than maximum value of 20% which has been recommended 
for good model (Sileshi, 2014) [53]. This means that the model parameters are 
important in explaining the variability in AGB, suggesting that all the seven 
models are reliable and good in predicting AGB. The coefficient and exponent 
values were least in M4, which is made up diameter at breast height (D) and 
wood density (ρ). This implies that addition of wood density to diameter at 
breast height improved the model. 

3.4.2. Paired Sample T-Test 
The results of the observed and each of the predicted AGM of the seven models 
developed in this study using paired sample t-test is presented in Table 8. 
 
Table 7. Percentage Relative Standard Error (PRSR) of parameters. 

Model label Model 
PRSE Values (%) 

Coefficient (a) Exponent (b) 

M1 0.2411(D2)0.959 14.68 8.16 

M2 0.1938(D2H)0.762 19.30 9.35 

M3 0.0600H(D2)0.899 19.83 10.29 

M4 0.6484(D2ρ) 0.930 11.38 7.59 

M5 0.7217ρ(D2) 0.921 13.36 8.16 

M6 0.3710(D2ρH) 0.767 13.45 8.81 

M7 0.5412ρ(D2H) 0.744 18.14 9.26 

 
Table 8. Paired sample t-test for observed and predicted AGM. 

Model Mean (SE) Mean Diff P value 95% CI 

Observed 35.76 (2.03) - - - 

0.2411(D2)0.959 35.96 (1.64) −0.20 0.8656 −2.13 to 2.52 

0.1938(D2H)0.762 35.97 (1.53) −0.21 0.8744 −2.37 to 2.79 

0.0600H(D2)0.899 34.49 (1.74) 1.27 0.3498 −3.96 to 1.41 

0.6484(D2ρ)0.930 35.94 (1.67) −0.18 0.8759 −2.05 to 2.40 

0.7217ρ(D2)0.921 35.81 (1.66) −0.05 0.9671 −2.18 to 2.27 

0.3710(D2ρH)0.767 35.75 (1.58) 0.01 0.9903 −2.49 to 2.46 

0.5412ρ(D2H)0.744 36.02 (1.57) −0.26 0.8329 −2.19 to 2.71 

Note: CI is Confidence Interval. 
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From the paired sample t-test results for the observed against each predicted 
AGM of the seven models developed in this study, all the p values of the seven 
models are greater than the standard significance level value of 0.05 i.e. p > 0.05. 
This means that there is no significant difference between the means of observed 
AGM and that of each of seven developed models, therefore the null hypothesis 
is accepted. Also, from the 95% Confidence Interval (CI), zero is included in the 
intervals of all the models. This specifies that there is no statistically meaningful 
difference between the means of the observed and each predicted AGM of the 
seven developed models. This indicates that the predictions by the models de-
veloped in this study are good and reliable. 

3.4.3. Equivalence Testing of the Predictions of Model M5 with That of  
Yuliasmara et al. (2009) Model 

The summary of the statistical results of Two-One Sided Tests (TOST) of equi-
valence between model M5 and Yuliasmara et al. (2009) model is shown in Ta-
ble 9. 

The p values of the two models is less than the standard significance level al-
pha value of 0.05, thus, 0.0001 < 0.05, hence the two null hypotheses are rejected 
in favour of the alternative hypotheses. There is strong evidence to conclude that 
model M5 and Yuliasmara et al. (2009) [21] model are equivalent with respect to 
their AGB predictions.  

3.4.4. Hypothesis Testing the Mean Difference in Predictions between  
Model M5 and Yuliasmara et al. (2009) Model Using Paired Sample  
T-Test 

The hypothesis testing results of the mean difference of the predictions of model 
M5 and Yuliasmara et al. (2009) model using paired sample t-test is presented in 
Table 10. 
 
Table 9. Results of TOST of equivalence between model M5 and Yuliasmara et al. (2009) 
model.  

Statistic Mean Std Dev Count 
SE of 
Mean 

DF T Statistic 
p value 

(One-Tailed) 

DM5 16.60 8.41 110 0.80 109 20.70 <0.0001 

DY 12.13 6.47 110 0.62 109 19.66 <0.0001 

Note: DF is degree of freedom. 
 

Table 10. Paired sample t-test results for model M5 and Yuliasmara et al (2009) model. 

Model Mean (kg) Std Dev (kg) SE (kg) N p value 

Model M5 35.94 17.37 1.66 

110 <0.0001 Yuliasmara et al (2009) 21.78 10.41 0.99 

Difference 14.16 6.96 0.67 

Note: Std. Dev is standard deviation, SE is standard error and N is the sample size. 
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The paired sample t-test results showed that the difference in means of the 
predictions (14.16 kg) of the two models was entirely different from zero at 95% 
confidence level. Also the P value is less than alpha value of 0.05, thus, p < 0.05, 
this provide enough evidence to reject the null hypothesis. This suggests that 
there is significant difference between the means of the two models and they are 
different models.  

4. Discussion 
4.1. Dataset for Allometric Modelling 

The data used to develop the allometric models include diameter at breast height 
(D, cm), total tree height (H, m) and wood density (ρ, g·cm−3) from three eco-
logical zones in the study area. About 89% of cocoa trees used in developing the 
allometric models were within diameter at breast height class 10 - 14.9 cm and 
15 - 19.9 cm with the rest within the classes 5 - 9.9 cm and 20 - 24.9 cm.). About 
64% of the wood density was within the class 0.4 - 0.49 g·cm−3, followed by 0.3 - 
0.39 g·cm−3, which constitute 33% and 0.5 - 0.59 g·cm−3 (3%). The highest wood 
density of 0.411 g·cm−3 was obtained in MSNW, the wood density in the ME and 
MSSE were similar, with their values being 0.395 and 0.394 g·cm−3, respectively. 
The average wood density for cocoa in the study area is 0.40 g·cm−3 falls within 
the range of 0.35 to 0.45 g·cm−3 given by Romero (2018) [69] for Côte D’Ivoire. 
It did not deviate much from the value of 0.43 g·cm−3 for South America in glob-
al wood density database (Woodcock, 2000) [70]. It is not surprising that the av-
erage wood density is 0.40 g·cm−3, because greater percentage (64%) of the wood 
density falls within the class 0.4 - 0.49 g·cm−3. Also about 67% of the tree height 
was within the class 4 - 5.9 m and the remaining within the classes 2 - 3.9 m and 
6 - 7.9 m making total of 33%.   

4.2. Allometric Models Parameters  

The accuracy of the models parameters contribute immensely to the predictions 
of the models and as such should be carefully examined, especially model M5 
which has been chosen as the best model in this research. The allometric coeffi-
cient of the models in this study, which ranged from 0.0600 to 0.7437 with mod-
el M5 (0.7217), are higher than the one reported by Smiley and Kroschel (2008) 
[19] from Indonesia, which was 0.202.  

The allometric exponents under this study varied from 0.7437 to 0.9586, with 
model M5 having a value of 0.9214, is lower that of Smiley and Kroschel (2008) 
[19] as 2.112. The variations could be due to differences in number of cocoa 
trees used in the allometric modelling. In this study the sample size was 110 
while that used by that of Smiley and Kroschel (2008) [19] was 45 cocoa trees. 
Sample size affects model parameters because parameter estimates from small 
samples have high levels of uncertainty (Aabeyir et al., 2020) [24]. The parame-
ters of model M5 are more accurate than that of the model of Smiley and Kros-
chel (2008) [19], when taking into account the effects of sample size on model 
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parameters. 

4.3. Models Performance 

Diameter at breast height (D) as a predictor is involved in all the seven models, 
with D alone (M1) explaining 82.07% of variations in AGB. This is anticipated 
because many researchers have revealed that stem diameter has been adequate 
biomass predictor (Henry et al., 2011; Chave et al., 2014) [14] [71]. Therefore, 
the diameter at breast height has always been the primary variable in linking tree 
characteristics to total aboveground biomass of trees, and it has a considerable 
impact on tree allometry.  

The addition of wood density to diameter at breast height in category 3 mod-
els (M4 and M5) improved the AGB variability from 82.07% to 84.84% and 
84.86% in M4 and M5, respectively. There is increase in R2, it is consistent with 
the assertion that wood density is a key predictor of AGB (Djomo et al., 2010; 
Chave et al., 2014) [52] [71]. According to Dutcă (2019) [72], wood density truly 
explains variations in tree species multispecies allometric models. 

Contrary, the inclusion of height to diameter at breast height as in the case of 
category 2 (M2 and M3), there is decrease in AGB variability from 82.07% to 
74.35% and 70.75% in M2 and M3, respectively. The decrease in R2 could be at-
tributed to the extensive branching of the cocoa trees, which is a characteristic of 
tree crops. The fruit yield is of utmost importance in tree crops like cocoa. Trees 
height measurement are usually prone to errors on the field and this frequently 
leads to the elimination of tree height as a variable for predicting aboveground 
biomass of trees (Chenge, 2021) [73]. The addition of wood density and height 
to diameter at breast height, as in category 4 models ((M6 and M7), resulted in a 
decrease in R2 from 82.07% to 77.76% and 78.34% in M6 and M7, respectively. 
The decrease in R2 could be attributed to the inclusion of height predictor in the 
category 4 models. In terms of R2, model M5 performed better than the other 
models in relation to AGB prediction. 

Examining the histogram of the residuals of the models showed that the dis-
tribution of the residuals exhibited the bell –shaped pattern of the normal dis-
tribution (Figure 3), this suggest that the mean, median and mode are the same 
at the peak of the curve (Mcleod, 2019) [74]. The relationship between the ob-
served and predicted AGB (Figure 4) as an evaluation of model predictions re-
vealed that all the four models exhibit heteroscedasticity, and this is due to the 
residuals having unequal variance. Heteroscedasticity is usually unavoidable as 
the models take nonlinear power-law forms and unequal residual variance is ac-
commodated when estimating model parameters (Dutcă et al., 2022) [75]. 

The hypothesis testing of model M5 and Yuliasmara et al. (2009) [21] model 
using paired sample t-test and equivalence testing as means of validation came 
out with different conclusions. The paired sample t-test results showed that there 
is significant difference between the means of the predictions (14.16 kg) of the 
two models, while equivalence test revealed that model M5 and Yuliasmara et al. 
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(2009) [21] are equivalent within 10% of their mean predictions. The difference 
in the conclusions of the two tests can be attributed to the underlying principles 
of each test and the sample size as claimed by Yoo (2019) [76] that the null hy-
pothesis will be more likely to be rejected as sample size grow due to rising z 
value. In this study, a sample size of 110 is adequate enough to support the asser-
tion of Yoo (2019) [76]. This agrees with the results of the equivalence test under 
this study that Model M5 and Yuliasmara et al. (2009) [21] model are equivalent. 

5. Conclusions 

This study developed seven allometric models and compared them to find the 
best model among them to estimate AGB of cocoa trees in the cocoa landscape 
of Ghana. The best model was selected based on R2, IA, RMSE, bias (%), MAE 
and AICC values. The best performing model based on these metrics is AGB = 
0.7217ρ(D2)0.921 (model M5), which means that the model fitness is best when 
diameter at breast height combined with wood density. 

The best model and that of Yuliasmara cocoa model were compared and 
found to be equivalent within ±10% of the means of their predictions, but the 
hypothesis testing using paired sample t-test results showed that there is signifi-
cant difference between the means of the predictions of the two models. The best 
model developed under this study could be used to estimate AGB and quantify 
CO2 emissions in cocoa plantations that are very important under the Ghana 
Cocoa-Forest REDD+ Programme (GCFRP) in the cocoa landscape of Ghana. 
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Appendix A. Destructive Sampling Processes 
 
 
 
 

 
Felling of cocoa tree 

 
Cutting cocoa tree into stem and branches 

 
Cutting stem into logs 
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Hanging stem logs onto scale 

 
Weighing Branches 

 
Plugging leaves into sack 
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Weighing fresh leaves 

 
 

 
Weighing Disk sample 

 
Weighing leaves sample 
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