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Abstract 
Diagnosing traffic anomalies rapidly and accurately is critical to the efficient operation of large computer 
networks. However, it is still a challenge for network administrators. One problem is that the amount of traf-
fic data does not allow real-time analysis of details. Another problem is that some generic detection metrics 
possess lower capabilities on diagnosing anomalies. To overcome these problems, we propose a system 
model with an explicit algorithm to perform on-line traffic analysis. In this scheme, we first make use of de-
gree distributions to effectively profile traffic features, and then use the entropy to determine and report 
changes of degree distributions, which changes of entropy values can accurately differentiate a massive net-
work event, normal or anomalous by adaptive threshold. Evaluations of this scheme demonstrate that it is 
feasible and efficient for on-line anomaly detection in practice via simulations, using traffic trace collected at 
high-speed link. 
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1. Introduction 

Anomalies are unusual and significant changes in a net-
work’s traffic levels, which can create congestion in the 
network and stress resource utilization in a router. Net-
work operators need to accurately detect traffic anoma-
lies in a timely fashion. Without this kind of capability, 
networks are not able to operate efficiently or reliably. 
Researchers have approached traffic anomaly detection 
using various techniques from simple volume-based 
analysis [1–3] to network flow distribution-based analy-
sis [4]. While recent studies demonstrate that entropy- 
based anomaly detection obviously has some advantages 
[5]. This approach is to capture fine-grained patterns in 
traffic distributions that simple volume based metrics 
cannot identify. What's more, the use of entropy for 
tracking changes in traffic distributions provides two 
significant benefits. First, the use of entropy can increase 
the sensitivity of detection to uncover anomalies inci-
dents that may not manifest as volume anomalies. Sec-
ond, using such traffic features provides additional diag-
nostic information into the nature of the anomalous inci-
dents (e.g., making distinction among worms, DDoS 
attack, and scans) that is not available from just vol-
ume-based anomaly detection. 

In general, most researchers consider flow-header fea-

tures (e.g., IP addresses, ports, and flow-sizes) as candi-
dates for entropy based anomaly detection. However, 
Port and address distributions with pair-wise correlation 
scores greater than 0.95, which arises due to the nature of 
the underlying traffic patterns [6]. Intrinsically, the 
anomalies detected by the port and address distributions 
overlap significantly. Furthermore, anomalous scan, DoS, 
and P2P activity are not subtly detected by port and ad-
dress distributions, or only high-magnitude events can be 
detect that would have appeared as traffic volume 
anomalies. Considering the limited utility of port and 
address distributions, we should select traffic distribu-
tions as candidates for entropy based anomaly detection 
with care, and in particular we should look beyond sim-
ple port and address based distributions. 

In this work we propose an anomaly detection mecha-
nism using degree distributions to improve the detect 
abilities of port and address. We use in- and out-degree 
distributions to measure the number of distinct destina-
tion/source IP addresses that each host communicates 
with. For each value of in-degree (out-degree), we cal-
culate the entropy to diagnose anomaly. Note that we 
chose source/destination IP addresses as unique candi-
date metric, not both address and port. There is no need 
to use different distributions of possessing same under-
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lying properties to increase overheads of computation. 
To keep up with on-line traffic analysis, the essence to 
capture dynamic network traffic, we introduce a sliding 
windows mechanism with fixed time width. 

The rest of this paper is organized as follows. Section 
2 surveys related work. Section 3 briefly describes the 
basic theory of our detection scheme, including compu-
tation on the entropy values of degree distributions. Sec-
tion 4 presents an overview of our scheme and describes 
the anomaly detection methodology. Section 5 evaluates 
the effectiveness of the proposed scheme. Section 6 con-
cludes the paper. 

2. Related Work 

Anomaly detection has been studied widely, and has re-
ceived considerable attention recently. Most of the work 
in the recent research and commercial literature (for e.g., 
[7–9]) has treated anomalies as deviations in the overall 
traffic volume (number of bytes or packets). Volume 
based detection schemes have been successful in isolat-
ing large traffic changes (such as bandwidth flooding 
attacks), but a large class of anomalies do not cause de-
tectable disruptions in traffic volume. In contrast, we 
demonstrate the utility of a more sophisticated treatment 
of anomalies, as events that alter the distribution of traf-
fic features. 

Nowadays, a number of works have focused on using 
traffic distributions to diagnose anomalies. Feinstein et al. 
[10] used the distribution of source addresses to detect 
DDoS attack. Similarly, Karamcheti et al. [11] used in-
verse distributions of packet contents to detect malicious 
network traffic and Thottan et al. [12] used statistical 
distribution of the individual MIB variables to detect 
abrupt changes of network traffic. We use degree distri-
butions to effectively profile traffic features, which can 
capture abnormal changes of traffic in a sensitive man-
ner. 

A variety of statistical anomaly detection techniques 
have been proposed to detect network-wide anomalies. 
Particularly, the entropy-based approaches have been 
demonstrated the accuracy and efficiency in detecting 
anomalies in the traffic matrix time series. Lakhina et al. 
[8] used entropy and subspace methods to mine traffic 
anomalies from network wide traffic data repositories. 
Gu et al. [13] used maximum and relative entropy to 
develop a behavior-based anomaly detection method. In 

[13], the maximum entropy-based baseline distribution is 
constructed from pre-labeled training data, but how this 
baseline is adapting itself to the dynamics of network 
traffic remains unclear. We propose a mechanism to 
construct adaptive baseline according to the dynamic 
network traffic during the measurement period, and ad-
just the baseline in a particular time span. 

Online detection of anomalies suffers to compute real-
time statistic from the large of traffic data. Xu et al. [14] 
used 5-tuple flow distribution (i.e., srcaddr, dstaddr, 
srcport, dstport, protocol) to do traffic analysis leads to 
intensive memory and high overhead on processing ca-
pacity. Some online intrusion detection systems, such as 
FlowMatrix [15] and Snort [16] match packets to a 
pre-defined set of rules, making them unable to detect 
unknown anomalies. In contrast, we consider the high 
correlation of address and port, and use address as 
unique metric, instead of 5-tuple, to compute entropy 
values of degree distributions for detecting anomalies. 
Our scheme not only alleviate overhead of computing 
during online analysis stage, but outperform rule-based 
approaches to uncover new anomaly types. 

3. The Basic Theory 

As we know, most traffic anomalies share a common 
characteristic [17]: they induce abnormal change in 
flow-header features distribution, such as source and 
destination addresses and ports, which show dispersed or 
concentrated distribution. 

For example, Figure 1 displays flow-header features 
distribution of three types of attacks (graphs (a) (b) (c)). 
Let us highlight some interesting cases of graphs. Figure 
1(a) displays a typical distributed denial-of-service 
(DDoS) attack. In such cases, a lot of hosts send traffic 
towards a particular (single) host. Similarly, many Inter-
net worms spread by sending random probes (i.e., to-
wards randomly generated a great number of destination 
IP addresses) from an infected computer to infect other 
vulnerable computers (Figure 1(b)). In some scan events, 
a single host scanning the random destination host or a 
set of random source host scanning a single destination 
host (Figure 1(c)). 

We can conclude some information from the above 
analysis: In each type of attack, the source or destination  

 

 
Figure 1. Source/destination IPs and ports distribution patterns of Anomalous events. 
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Table 1. IP distributions of anomalous events. 
Anomaly Type srcIP dstIP 

DDoS Random Fixed 
Worms Fixed Random 

Single Scanner Fixed Random 
 
addresses present random or fixed state (shown in Table 
1). One may naturally wonder 1) what metrics can accu-
rately profile these anomaly traffic features, and obvi-
ously indicate the occurrence of such attacks mentioned 
above; 2) how to effectively quantify the magnitude of 
anomaly, and expose unusual traffic behavior. 

From the Figure 1(a), we know six source hosts con-
nect a specific destination host. Figure 1(b) illustrates a 
single source host connects five destination hosts. These 
inspired us to introduce in- and out-degree distributions 
to state relationship of source and destination address. 
For an end-host X, the out-degree is the number of dis-
tinct IP addresses that X contacts, and the in-degree is the 
number of distinct IP addresses that contact X. For ex-
ample, in-degree of the destination host is six in Figure 
1(a), out-degree of the source host is five in Figure 1(b).  

Intuitively, in- and out-degree can effectively encap-
sulate and capture features of the underlying traffic dis-
tribution. In addition, entropy is an appropriate metric to 
manifest dispersed or concentrated state of degree dis-
tribution. The more concentrated it is, the less entropy 
values it is, or vice versa. Naturally, we use the entropy 
to determine and report changes of degree distributions, 
which changes of entropy values can sensitively repre-
sent variation of traffic feature distribution and designate 
unusual changes as an anomaly. 

The natural definition of entropy in the context of this 
paper is the expression as follows: 

1( ) ( ) log( ( ))n
i i iH x p x p x=≡ −∑         (1) 

where x1, ..., xN is the range of values for random variable 
X, and p(xi) represents the probability that X takes the 
value xi. For each value of in-degree (out-degree) xi, we 
calculate the probability 

Number of hosts with in-degree 

Total number of hosts
( ) i

i
x

p x =       (2) 

Useless otherwise specified, all log function in this 
paper are to the base 2 and we define 0log0 = 0. 

Often it is useful to normalize the value to expediently 
compare entropy across different measurement periods. 
For this purpose, we define the standardized entropy 
(between zero and one) to be H/log t, where t is the 
number of distinct in-degree (similarly out-degree) val-
ues observed during the measurement interval. 

4. Diagnosis Methodology 

In this section, we first give an overview of the system 

model and the design notion of our scheme. Second, we 
describe our strategy of adaptive detection threshold 
setup. Then we present a proper algorithm for computing 
the entropy and self-adjusting the threshold to raise an 
alert when attacks happed. Finally, we show how our 
scheme works in detail. 

4.1. System Model 

The overall architecture of our scheme consists of three 
main functional parts: the processing engine (backend), 
database and WebGUI (front end). The processing en-
gine carries out an explicit algorithm for communicating 
between WebGUI and database. The engine implement 
several aspects of task as follows: 1) it received NetFlow 
[18] records from capable source, such as routers, 
switches, firewalls, etc. in a particular manner, and store 
the data across a buffer into the database, 2) it obtained 
associated parameters are available to compute entropy 
values of degree distributions from the raw traffic statis-
tics by using a single SQL query. This is a major benefit 
of keeping the raw traffic statistics in a database, 3) it 
can automatically adjust detection threshold according to 
the network state during the measurement period. The 
database provides structured storage for the traffic statis-
tics and simplifies the computation about entropy values 
of degree distributions. The WebGUI frontend provides 
the flexibility of detection result graphically display. 

4.2. Adaptive Detection Threshold Setup 

To diagnosis anomalies, we must find a way to clearly 
differentiate network anomalies from normal behavior. 
Therefore we introduce a baseline method, which first 
define baseline values to represent steady “normal” be-
havior, and non-steady behavior which deviate from the 
baseline are then flagged at those points in time. But how 
far the deviation may be identified as anomalies we 
should take a further analysis. 

During the measurement period, we first compute en-
tropy values of degree distributions in each time interval, 
and then compute mean entropy as baseline in a particu-
lar time span. In addition, we use variance to reflect de-
viation between normal and abnormal behavior.  

Let us assume, the measured entropy Y be a random 
variable with mean ( )E y µ=  and 2var( )y σ= . Then, the 
Chebyshev inequality states that: 

2

2
(| | )p y

σ
µ ε

ε
− ≥ ≤ , for any >0ε      （3） 

Therefore, we can define a band of 2 *µ σ± as a nor-
mal region, where the proportion of observed entropy 
values falling in the region is at least 75%. Namely, the 
threshold is 2 *µ σ± . Beyond this normal region, the en-
tropy represents traffic events is anomalous and assigned 
a severity level depending upon its deviation from the 
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normal region.  
Network traffic may change in different time or date. 

So the baseline will be changeable. One problem is how 
to automatically adjust the baseline to fit the normal be-
havior. From our experience, we determine a fixed time 
span (i.e., 30minutes) to self-adjust baseline according to 
network environment.  

4.3. Algorithm 

To keep up with on-line traffic analysis, our algorithm 
must be lightweight in terms of both store and retrieve 
data. Firstly, we design a buffer between data source and 
database to leverage store and retrieve. Secondly, con-
sidering many attacks today are only several minutes in 
duration, such as DDoS attacks generally last for only 
two minutes, we set a short time window (i.e.,30s) with 
limited (srcaddr, dstaddr) records to achieve high detec-
tion resolution and relatively low constraints on speed of 
store data and query database. 

Conceptually, the algorithm can be divided into three 
stages. In the first stage we configure Netflow to page 
out traffic statistic in specific time span, and pre-define a 
threshold according to the training data to rule out 
anomalous entropy values, so as to accurately calibrate 
baseline during the measurement period. Note that adap-
tive threshold takes into effect in the detection process. 
In the second stage, processing stage, we repeatedly 
compute entropy values in fixed time interval with a 
sliding window. In the post-processing stage, we setup 
threshold by calculating mean entropy and variance for 
the next detection process. The pseudo code for this al-
gorithm is shown in Algorithm 1.  
----------------------------------------------------------------------------------------------------------------------------------------- 

Algorithm 1: Online anomaly detection algorithm 
1. Pre-processing stage 
2. Configure Netflow: paged out data to buffer every 

five minutes 
3. Initialize: pre-define threshold  
4. Processing stage 
5. Sliding window with fixed time, T(T=30s) and Load 

data using 2-tuple (srcaddr,dstaddr) into database 
6. SELECT the total number of host → sumhost 
7. SELECT the number of hosts with degree xi 

→numhost[i] 
8. Count rows of different degree → numdiffdegree 
9. for i:= 1 to numdiffdegree do 
10.      numhost[i]/sumhost →p(xi) 
11.      Compute and normalize the H(x) →yi 
12. Repeat  5-11 
13. Post-processing stage 
14. Rule out yi which beyond the threshold 
15. avg(y1,y2,…,y60)→baseline: µ  

16. avg( ( Y- µ )2 )→ 2σ        Y=yk, k=1,2,… 
17. setup threshold: 2*µ σ±  

--------------------------------------------------------------------------------------------------------------------------------------- 

4.4. Implementation Details 

There are two working procedure in our anomaly detec-
tion scheme: deployment and measurement. First, our 
scheme must be deployed properly, such that it receives 
NetFlow records on available measurement network. We 
should configure internal NetFlow sources that handle 
traffic from corporate hosts to Internet and vice versa 
such as routers, switches and firewalls to export Net-
Flows to the processing engine server. For best result and 
more visibility make sure those sources deal with clear, 
not NATed traffic. Second, we assume that training traf-
fic is devoid of any attack and the characterization of 
traffic features acts as a normal profile. The normal pro-
file is used to calculate the pre-define thresholds. And 
then our scheme enters fully operational mode. In this 
mode the threshold is constantly compared with the cur-
rent entropy value of degree distributions derived from 
incoming NetFlows. Alarms are generated if the entropy 
values differ beyond allowed tolerances. Note that asso-
ciated thresholds are self-adjustable as they’re calculated 
by the processed data itself (NetFlows) in particular time 
span and periodically update thresholds without requir-
ing dedicated periodic training interval.  

5. Performance Evaluation 

To evaluate the effectiveness and performance of our 
scheme, implemented a software prototype that measures 
the entropy values of in- and out-degree and have tested 
it with real world traffic traces. 

The traces we used were drawn from cisco 7609 router 
at our university’s modern education information center, 
which handle three campus traffics exchanging with the 
commodity ISPs (Internet Service Provider). The time 
of-capture of analyzed traces was selected so that our 
methodology could be tested against a variety of network 
conditions. 

Throughout our experimentation, both degree distribu-
tions show remarkable similarity except for few peaks. 
These exceptional entropy values represent magnitude of 
traffic feature’s distributional variations during the meas-
urement period. We picked sample snapshots of time 
where peaks are observed, and show work mechanism of 
our scheme in the link measurements. 

From the Figure 2, it can be observed that the normal 
traffic region between lower and upper bound are deter-
mined by the threshold in the detection process. Intrinsi-
cally, a threshold is directly determined by its baseline. 
Figure 2 shows the baseline of in-degree and out-degree 
respectively adjust at points A, B, C or D, E, F according 
to consecutive network state. Note that baselines are 
adapting themselves to the dynamics of network traffic 
by implementing algorithm 1 when our scheme enters 
fully operational mode. Once entropy values of some 
event changes in an arbitrary manner, the event was des-
ignated in time as an anomaly. In addition, by measuring 
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Figure 2. Sample snapshot of anomaly detection system. 

the peak height and peak width of the entropy values in 
time series, one is able to begin to identify anomalous 
duration and relative intensity. Interestingly, such case 
happened at points a, b, c, d and e. At points c, d, e, there 
are peaks in entropy values of indegree but entropy val-
ues of out-degree do not show any corresponding peak. 
This observation has two implications. Firstly, the 
in-degree and out-degree are weakly correlated with each 
other. Secondly, entropy values of degree distributions 
are sensitive to these abnormal changes, even though 
subtle changes happened. 

From the Figure 2, we also can conclude that while a 
network is not under attack, the entropy values for vari-
ous degree distributions each fall in a narrow range. 
While the network is under attack, these entropy values 
exceed these ranges in a detectable manner. 

In the following example, we choose two typical at-
tacks which arouse traffic anomalies to validate effi-
ciency of our approach in detail. Then we further discuss 
the reason for variation in entropy values of degree dis-
tributions. 

Figure 3(a) shows the different changes before and 
during the worm outbreak. Before the outbreak time it 
can be seen that entropy values of in- and out-degree 
vary in a permitted scale, since source addresses and 
destination addresses do not obviously appear dispersed 
or concentrated state. However, during the outbreak of 
the worm the degree distributions change massively. The 
most obvious is that in- and out-degree plots change their 
values in different directions. Regarding the individual 
plots, it can be seen clearly that an obvious increase in 
entropy of out-degree at point f, while entropy values of  

 
Figure 3. Examples of anomalies which we diagnose from 
link traffic. 

in-degree leading to the opposite effect at point g. This 
divergent effect can be used to indicate worm anomalies 
or similar to worms. There is a persuasive reason behind 
this abnormal behavior. The change in IP address charac-
teristics seen on a flow level (i.e. when packets belonging 
to a TCP connection or UDP data stream with same 
source/destination IP address is aggregated into one 
“flow”) is relatively intuitive: a smaller number of in-
fected hosts scan and connect to other vulnerable hosts in 
a random fashion. As a result, these flows grow to be a 
significant part of the set of flows seen in total, which 
give cause for variation to the whole traffic features dis-
tribution. On one hand, the source IP addresses of the 
infected hosts can be seen in many flows and since they 
are relatively few hosts. It means that some source IP 
addresses seen in flows become more fixed than in nor-
mal traffic, but the other source IP addresses show more 
dispersed distribution in the mass, which leading to 
out-degree distribution more dispersed, and hence the 
entropy value of out-degree significantly increase. On the 
other hand the destination IP addresses seen in flows will 
be much more random than in normal traffic, which 
causes a lot of hosts with in-degree 1, and hence indegree 
distribution appears to be more concentrated, entropy 
value of in-degree tends to decrease obviously. 

Figure 3(b) plots an outbound DDoS attacks last less 
one minute (from 140s to 170s). The presence of these 
anomalies presents an interesting view in the structure of 
flow level traffic. These attacks were floods of 40-byte 
TCP SYN packets destined for the same host or server. 
The flood was reported as many “degenerate” flows, 
having only one packet per flow. And the flood packets 
had a lot of random source addresses and a fixed destina-
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tion address. As a result, traffic will demonstrate a dis-
persed distribution for source IP addresses, namely the 
majority of the hosts with out-degree 1 connect to the 
same external destination IP addresses. It means that 
out-degree distribution tends to be more concentrated 
than in normal traffic, which sharply decreases the en-
tropy value of out-degree at point h. From low to high 
rate DDoS attacks, the destination IP addresses show a 
small variation. But the in-degree distribution in the mass 
still show more concentrated state than in normal traffic, 
and hence the increases of entropy in in-degree at point i. 
This can clearly explain the onslaught of DDoS events. 

6. Conclusions 

In this paper we present degree distributions for detect-
ing network traffic anomalies in IP flow data collected at 
our University's border router. We evaluate the scheme 
on network-wide traffic anomalies, which resulting from 
unusual changes in the real-time traffic features. We 
showed how to use our scheme to diagnose anomalies 
from simple and readily available link measurements. 
Rigorous experiments on real-world traffic validate our 
scheme obviously possess the following advantages: 1) it 
is accurate and efficient enough to use a little flow 
header features for capturing fine-grained patterns in 
traffic distributions. These not only reduce the on-line 
processing time but increase the detection abilities. 2) 
The use of entropy can increase the sensitivity of detec-
tion to uncover well-known or unknown anomalies and 
quantify traffic anomalies. 3) An adaptive threshold is 
available to lower false alarm rate. 

Our ongoing work is further analysis traffic anomalous 
features, and extending the methodology proposed here 
to diagnose additional network-wide anomalies. In addi-
tion, lower result report latency is one of problems we 
consider. 
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