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Abstract 
Given the significance and complexity of forecasting the crude oil price vola-
tility, this paper introduces the Heston model to predict volatility dynamics of 
crude oil price. The high-frequency intra-day data of the West Texas Inter-
mediate (WTI) market serves to model the problem. Furthermore, the study 
used the Euler-Maruyama scheme to simulate Heston model using an error 
analysis. On the other hand, the study used the mean square error (MSE), the 
mean average error (MAE), and the root means square error (RMSE) for the 
forecast accuracy of the GARCH-type models. The results of the error analy-
sis indicated that Heston’s stochastic volatility model is more consistent with 
oil performance data than traditional GARCH-class models. The study’s 
findings demonstrated that the Heston model is more economical in terms 
of setup and is capable of handling stylized facts. 
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1. Introduction 

Globally, crude oil prices, gold prices, currency exchange rates and other ma-
croeconomic indicators play a fundamental role in the global economy. To cla-
rify, the crude oil price is always treated more seriously since oil is the blood in 
the vessels of the economy. Forecasting crude oil price volatility provides market 
participants with valuable information regarding market uncertainty. Overall, oil 
price variability implies enormous losses or gains and therefore lower incomes 
or higher reserves to achieve the development targets [1]. Therefore, forecasting 
the price of crude oil and its volatility has attracted a lot of attention from re-
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searchers, policy makers and investors. 
Moreover, instabilities in the price system affect governments in many sectors, 

such as, planning and decision-making regarding the revenue system. Oil price 
uncertainties are also linked to inflation and have implications for the cost of 
consumer products and goods in industry. As a result, it may have a critical ef-
fect on the policy order of petroleum-dependent economies. Furthermore, the 
association between the price of oil and agricultural commodity prices is impor-
tant for the world food policy, and the sensitivity of the different economic 
agents on which the main input in the production process is oil [2] [3] [4]. 

Numerous studies consider the modeling and forecasting the volatility of crude 
oil price by using improved GARCH models. Although various work has been 
done to find the most suitable model that offers the best performance of out-of- 
sample forecasts, none of the models has always outperformed the other [2]. For 
example, the Autoregressive Conditional Heteroscedasticity (ARCH) model, con-
sidered a powerful tool to describe conditional, and historical volatilities, was in-
troduced by Engle [5] [6] [7]. This was followed by the introduction of the ge-
neralized autoregressive conditional heteroskedasticity (GARCH) model as an 
extension to the ARCH models [8]. Moreover, different scholars have developed 
variations of GARCH models, for example integrated GARCH (IGARCH), ex-
ponential GARCH (EGARCH), asymmetrical power GARCH (APGARCH), and 
fractional integrated GARCH (FIGARCH) [5] [6] [9]. These extension models 
were enhancing the GARCH model to capture the features of the time series data. 
Therefore, from an investor’s perspective, the forecast nature of future returns 
and volatility in oil markets is critical in determining asset prices, hedging, pric-
ing of derivatives, and risk control. Given its vital global significance and the 
minimization of the negative effect fluctuations of oil price, the academic litera-
ture over the past few years has focused on modeling and forecasting oil price 
volatility. The market for crude oil sometimes seems at times relatively quiet, 
while other highly volatile markets [2]. 

The upgraded GARCH-type models are capable of capturing the most impor-
tant stylized facts [4] [5] [10]. For more information on stylised facts, please re-
fer to the following studies [1] [2] [6] [7] [11] [12]. These models are popular for 
the modeling of time-variable conditional volatility as a deterministic function 
of lagged variance, lagged conditional squared residuals, and the past observa-
tions with the future volatility [2] [13]. In addition, these models are parametric 
and usually assess daily, weekly or monthly volatility using sampled data at the 
same rate. However, these models may not capture the fat-tail property of finan-
cial data. 

Currently, stochastic volatility (SV) models are alternative existing models to 
accurately capture stylized facts [7]. The SV models are non-parametric and are 
based on the time-continuous probability process. In addition, the variance in 
the SV models is treated as an unobserved quantity that admits a stochastic, and 
logarithmic first-order autoregressive processes. In general, these models extend 
the geometric Brownian motion model by incorporating an additional source of 
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uncertainty. Therefore, in describing volatility behavior, the volatility approxi-
mation is more realistic [3]. Although the (SV) model is theoretically appealing, 
it is difficult, because the unobserved volatility process introduces the model into 
a non-linear model. This process leads to the likelihood function depending on 
the high-dimension integrals [7] [9]. 

The study’s new contribution to the literature is the introduction of the Hes-
ton stochastic volatility model to forecast the price volatility of crude oil. The 
model develops the Black and Scholes model (BSM) by incorporating the process 
driven by a Cox-Ingersoll-Ross (CIR) process [14] [15]. Furthermore, the model 
can capture the volatility clustering, the leverage effect, and the heavy-tailed na-
ture of the return distributions. In this model, while the volatility of the variance 
controls the kurtosis of the underlying asset return distribution, the correlation 
defines its asymmetry. To conclude, the model is analytical tractable [14]. De-
spite the advantages of the model, the fundamental challenge is the complexity 
of the approximation process. Compared to models like BSM, the implementa-
tion of the Heston model involves more sophisticated calculations, and a more 
difficult process for the model calibration. Since the closed-form solutions for 
non linear SDEs are rarely available or are too hard to obtain, numerical approxi-
mations are very important. To overcome this challenge, this study employs the 
Euler-Maruyama scheme to approximate the price volatility model. 

To sum up, the main objective of this study is to introduce the Heston sto-
chastic volatility model in forecasting price volatility of a crude oil. Moreover, 
the innovations of this study are; introduction of the Heston model to measure 
the price volatility of crude oil, and applying the Euler-Maruyama method to 
simulate the Heston model. Moreover, in the accuracy analysis of the model, the 
study compares the Heston model performance with the improved GARCH- 
type models by performing error analysis. Normally, the smallest error implies a 
good approximation measure. For improved GARCH-type models, three error 
measures to evaluate the forecasting accuracy of models were employed. These 
are the mean squared error (MSE), the root means squared error (RMSE), and 
the mean absolute error (MAE). 

The remaining sections of this paper are organized as follows. In Section 2, the 
mathematical model is presented. Moreover, Section 3 presents the Data and 
preliminary analysis; a numerical example is in Section 4. Finally, Section 5 con-
cludes the study. 

1.1. Mathematical Model 

In this study, the crude oil market is assumed to be complete, frictionless, and 
continuously open over a fixed time interval [0, T]. Moreover, the financial 
market uncertainties are defined and modeled using a complete filtered proba-
bility space ( ), ,F PΩ . In the probability space above, Ω  is the sample space, 

( )t= F , 0t ≥ , is the information available at a time t, and P  is the histori-
cal probability measure. 
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1.2. The Heston Model 

In this study, we consider that crude oil price dynamics assume a stochastic vo-
latility model, particularly the Heston model. The introduction of a stochastic 
volatility model is because the volatility is not constant or deterministic instead 
it is a random process. Hence, the asset price at time t follows the system of sto-
chastic differential equations (SDE) given: 

( ) ( ) ( ) ( )( )1d d d ,Y t Y t t V t W tµ= +                   (1) 

( ) ( )( ) ( ) ( )2d d d ,V t V t t V t W tβ θ σ= − +                (2) 

( ) ( )0 00 and 0 .Y Y V V= =                       (3) 

In addition, β  is the mean reversion rate, θ  is the long-run variance, and 
the volatility of volatility (variance of volatility) is denoted by σ . Thus, the 
Heston volatility model is the system of two correlated SDEs namely the price of 
asset and the volatility process, see (1) and (2). In addition, to ensure that ( )V t  
is almost surely non-negative (the Feller condition has to be net), that is, 

22βθ σ> . Moreover, ( )1W t  and ( )2W t  are standard Brownian motions with 
a nonzero correlation. 

1.3. The Euler-Maruyama Method 

The simplest and most useful scheme for the approximation of the numerical 
solution of the stochastic differential equations is the Euler-Maruyama. This is a 
generalization of the Euler’s approach method in ordinary differential equations 
and stochastic differential equations [16]. Consider the SDE below: 

( ) ( )( ) ( )( ) ( ) ( ) 0d , d , d , 0 ,Y t t Y t t t Y t W t Y Yµ σ= + =         (4) 

where σ  and µ  are scalar functions, ( )W t  is the Wiener process, and 
( )0Y  is the initial condition. The solution to (4) admits the process tY : 

( ) ( )0 0 0
, d , d .

t t
t s s sY Y s Y s s Y Wµ σ= + +∫ ∫                 (5) 

To approximate the solution of the SDE on the interval [ ]0,T , time is discre-

tized into N equal subintervals with width Tt
N

∆ = . Therefore, the Eu-

ler-Maruyama approximation to the actual solution of (4) is the Markov chain X 
expressed in the form: 

( ) ( )1 , , ,n n n n n n nY Y t Y t t Y Wµ σ+ = + ∆ + ∆                 (6) 

with 1nY +  standing for an approximation, 1n n
Tt t t
N+∆ = − = , 1n nW W W+∆ = − , 

and 0,1,2, ,n N=  . From the expression, W∆  is normally distributed, i.e., 
( )~ 0,W N t∆ ∆ . 

Proposition 1.1 Assume that 1nY + , and 1nV +  are discrete approximate of Y 
and V respectively. The corresponding continuous Euler-Maruyama method is 
then used to approximate the solution to the Heston model is given by: 
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( )1 1 ,n n n nY Y t V Wµ+ = + ∆ + ∆  

( )1 .n n n n nV V V t V Wβ θ σ+ = + − ∆ + ∆  

where 1nY +  is the approximate price, and 1nV +  is the approximate volatility. 

1.4. Numerical Approximation of the Model 

Simulation methods are critical for approximating numerical solutions of SDEs. 
For the model efficiency, the focus is on analyzing errors measured at t T=  by 
quantity. 

( ) ( ) .t Y T Y Tε∆ = −E  

This process determines whether the method is converging to the exact solu-
tion. The Euler-Maruyama scheme exhibits both strongly and weakly convergent 
properties [17] [18] [19]. The strong (convergent) error measures the error of 
the approximate Y sampling paths on average, the pathwise error is the random 
quantity that satisfies: 

( ) ( )( )
0

lim 0.
t

Y T Y T
∆ →

− =E                     (7) 

From above expression, E  is the expected value, while ( )Y T  is the ap-
proximation of ( )Y t  at time t T=  calculated with a constant step t∆ . 

Conversely, it is weakly convergent (weak error) if the random quantity satis-
fies: 

( )( ) ( )( )( )
0

lim 0,
t

f Y T f Y T
∆ →

  − = E E                 (8) 

for all f polynomials. 

1.5. Approximation of GARCH-Type Models 

In the present study, the symmetric GARCH and asymmetric GARCH (EGARCH 
and TGARCH) models compare with the Heston model. These models are dis-
cussed extensively in the few studies mentioned here [2] [7] [9] [12] [20] [21]. 
To assess the forecast performance of the models above, the Mean Square Error 
(MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are 
used. These error measures are the most well-known for testing model accuracy 
[2]. The model with the smallest error is referred to be the best one. 

1.5.1. The Means Squared Error (MSE) 
The MSE is regularly used to compare forecasting performance of models. It is 
considered the most suitable measure for determining methods that avoid sig-
nificant errors. Thus, the MSE is computed by averaging the square of the dif-
ference between the original and predicted values of the data. 

2

RMSE
n

t

t

e
n

=∑                             (9) 
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where, Te Y Y= − . 

1.5.2. The Root Means Squared Error (RMSE) 
RMSE is the standard deviation for errors that occur when a forecast is per-
formed. This is similar to mean square error (MSE), but the root of the value is 
taken into consideration when determining the accuracy of the model. It is ex-
pressed by: 

2

RMSE
n

t

t

e
n

= ∑                          (10) 

1.5.3. The Mean Absolute Error (MAE) 
It is expressed as: 

1
MAE

t
n

t

t

e
Y
n=

= ∑                            (11) 

where t

t

e
Y

 is the absolute error calculated on the values adjusted for a specific 

forecasting method. 

2. Data Description and Preliminary Analysis 

To carry out the numerical illustration, this study employs daily spot prices of 
West Texas Intermediate (WTI) observations. The data is taken from the U.S. 
Energy Information Administration (EIA). In brief, the WTI crude oil is a spe-
cific grade of crude oil and one of the main three benchmarks in oil pricing, 
along with Brent and Dubai Crude. 

The sampling period covers the period from January 4, 2009, to December 31, 
2019, and consists 2761 observations. Since the logarithmic returns are analyti-
cally tractable when sub-period returns are related together to form returns over 
long intervals, then the crude oil price of each series is transformed into loga-
rithmic returns. Study focuses on the logarithmic behavior of the crude oil re-
turns. Furthermore, simulations using the Heston model and the application of 
the Euler-Maruyama numerical method to approximate the model are per-
formed. 

2.1. Preliminary Analysis 

The preliminary analysis reveals significant differences in price movements during 
the period under consideration. Similarly, there are signs of positive asymmetry 
in the statistical distribution of crude oil prices, implying extreme of the right 
tail. Also, the returns are non-Normal, which proved significantly asymmetrical 
positive and excess kurtosis, as is expected from daily returns. 

For the kurtosis, the price of crude oil is leptokurtic, which implies the fat tails 
than the normal distribution, see Table 1. Particularly, Table 1 presents the fol-
lowing; descriptive statistics, the unit root test, the normality test, and the ARCH 
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effect test for crude oil. The results indicate that the mean returns are measured 
by standard deviation. In addition, returns show leptokurtic features (i.e., fat- 
tailed) and therefore, the variance of oil prices for crude primarily reflects irre-
gular but extreme differences. Similarly, returns are skewed positively, implying 
that the series has a longer right tail than the left tail. 

Moreover, the unit root test, and the Augmented Dickey-Fuller (ADF) tests 
examine the presence of a unit root [22] [23]. The method tests the hypotheses 
H0: A series is non-static versus H1: A series is stationary. The results of unit 
root test for the data, altogether at levels 0.01 and 0.05 reject the null hypothesis 
that there is a unit root in the returns. 

Furthermore, the ARCH effect test looks at the existence of a heteroscedastic-
ity of crude oil data. The ARCH effect test reveals the presence of strong condi-
tional heteroscedasticity for the crude oil prices, which is common in financial 
data. Therefore, there is sufficient evidence to reject the null hypothesis that 
there is no ARCH effect. Likewise, the Jarque-Bera (JB) statistic using kurtosis 
and skewness test information illustrates non-normality. Therefore, it leads to 
the rejection of the null hypothesis. 

2.2. Volatility and Approximation of Model Parameters 

Considering tY  as the price of crude oil on day t, then daily spot price return 
transformation is: 

1

log ,t
t

t

YS
Y −

 
=  

 
                           (12) 

where tS  is the daily return on crude oil, tY  is the current day crude oil price, 
and 1tY −  is the crude oil price of the previous day. Also, the daily square returns 
are taken as an approximation of the real volatilities. Using the transformation 
results the annual and daily volatilities are determined with their respective va-
riances as presented in Table 2. Therefore, we find the daily and annual volatili-
ty of crude oil prices (σ ) with the respective variances ( 2σ ) for each year by 
using the Parkinson’s extreme values method [24]. 

3. Numerical Illustrations 

The daily observations of crude oil return for the period from 02.01.2019 to 
31.12.2019 amount to 250 days are used in this study. From these observations, 
we compute the model parameters (see Table 3). 

Figures 1-3 show the spot prices, returns, and volatility of crude oil respec-
tively. The results reveal an asymmetrical pattern in crude oil price behavior and 
returns. It implies that the performance patterns suggest evidence of volatility 
clustering. Thus, periods of relatively low volatility are the response to the pe-
riods of high volatility. The unusual peaks in these figures are evidence of major 
unstable trends in crude oil price returns. 
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Table 1. Basic statistics for the crude oil data. 

Parameter Value 

A: Descriptive statistics 

Maximum 113 

Minimum 26.19 

Mean 71.5394 (3.87E−05) 

Stand.dev. 21.51654 (0.0098) 

Skewness 0.1319 

Kurtosis 4.0524 

B: Normality test 

Jarque-Bera 2506.982*** 

C: Unit root test 

ADF −74.32*** 

PP −73.54*** 

D: ARCH effects 

LM(10) 35.27 

Note: ***indicate statistical significance at 0.05 level. 

 
Table 2. Crude oil volatilities, WTI 2009-2019. 

Time interval 
Number of 

Trading days 
Minimum 

Price 
Maximum 

price 
Annual  

Volatility 
Annual  

Variance 
Daily  

Volatility 
Daily  

Variance 

2.1.2009-31.12.2009 251 34.03 81.02 0.2320 0.054 0.00021 4.573E−08 

4.1.2010-31.12.2010 252 64.78 91.47 0.1280 0.016 0.00006 4.228E−09 

3.1.2011-29.12.2011 252 75.40 113.40 0.0226 0.001 0.00009 8.076E−09 

3.1.2012-31.12.2012 252 75.40 109.39 0.1316 0.017 0.00069 4.717E−09 

2.1.2013-27.12.2013 252 86.55 110.61 0.0792 0.006 0.00025 6.184E−10 

3.1.2014-31.12.2014 249 53.45 107.96 0.1145 0.132 0.00053 2.773E−09 

2.1.2015-30.12.2015 252 34.55 61.35 0.2030 0.041 0.00016 2.674E−08 

4.1.2016-30.12.2016 252 26.19 54.01 0.2111 0.045 0.00018 3.126E−08 

3.1.2017-29.12.2017 250 42.48 60.45 0.1071 0.012 0.00005 2.106E−09 

2.1.2018-31.12.2018 249 44.48 77.41 0.1367 0.019 0.00008 5.638E−09 

4.1.2019-09.12.2019 250 46.31 66.23 0.1483 0.022 0.00009 8.757E−09 

 
Table 3. Computed parameters. 

Parameter Symbol Value 

Initial price 0Y  46.31 

Initial volatility 0V  2.3 × 10−4 

Vol-volatility σ  9.0 × 10−5 

long-run variance θ  8.8 × 10−9 

Reversion rate β  2.95 × 10−3 

Mean log-return µ  4.94 × 10−4 
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Particularly, Figure 1 shows the change in the spot price for the crude oil. 
Precisely, it shows that over the 2014-2016, crude oil prices declined sharply, re-
flecting increased uncertainty in the crude oil market. Moreover, Figure 2 illu-
strates the dynamics of crude oil returns. It implies that a number of global 
supply and demand tremors cause significant fluctuations in crude oil markets. 
Generally speaking, crude oil prices tend to reflect a high degree of uncertainty 
over time. 

3.1. Simulation Results 

This section starts by focusing on the logarithmic behavior of crude oil prices 
and conducting simulations using Heston’s stochastic volatility model. First of 
all, the January 2009 to January 2019 observations were used for parameters 
computation. Moreover, to forecast, the data from 02.01.2019 to 31.12.2019 were 
used. That is, for the parameters estimation the interval 1t =  to N was used 
while for forecasting 1N +  was used. This study uses Euler-Maruyama’s nu-
merical method to simulate the Heston model. 

In addition, the following parameters were also used in the simulations: the 
initial time “ 0t = ”, the terminal time “ 1T = ”, the number of discretization be-
tween “ 100n = ”, 0.01t∆ =  (the uniform mesh size), the number of paths) 
“ 1000N = ”. Figure 3 displays the results of the crude oil volatility simulation. 
The simulated results suggest that crude oil prices tend to be asymmetrical with 
lower kurtosis. 

3.2. Error Analysis 

Normally, for the efficacy of the model, the emphasis is on error analysis. We 
start by defining the error by 

( ) ( ) .Y T Y T−E  

To test the convergence strength for the Euler-Maruyama, we use 92N =  
dicretized Brownian paths over [ ]0,1 , and five different stepsizes: 12 pt dt−∆ =  
for 1 5p≤ ≤ . Results for this process are shown in Table 5. These results are 
compared with the results obtained from GARCH-type models as shown in Ta-
ble 5. To conclude, the model with the lowest error implies a more accurate es-
timate of the model. 

Table 4, and Table 5 present error analysis results for the Euler-Maruyama 
scheme and GARCH-type models respectively. Particularly, Table 4 shows the 
error analysis results for the Heston model. Likewise, the error analysis for the 
GARCH-type models is presented in Table 5 as shown. The results in Table 5 
show that the GARCH model offers the best accurate forecast than the two im-
proved GARCH-type models (EGARCH and TGARCH). In general, results in 
Table 4, and Table 5, reveal the small errors in Heston model approximation 
than the improved GARCH models. Basing on results, it is evident that the Hes-
ton model can estimate better crude oil price volatility than the counterpart im-
proved GARCH-type models. 
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Figure 1. Crude oil Spot price. 

 

 
Figure 2. Crude oil logarithmic returns. 

4. Conclusion 

This study introduces the Heston stochastic volatility model to model the crude 
oil price volatility. It applied the Euler-Maruyama scheme to approximate the 
Heston stochastic volatility model. Moreover, the differences in the trend of 
prices for the covered period are revealed by simulation results. Furthermore, 
results show that the Heston model fits data well compared to counterpart im-
proved GARCH-type models in the approximation of the price volatility.  
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Figure 3. Crude oil volatilities. 

 
Table 4. The error analysis, the Euler-Maruyama scheme. 

Step size (Δt) Error 

0.0010 0.000564 

0.1010 0.010153 

0.2010 0.011524 

0.3010 0.010771 

0.4010 0.012742 

0.5010 0.013142 

0.6010 0.012421 

0.7010 0.012101 

0.8010 0.010621 

0.9010 0.011283 

 
Table 5. The Error analysis, the GARCH-type models. 

Model MSE RMSE MAE 

GARCH 0.01578 0.01681 0.01198 

EGARCH 0.01572 0.01695 0.01656 

TGARCH 0.01587 0.01957 0.01803 

 
Because of the strategic role of crude oil price volatility and its effects to all 
countries globally, it is essential to employ different forecasting methods. In the 
future study, we will work on jump-diffusion models to investigate the behavior 
of crude oil price volatility. 
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