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Abstract 
By means of the dimensional analysis a spherically simmetric universe with a 
mass ( )3 2M c HG=  and radius equal to c/H is considered, where H is the 
Hubble constant, c the speed of light and G the Newton gravitational con-
stant. The density corresponding to this mass is equal to the critical density 

( )23 8cr H Gρ = π . This universe evolves according to a Bondi-Gold-Hoyle 
scenario, with continuous creation of matter at a rate such to maintain, dur-
ing the expansion, the density always critical density. Using the Margo-
lus-Levitin theorem and the Landauer’s principle, an entropy is associated 
with this universe, obtaining a formula having the same structure as the Be-
kenstein-Hawking formula of the entropy of a black hole. Furthermore, a 
time-dependent cosmological constant Λ, function of the Hubble constant 
and the speed of light, is proposed. 
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1. Introduction 

The Standard Model of elementary particles and the theory of the General Rela-
tivity have contributed to a deep understanding of natural phenomena.  

As is well known, within these theories there are constants, more or less fun-
damental, whose values can not be derived from the fundamental principles of 
the theories themselves and must be entered by hand.  

Whatever the origin of our universe, the values of these constants must reflect 
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the nature of fundamental interactions, their intensities, their mutual relations 
and the structure of our universe.  

Combinations of these constants can provide dimensionless quantities, whose 
values can suggest energy scales or some other key variable, characterizing dif-
ferent behaviors of the elementary constituents of the universe and can suggest 
different mathematical approaches for their study. An example is the fine structure  

constant 
2 1~

137
e
c

α =


, introduced by Arnold Sommerfeld in 1916.  

We don’t have a physics that describes the universe before the Planck era, 
what we know is that in correspondence with the differentiation of the funda-
mental forces through symmetry breakings, their respective constants remained 
fixed.  

Moving from the microcosm to the large scale structure of the universe, cur-
rent observations of Supernovae Ia indicate accelerated expansion of the Un-
iverse. This accelerated expansion is interpreted as due to the presence of a va-
cuum energy, or dark energy, generated by something called quintessence or by 
the presence, in the General Relativity equations, of a positive Λ cosmological 
constant, corresponding to a negative pressure.  

The idea to interpret the cosmological term as a vacuum energy density 
4 8U c GΛ = Λ π  belongs to Zeldovich [1]. However, direct application of this 

idea leads to puzzling results. Quantization introduces zero-point vacuum ener-
gies for quantum fields and therefore, in principle, can affect the geometry 
through Einstein’s equations. Unfortunately, the theoretical value of the cosmo-
logical constant, predicted by quantum field theories, exceeds the observed value 
by factors ranging from 1060 to 10120.  

The cosmological constant connects the large scale structure of the universe 
with the subatomic vacuum. Why is the net vacuum energy density finite, posi-
tive and so very small? These questions, with the huge difference between theory 
and experiment, represent what is named the cosmological constant problem 
[2]. 

In this paper, by means of dimensional analysis, we consider a spherically 
simmetric universe with a mass ( )3 2M c HG=  and radius equal to c/H, where 
H is the Hubble constant, c the speed of light and G the Newton gravitational 
constant. Assuming H proportional to 1/t, where t is the time, this universe 
evolves with continuous creation of matter at a rate such that to mantain, during 
the expansion, a density always equal to the critical density ( )23 8cr H Gρ = π . 

This scenario reminds the one proposed in 1948 by F. Hoyle [3], H. Bondi and 
T. Gold [4] as an alternative to the Big Bang theory. 

In this scenario, known as the continuous creation or steady state theory, the 
universe expands and a continuous creation of matter keeps its density constant. 

The second step is to consider this universe as a computer [5] [6] which, in its 
temporal evolution, processes and stores information and whose maximum speed 
of dynamical evolution must satisfy the Margolus-Levitin theorem [7] [8] [9]. 
This theorem imposes a fundamental limit on quantum computing and affects 
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all possible means by which a calculation can be performed. 
It is then possible to calculate the maximum number of events that occur in 

the universe and to introduce an entropy using Landauer’s principle [10] [11] 
[12], according to which logical operations in a computer necessarily require 
energy dissipation and an increase in entropy. 

Finally, a hypothesis on the source that feeds the energy of the universe and a 
dimensional analysis allow to obtain an expression of the cosmological constant 
as a function of the Hubble constant and the speed of light. 

2. The Dimensional Analysis 

In the search for dimensionless quantities or, in any case, for dimensional quan-
tities that can serve as scale quantities in the elementary physical phenomena, it 
can be very useful dimensional analysis. Although the dimensional considera-
tions can possibly produce only a result, without explaining its physical origin, 
they may be heuristically very effective in suggesting links, otherwise difficult to 
imagine.  

An example is provided by the Planck scale. By combining the speed of light, 
Newton’s gravitational constant and Planck’s constant, one gets the so-called 
Planck’s units. Since these quantities are expressed through Newton’s constant, 
which concerns gravitational interaction, and Planck constant, a fundamental 
quantity of Quantum Mechanics, their orders of magnitude suggest the scale of 
energies at which the Standard Model and General Relativity should be merged 
into a single coherent theory.  

Let us consider a physical system described by the variables 1 2, , , nq q q  
through relations of the type 

( )1 2, , , 0,nf q q q =                        (1) 

which in general are not known to priori. As it is well known, dimensional anal-
ysis attempts to arrange these variables in dimensionless groups 1 2, , , lπ π π , 
with l n< , where the iπ  are combinations of the iq . In the context of dimen-
sional analysis, the π  theorem or the Buckingham π  theorem [13] [14] is of 
considerable importance.  

The theorem states that an equation of n arguments as Equation (1), dimen-
sionally homogeneous with respect to m fundamental units (as for example in 
mechanics, length, time and mass), may be expressed as a relationship between 
l n m= −  dimensionless variables having the form: 

( )1 2, , , 0.lg π π π =                       (2) 

The iπ  can be chosen by putting generically 
1 2

1 2 .nkk k
nq q qπ =                          (3) 

Expressing the iq  dimensionally as products of the fundamental units, one ob-
tains the values of m exponents ik  that make dimensionless the π , while the 
remaining l n m= −  values of ik  are arbitrary. In this way one obtains l inde-
pendent dimensionless quantities.  
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For example, let us consider the four fundamental constants of physics: the 
light velocity c, the Planck constant  , the Newton gravitational constant G and 
the elementary charge e. Taking as fundamental units mass, length and time, we 
try to determine the dimensionless quantity π  given by: 

.G c eα β γ δπ =                           (4) 

In this case the Buckingham theorem provides only one dimensionless quantity: 
2

,e
c

π =


                            (5) 

that is, the fine structure constant ~ 1 137α . If π  were equal to 1, e would be 
equal to the Planck charge Pq c=  . 

3. A Cosmological Mass 

Let us now look for dimensionless quantities that can be derived from the prod-
uct: 

,G c H Mα β γ θ επ =                        (6) 

where M is a mass and H is a quantity having the dimension of the inverse of 
time. By imposing that π  is dimensionless and expressing α , β  and γ  as 
functions of θ  and ε , one obtains: 

2 2 2 2 2 5 2 .G G c c H Mε θ ε θ ε θ θ επ − − −=                 (7) 

There are two independent dimensionless quantities. The first, 1π , obtained, 
for example, for 0ε =  and 1θ = , is the product of H by Planck time Pt : 

1 5 .P
GH Ht
c

π = =
                       (8) 

For 1 PH t= , 1 1π =  while, if we interpret H as the Hubble constant, whose 
current value is ( ) 18 1

0 Km s M67.74 2.19pc 5 10 sH − −= × , the current value of 

1π  is 611.18 10−× .  
The second dimensionless quantity, obtained for 1ε =  and 1θ = , is: 

2 3 .GHM
c

π =                         (9) 

Relation (9) identifies the mass: 
3

.H
cM

HG
=                        (10) 

If we put 1 PH t= , we get H PM c G M= = , the Planck’s mass. This leads us 
to consider H as a cosmological quantity. Then HM  must also have a cosmo-
logical character. 

Hereafter we identify H as the Hubble constant and we denote the values of 
the various quantities in the current epoch with the subscript 0. For 

0HM  one 
gets: 

0

561.84 10 g,HM ×                    (11) 

a mass equivalent to about 1080 baryons, the current estimated mass of the un-
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iverse.  
If we introduce the Hubble time 1Ht H= , whose current value is  

0
13.6 GyrHt  , Equation (10) can be written as 

5
2 ,H H H

cE M c t
G

= =                      (12) 

or, in terms of the Planck power 5P c G= : 

.H HE Pt=                          (13) 

Equation (13) can be interpreted by saying that, in a universe having an age 

0 01Ht H= , the total energy is obtained assuming that in a quantum of time Pt , 
a quantum of energy 2

PM c  is generated.  

4. The Cosmological Mass and an Entropy of Evolution 

Consider an isolated physical system and the problem of counting the maximum 
number of distinct states through which this system can evolve in a given time, 
i.e. its maximum speed of dynamical evolution. This process can be considered a 
kind of computation and than it is constrained by the Margolus-Levitin’s theo-
rem [7] [8] [9].  

This theorem sets a limit to the speed with which a physical system can evolve 
from an initial state to a final state orthogonal to it. 

Assume that the system has a discrete energy spectrum , 0,1,2,nE n =   and 
states numbered so that the energy eigenvalues { }nE , associated with the states 
{ }nE , are non-decreasing. Choose the zero of energy so that 0 0E =  and let E 
be the average energy of the system. Let t⊥  be the time it takes for an arbitrary 
quantum state 0ψ , at time 0t = , to evolve into an orthogonal state. Then, 
Margolus and Levitin showed that 

.
2

t
E⊥ ≥
π                            (14) 

They also addressed the question of how much quickly a quantum system 
could evolve through a long sequence of mutually N orthogonal states and they 
showed that in this case one has 

1 .Nt
N E⊥
− π

≥
                         (15) 

Thus, if one considers a long evolution of the system and fix the zero of the 
energy at the fundamental state, the minimum time t⊥ , required for a transition 
between two orthogonal states, must satisfy the relationship: 

.t
E⊥ ≥ π
                          (16) 

According to their theorem, the number of operations, carried out in a given 
time interval and using a given amount of energy, by any devise or any process 
that allows to perform a calculation, cannot be grater than 333 10×  opera-
tions per second, per joule.  

As a physical system we now consider a spherically simmetric universe made 
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up of ordinary matter, dark matter, radiation and dark energy, whose total 
energy is 2 2HM c  and whose radius R is equal to its Schwarzschild’s radius 

2
S HR GM c c H= = . Then its mass 2HM  is distributed with a average den-

sity ρ  equal to the critical density ( )23 8cr H Gρ = π  and one has: 

1.
cr

ρ
ρ

Ω = =                          (17) 

The dependence of the total mass M and of the radius R of this universe on time 
t occurs through the Hubble constant H. Since 1H t−∝ , the mass increases li-
nearly with t, while the density, which is always critical, decreases as 2t− . If a 
cutoff is imposed at the Planck time, for the total energy we have, for 1

PH t−= : 

21 1 ,
2 2H PM c E=                       (18) 

where PE  is the Planck energy and, for the critical density: 
5

2
3 .

8cr
c
G

ρ
π

=


                       (19) 

The evolution over time of this universe, having currently the mass  

00 2HM M=  and 
00 crρ ρ= , can be understood as a real computation, a con-

tinous processing of data. This universe stores and processes information. It is a 
giant quantum computer in which the hardware is the universe itself and the 
laws of physics are the software. Its calculation activity must therefore remain 
within the limits imposed by the laws of physics and by the initial conditions. 
Then, treating the whole universe as a computer [5] [6], one can apply to it the 
Margolus-Levitin theorem.  

This universe expands always at the same speed and 1H −  is a measure of its 
age. Putting 1H tδ −= , assuming that the energy E appearing in the formula (16) 
is, instant by instant, equal to 2 2HM c  and that, excluding the period of a 
possible inflationary expansion, the evolution of this universe occurs slowly 
through states of equilibrium, we have, according to (10) end (16): 

5 51 1 .
2 2

c cE t
HG Gδ

= =                      (20) 

Then the maximum number of transitions of the system between 0t =  and 

0t t=  is given by 

0 0
25
0
20 0

d d ,
2 4

H H
tr

P

RE cN t t t
G L

δ δ δ
δ

= =
π π

=
π∫ ∫
 

           (21) 

where PL  is the Planck length. 
The maximum number of elementary operations or events, that can occur in 

the spacetime volume, is then bounded by the surface area 2
04A R= π  of the 

spatial volume: 

( )2 2
1 .
4 2

tr
P

AN
L

δ
=

π
                      (22) 

The result given by (22) agrees with the holographic principle [15], according 
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to which the maximum amount of information, stored in a region of space, 
scales as the area of its two-dimensional surface, like a hologram.  

The microscopic information stored in this universe, which results from its 
continuous processing activity, is inaccessible to an observer. Now, in Thermo-
dynamics, one meets a similar situation: many internal microstates of a system 
are all compatible with the one observed macrostate. Thermodynamics entropy 
is a measure of missing information and quantifies this correspondence. So we 
attribute to our universe an entropy connected with its continuous data processing 
activity.  

Now, when an isolated quantum system evolves, it always does so reversibly; 
we assume instead that the evolution of this universe, as a whole, takes place ir-
reversibly as in the real universe.  

In 1961 Rolf Landauer discovered [10] [11] [12] that logical operations that 
get rid of information, such as the erasures, necesseraly require dissipation of 
energy in a computer. The erasures transform information from an accessible to 
an inaccessible form with a rise in entropy, whereas logical operations that can 
be reversed do not lead to a rise in entropy.  

The link between computational irreversibility and information loss is given 
by Landauer’s principle. According to this principle, for each bit of information 
eliminated, the entropy of the environment grows by, at least, ln 2Bk , where 

Bk  is the Boltzmann’s constant, while the energy dissipated is, at least, equal to 
ln 2Bk T , where T is the temperature of the environment in which the computer 

is located.  
Then, for example, in the real primordial universe at the Planck temperature, 

considered as a computer, the deletion of one bit of information, would result in 
a dissipation of energy, within the universe itself, equal to  

5 18ln 2 ~ 8.5 10 Gevc G × .  
We now introduce, for our hypothesized universe, an evolution entropy evS  

that counts the number of its internal transitions. Thus, invoking a sort of Lan-
dauer principle, we set: 

,ev B trS k Nγ=                          (23) 

where the Bkγ  factor is the average entropy increase per transition. We can 
then write: 

2
1 .
4ev B

P

AS k
L

γ ′=                        (24) 

Apart from the factor ( )22γ γδ′ = π , formula (24) coincides with the entropy 
formula of Bekenstein-Hawking, BHS , for a stable Schwarzschild’s black hole 
with mass 

0
2HM  and radius 0 0R c H= .  

Both the Planck constant   and the gravitational constant G appear in the 
entropy formula. The presence of   derives from the application of Margo-
lus-Levitin’s theorem, that of G from the dependence of 0M  on G, given by 
Equation (10). Furthermore evS  diverges in the limit 0→ . This facts sug-
gests that it is purely a quantum effect.  
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The current numerical value of this form of entropy is: 

( ) 104 1
0

7.9 10 erg K .evS γδ −≈ × ⋅                   (25) 

At Planck time, assuming PR L= , one has: 

( ) 17 1~ 1.1 10 erg K .
4

B
ev P

kS γδ γδ− −= × ⋅
π

              (26) 

The entropies BHS  and evS  behave very differently from thermodynamic 
entropy. The entropy of ordinary matter increases with the volume and is pro-
portional to the mass. The proportionality of BHS  to the square of Schwarz-
schild’s radius and the proportionality of evS  to the square of the radius of the 
universe, show that BHS  and evS  are proportional to the square of the mass.  

The analyzed universe has an energy that is initially zero and increases linearly 
with time. What is the source of this energy?  

Suppose that a scalar field creates an expanding spherical vacuum bubble. The 
gravitational energy density associated with the vacuum is then given by: 

4d .
d 8

E c
V G

Λ
=

π
                        (27) 

To a variation dr of the bubble radius corresponds, in this simple topology, an 
increase in the vacuum energy given by: 

4
2d 4 d .

8
cE r r
G

π
π
Λ

=                       (28) 

The vacuum energy of a bubble of radius R is therefore: 
4

2
0

4 d .
8

R cE r r
G

π
π
Λ

= ∫                      (29) 

This energy must tend to zero as 0R → ; since the only geometric quantity that 
appears in the formula is the radius of the sphere, the simplest hypothesis is to 
consider Λ proportional to the curvature of the spherical bubble and set 2k rΛ = , 
with k constant. We then have: 

4

.
2
kcE R

G
=                         (30) 

The mass equivalent to this energy is: 
2

,
2
kcM R

G
=                         (31) 

and, for 1k =  and R c H= : 
3

,
2 2

HMcM
GH

= =                      (32) 

where HM  is just the mass given by formula (10) and found by means of di-
mensional analysis.  

Finally, for the cosmological constant, for 1k = , one gets: 
2

56 20
0 0.54 10 cm .H

c
− − Λ = × 

 
                (33) 
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At Planck time, whit 1 PH t= , one has:: 
2

65 21 3.8 10 cm .P
Pct

− 
Λ = × 

 


                 (34) 

If it were possible to connect the hypotetical scalar field inflaton with the cos-
mological constant, the monstrously large value of the cosmological constant at 
the time of the big bang, would be a great engine to trigger an inflation process. 

By means of dimensional analysis, we now show how the dependence of Λ on 
H and c, having the form 

2

,Hk
c

 Λ =  
 

                        (35) 

is plausible.  

5. A Cosmological Constant through Dimensional Analysis 

Let us consider the product 

,G H Eα β γ δπ = Λ                       (36) 

where E is an energy and Λ is the cosmological constant. Through the Bucking-
ham theorem one gets the dimensionless quantity: 

4

5 2

.GE
H

πΛ
Λ

=                        (37) 

The quantity 
4

5 2
HE

GΛ = Λ
                        (38) 

is then dimensionally an energy. If we assume that this energy is distributed 
within a sphere of radius R c H= , we get the energy density: 

7

3 5 2
3 .

4
H

c G
ρΛ Λπ

=                      (39) 

If we identify ρΛ  with the vacuum energy density 
4

,
8V

c
G

ρ
π
Λ

=                         (40) 

we obtain the cosmological constant Λ as a function of Hubble constant and the 
light velocity: 

2
2 76 .H

c
 Λ =  
 

                      (41) 

For 2 76k = , one would have 
56 2

0 0.89 10 cm ,− −Λ ×                    (42) 

and, from Equation (40) and Equation (41), the energy density and the equiva-
lent mass density would be repectibvely: 

2 7 2 26 ,
8

c H
G

ρΛ π
=                      (43) 
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and 
2 7 26 ,

8M
H
G

ρ
Λ π
=                       (44) 

from which: 

0

29 34.8 10 gr cmMρ Λ

−×                   (45) 

and 

0
0

2 76 0.56.
3

M

cr

ρ

ρ
Λ

ΛΩ = =                    (46) 

Now 

,M ΛΩ = Ω +Ω                        (47) 

where MΩ  is the contribution of ordinary, dark matter and radiation; since 
1Ω = , we would get 

1 0.56 0.44.MΩ − =                     (48) 

Then, the vacuum energy would make up 56 percent of the total energy, while 
the remaining 44 percent would be the contribution of ordinary matter, dark 
matter and radiation.  

According to current theoretical predictions, dark energy accounts for about 
68 percent of all energy of the real universe.  

We remark that the causal set theory for quantum gravity [16], which assumes 
spacetime to be discrete at Planck scale, predicts that the cosmological constant 
varies stochastically at all epochs with an amplitude depending on H2, as in Equ-
ation (35).  

A formula for Λ substantially equal to Equation (41) was derived by Gurza-
dyan and Xu [17], starting from an alternative view on the cosmological and va-
cuum energy. Their formula reads: 

4

2
1 ,

4GX
c
G a

ρ π
=                       (49) 

where a is the scale factor. Putting 0a c H= , one obtains: 
2 4

2
0 ,

4 8
c cH
G G

Λ
=

π
π

                     (50) 

from which: 
2

2 0= 2 ,GX
H
c

 Λ  
 

π                     (51) 

to compare with formula (41).  
From Equation (46) we have that also ΛΩ  remains constant during the ex-

pansion of universe. At the Planck era, for example, formula Equation (38) be-
comes: 

4

5 2 .P

P

HE
GΛ = Λ

                       (52) 
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If we assume that this energy is distributed within a sphere of radius equal to 
( Pc H ), we obtain an expression of the vacuum energy density at Planck time: 

4 7

3 5 2
3 ,

8 4P
P P

P

c H
G Gc

ρΛ
Λ

= =
Λπ π

                     (53) 

from which: 
2 2 7

2 7 66 2
2

66 0.64 10 cm .P
P

P

H
c L

− Λ = = × 
 

                (54) 

By considering the density of mass corresponding to vacuum energy, we have, 
for 

PΛΩ : 

( )
( ) 0

2 2 7

2

8 6 0.56.
33 8P

P

P

c G
H GΛ Λ

π

π

Λ
Ω = = Ω =                 (55) 

6. Conclusions 

Using dimensional analysis, we considered a universe having mass ( )3 2M c HG=  
and radius R c H= , that evolves according to a Bondi-Gold-Hoyle scenario, 
with continuous creation of matter at a rate such as to maintain, during the ex-
pansion, the density always equal to the critical density. By means of the Margo-
lus-Levitin theorem and Landauer’s principle, we have assigned to this universe 
an entropy associated with its evolution over time.  

The density is always critical and the parameters ΛΩ  and MΩ  do not de-
pend on the time.  

In the calculation of entropy, the result expressed by the formula (23) and 
consistent with the holographic principle strictly depends on the hypothesis 
H tδ= . This hypothesis involves an expansion of the hypothesized universe at 
constant speed, with a radius R given by R c H ct δ= =  and, therefore, cha-
racterized by an acceleration parameter 0q =  and by an expansion without ac-
celeration. However, in the calculation of MΩ  e ΛΩ , the hypothesis H tδ=  
was not explicitly used, so an estimate of the value of q can be obtained from the 
relation: 

1 ,
2 Mq Λ= Ω −Ω                          (56) 

which gives the negative value 

0.34,q −                            (57) 

that results in an expansion that accelerates.  
Considering the link between R and the deceleration parameter q: 

2
2

2
d ,
d

R qH R
t

= −                          (58) 

and assuming R c H= , the current value of this acceleration is : 
2

8 2
02

0

d 2.24 10 cm s ,
d

R cqH
t

− − 
= − × ⋅ 

 
                (59) 
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a value of the same order of magnitude as the critical acceleration, equal to 
81.2 10−× , of Milgrom’s MOND theory.  

At Planck’s time, the non-zero value of q, given by formula (57), would in-
volve the acceleration 

2
53 2

2
d 1.9 10 cm s .
d P

R cq t
t

−= − × ⋅                 (60) 

The analogous structure of the formulas of the entropy of a black hole and of 

evS  is related to the fact that even a universe can have an event horizon. An ac-
celerating universe traps light as a black hole does, in the sense that it leaves in 
the dark everyting beyond a certain distance.  

The crucial difference between a cosmological event horizon and the event 
horizon of a black hole is that in a black hole spacetime collapses towards a sin-
gularity, while in an accelerating universe all space expands and each observer 
will have his own event horizon. Any radiation emitted beyond a certain dis-
tance will never reach it, while any radiation emitted by the universe will all fall 
towards its interior. Black holes evaporate, universes don’t.  
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