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Abstract 
The current study examines the important class of Chebyshev’s differential 
equations via the application of the efficient Adomian Decomposition Me-
thod (ADM) and its modifications. We have proved the effectiveness of the 
employed methods by acquiring exact analytical solutions for the governing 
equations in most cases; while minimal noisy error terms have been observed 
in a particular method modification. Above all, the presented approaches 
have rightly affirmed the exactitude of the available literature. More to the 
point, the application of this methodology could be extended to examine var-
ious forms of high-order differential equations, as approximate exact solu-
tions are rapidly attained with less computation stress. 
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1. Introduction 

Differential equations are used to model problems arising in physical and social 
sciences, to mention a few. Recently, the development of computational proce-
dures to tackle functional equations stumbled upon in different areas of science 
and technology has broadened the inquisitiveness of so many researchers. For 
instance, let’s consider the case of Chebyshev’s differential equation that reads  

( )2 21 0, 1 1,x u xu n u x′′ ′− − + = − < <                  (1) 

where n is a non-negative integer. This equation is undoubtedly a special type 
of second-order Ordinary Differential Equation (ODE) that arises in various 
science and engineering problems [1]. This equation is further typified with the 
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possession of orthogonal functions that are known to play vital parts in numeri-
cal methods and approximation theories. 

Further, it will also be good to remember that in recent times, research activi-
ties regarding second-order ODEs with initial data have drawn the nosiness of 
different researchers. Various methods have been proposed in the past and 
present literature towards devising promising unified techniques to tackle a ver-
ity of ODEs; one could easily find the Adomian Decomposition Method (ADM). 
[2] [3], and its related modifications and extensions to attract so many minds in 
this regards, see the following references [4]-[10] and the references therewith to 
explore numerous scientific models in the presence of the method. 

However, as the literature is kind of vacant with regards to the application of 
ADM on the solution of Chebyshev’s differential equation, the current study at-
tempts to fill this huge gap by demonstrating the advantages and the efficiency 
of ADM and its modifications in attaining optimal approximate solutions to the 
Chebyshev’s differential equation; and by extension, to the general differential 
and integral equations. Additionally, we organize the paper in the following 
manner: Section 2 gives the outline of the classical Adomian method; while its 
modifications to be utilized in this study are presented in Section 3. Section 4 
makes consideration to certain numerical applications, and lastly, we give cer-
tain concluding remarks in Section 5.  

2. Standard ADM Procedure 

The present section gives a generalized derivation procedure for tackling nonli-
near Initial-Value Problems (IVPs) based on the ADM. To do so, let us consider 
the following differential equation  

( )( ) ( ) ,G u x g x=                         (2) 

with G representing a generalized ordinary (or partial) differential operator, and 
( )g x  as a source term. This operator being general, it can equally be expressed 

to involve both linear and nonlinear operators. Thus, we decompose the opera-
tor further and rewrite the above equation as follows  

,Lu Ru Nu g+ + =                        (3) 

where L is the highest linear operator that is invertible, with R L< ; while N is 
specifically the nonlinear operator. More so, we rewrite the latter equation as 
follows  

,Lu g Ru Nu= − −  

such that applying the inverse linear operator 1L−  to both sides of the above 
equation yields  

( ) 1 1 1 .u x L g L Ru L Nuφ − − −= + − −                   (4) 

where ( )xφ  is the function emanating from the prescribed initial data. 
Further, the iterative procedure by the name ADM decomposes the solution 
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( )u x  using an infinite series of the following form 

( ) ( )
0

,n
n

u x u x
∞

=

= ∑                         (5) 

while the nonlinear component Nu  is equally decomposed using the following 
infinite series  

( )
0

,n
n

N u A
∞

=

= ∑                          (6) 

where An’s are polynomials devised by Adomian, and recursively determined 
using the following scheme  

0 0

1 d , 0,1,2,
! d

n n
j

n jn
j

A N u n
n

λ

λ
λ = =

  
= =  

   
∑               (7) 

Therefore, upon substituting Equations (5) and (6) into Equation (4), one gets  

( ) ( ) ( ) ( )1 1 1

0 0 0
,n n n

n n n
u x x L g x L R u x L Aφ

∞ ∞ ∞
− − −

= = =

= + − −∑ ∑ ∑  

where ( )xφ  is the function emanating from the prescribed initial data. 
Furthermore, the ADM procedure swiftly reveals the generalized recursive 

solution for the problem from the above equation as follows  

( ) ( )1
0

1 1
1

,

, 0,k k k

u x L g x

u L Ru L A k

φ −

− −
+

 = +


= − − ≥
                  (8) 

where Ak’s are the Adomian polynomials computed from Equation (7). Ex-
pressing few of these terms, we get  

( )0 0 ,A N u=  

( )0
1 1

0

d
,

d
N u

A u
u

=  

( ) ( )2
0 0 2

2 2 12
0 0

d d1 ,
d 2 d

N u N u
A u u

u u
= +  

( ) ( ) ( )2 3
0 0 0 3

3 3 1 2 12 3
0 0 0

d d d1 ,
d 3!d d

N u N u N u
A u u u u

u u u
= + +  

  

Remarkable, it is obvious that the Adomian polynomials An’s depend on the 
solution components un. For instance, A0 relies merely on u0; A1 relies merely on 
u0 and u1; A2 relies merely on u0, u1 and u2, and so on. 

Finally, a realistic solution is obtained by considering the following m-term 
approximations as  

1

0
,

n

n j
j

u
−

=

Ψ =∑                           (9) 

where  
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( ) ( ) ( )
0

lim .n jn j
u x x u x

∞

→∞ =

= Ψ =∑                   (10) 

3. Adomian Modification Methods for Chebyshev’s  
Equations 

Here, we give some important modification algorithms based on the standard 
Adomian method for the solution of the class of Chebyshev’s differential equa-
tions under consideration. 

3.1. Standard ADM 

Consider the Chebyshev’s differential equation as follows  

( )2 21 0, 1 1.x u xu n u x′′ ′− − + = − < <               (11) 

Now, based on the standard ADM procedure, the Chebyshev’s equation given 
above is rewritten as follows  

2 2 , 1 1.u x u xu n u x′′ ′′ ′= + − − < <                 (12) 

So, we consider the right-hand side of the equation as a normal non-homo- 

geneous term, where the differential operator L is defined by 
2

2
d
dx

. More  

so, we consider the inverse operator 1L−  as a two-fold integral operator defined 
by  

( ) ( )1
0 0

. . d d .
x x

L x x− = ∫ ∫  

Thus, upon applying the inverse operator 1L−  to both sides of Equation (12), 
one gets  

( ) 1 2 2 ,u x L x u xu n uφ −  ′′ ′= + + −   

such that  

( ) 0.L xφ =  

Thus, based on the ADM procedure, the solution ( )u x  is introduced 
through an infinite summation of components ( )nu x  earlier discussed in the 
methodology. Hence, the recursive solution of the equation is obtained as fol-
lows  

( ) ( )

( )
0 0 1

1 2 2
1

,

, 0,k k k k

u x x c c x

u x L x u xu n u k

φ
−

+

 = = +


 ′′ ′= + − ≥  
           (13) 

where the overall solution ( )u x  follows immediately by summing the above 
components as follows  

( ) ( ) ( )
0

lim .n jn j
u x x u x

∞

→∞ =

= Ψ =∑                  (14) 
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3.2. Algorithm 1 

This algorithm is aimed at tackling ODEs with non-constant coefficients, just 
like the Chebyshev’s equation which is a singular equation. The idea is more 
general, and could be extended to other higher-order ODEs that arise in mathe-
matical physics [11]. To this end, let us consider the Chebyshev’s equation given 
in Equation (11). We then further divide the equation by ( )21 x− , thereby ex-
pressing ( ) 121 x

−
−  as follows  

2
2

0

1 ,
1

m

m
x

x

∞

=

=
− ∑  

such that expressing the equation in an operator form as 0Lu Ru+ =  suitable 

for the decomposition method; where 
2

2
d
d

L
x

= , and  

2 2 2

0 0

d .
d

m m

m m
R x x n x

x

∞ ∞

= =

= − +∑ ∑                  (15) 

More so, applying the inverse operator 1L− , which is an indefinite two-fold, 
to both sides of the governing equation, after being written in operator notation 
yields  

1
0 1, .u L Ru c c xφ φ−= − = +                   (16) 

So, on using 0 mmu u∞

=
=∑ , we rewrite the above equation as follows  

1
0 1

0 0
,m m

m m
u c c x L R u

∞ ∞
−

= =

= + −∑ ∑                   (17) 

where we can conveniently identify the recursive solution as follows  

( )
( )

0 0 1

1
1

,

, 0,k k

u x c c x

u x L Ru k

φ
−

+

 = = +


= − ≥
                  (18) 

where all the components are recursively determined. Thus, on making use of 
1
0

n
n mm u−

=
Ψ =∑ , one gets n-term approximation suitable for numerical simula-
tion. 

Furthermore, one could equally decompose the term φ  resulting from the 
initial conditions as follows  

0, 1,
0

,m m m
m

c xcφ φ
∞

=

= = +∑  

such that the recursive relation above becomes  

( )
( ) ( ) ( )

0 0,0 1,0

1
1 0, 1 1, 1

,

, 0.k kk k

u x c xc

u x c xc L Ru k−
+ + +

 = +


= + − ≥
             (19) 

This last development would no doubt ease the computational integration 
process; having further sub-decomposed the first component, as asserted in [11] 
with the initial data ( )0 0c u=  and ( )1 0c u′= . Additionally, one would equally 
apply this procedure to boundary-value situations such that a constant of inte-
gration is added to satisfy the conditions for nφ ; nonlinear ODEs could in the 
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same fashion be solved iteratively using the same procedure. 

3.3. Algorithm 2 

Here, we consider yet another algorithm based on the modification by Dita and 
Grama [12] to ODEs. To present the method, let us make consideration to the 
following generalized second-order linear ODE  

( ) ( ) ( )2, , , , 0,L x D u x R x u Du D u− =                (20) 

where ( ),L x D  is the principal part, with d
d

D
x

= , R denotes the reminder 

t h a t  
is not included in ( ),L x D ; while the negative sign “−” in the equation is consi-
dered for handiness. Additionally, the principal part has the following format  

( ) ( ) ( ), ,L x D h x Dp x D=                    (21) 

where both ( )h x  and ( )p x  are considered to be smooth functions of x. Re-
member also that, the biggest target here is to suitably devise a way of making an 
optimal choice for R and L in such a way that the resultant pseudo-Volterra 
integral equation would be solved so easily. 

Now, since tackling Equation (20) is complicated, we, therefore, resort to re- 
expressing the equation as a usual nonhomogeneous equation and thereafter 
make use of a modification of the famous variation of parameters method to ob-
tain its corresponding pseudo-Volterra integral equation. Equally, we can con-
structively determine an inverse to Equation (21) and be utilized. Thus, without 
much delay, a proper inversion for Equation (20) is chosen in the following form  

( ) ( ) ( ) ( ) ( )1
0 0

d d, ,
x tt yL x D u x u y

p t h y
− = ∫ ∫                (22) 

where one could easily note that  

( ) ( ) ( ) ( ) ( ) ( )1 1, but , identity operator.LL u x I u x L L u x I u x I− −= ⋅ ≠ ⋅ ≡  

Apparently, it is inferred from the second relation that the inverse operator 
1L−  is truly not an inverse operator. However, upon considering initial condi-

tions, say ( )0u  and ( )0u′ , it is so. In fact,  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
0 0

0 0 0
0

0

dd d d
d d

dd d d0 0
d d

d0 0 0 .

x t

t
x x x

x

u yt yL L u x h y p y
p t h y y y

u tt u tp y p u
p t y t p t

tu x u p u
p t

− =

  ′= = − 
 

′= − −

∫ ∫

∫ ∫ ∫

∫

 

Thus, we obtain the following Volterra integral equation from Equation (22)  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

d d d0 0 0 , ,
x x tt t yu x u p u R y Du

p t p t h y
′= + +∫ ∫ ∫       (23) 
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where its solution is sought to be of the following infinite series form 

( ) ( )
0

,n
n

u x u x
∞

=

= ∑  

such that the recursive relation takes the following form 

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

10 0

d0 0 0 ,

d d , .

x

x t
k k

tu u p u
p t

y tu R y Du
p t h y −

 ′= +


 =


∫

∫ ∫
               (24) 

What’s more, the components ( )ku x  in the above scheme are determined 
recursively via the application of the Picard successive approximation, that is,  

( )1
1, .k ku L x D u−
−=  

3.4. Algorithm 3 

Let us consider a more general second-order linear ODE of the form [12]  

( ) ( ) ( ).u a x u b x u h x′′ ′+ + =                   (25) 

Thus, assuming a solution ( ) 0xϕ ≠  to the associated homogeneous equa-
tion, we further make use of a modification of variation of parameters method to 
acquire the solution Equation (25) as follows  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2
d d d ,x xu x C x C x x E x x h x x

E x x E x x
ϕ ϕ ϕ ϕ

ϕ ϕ
= + +∫ ∫ ∫

(26) 

where jC , for 1,2j =  are constants, and ( ) ( )de a x xE x ∫= . 
Moreover, the inverse operator 1L−  in the above equation is an indefinite 

integral, which has to be transformed to a definite one based on the solution we 
are aiming for. So, considering Equation (26) as the starting point for the deriva-
tion of this modification method, let us make use of Equation (25) to transform 
the governing linear homogeneous equation into a pseudo-Volterra integral eq-
uation. By this, we separate a suitable part in the left-hand side of Equation (25) 
in such a way that the resulting solution is obtainable. Of course, the separation 
process takes into concern the behaviour of the solution in the neighborhood of 
the point where the solution is sought, in order to increase the possibilities of 
obtaining the full series in explicit form. Therefore, the easiest separation is 
through shifting the term ( ) ( )b x u x  on the right-hand side of the equation, 
which warrants the solution of the left-side alone to be ( ) 1u x = . 

Besides, Equation (26) denotes the starting point for the acquisition of the ge-
neralized decomposition approach. In fact, once could recover the Adomian’s 
form by assuming ( ) ( ) 0a x b x= =  in Equation (25). Consequently, if ( ) 1xϕ =  
and ( ) 1E x = , a regular solution in the neighborhood of 0x =  from Equation 
(26) takes the following form  

( ) ( )1 2 0 0
d d ,

x x
u x C C x x h x x= + + ∫ ∫                (27) 
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of which by identification 

( ) ( )1 20 , 0 .C u C u′= =                    (28) 

4. Applications 

The current section demonstrates the application of the approaches given ear-
lier to study different variants of Chebyshev’s differential equations. These ap-
proaches which are based on the ADM, are reliable as can rightly be seen in what 
follows.  

Example 4.1. Let us consider an IVP featuring Chebyshev’s differential equa-
tion as follows  

1) Case 1: 1n =  

( )
( ) ( )

21 0, 1 1,

0 0, 0 1.

x u xu u x

u u

′′ ′− − + = − < <

′= =
               (29) 

Standard ADM 
Therefore, we re-express the governing differential equation using operator 

notation as follows  
2 ,Lu x u xu u′′ ′= + −                      (30) 

and further apply the inverse operator 1L−  to the both sides of the latter equa-
tion to obtain  

1 2 .u x L x u xu u−  ′′ ′= + + −   

Hence, the application of the standard ADM gives the general recursive rela-
tion for the model as follows  

( )
( )

0

1 2
1

,

0, 0,k k k k

u x x

u x L x u xu u k−
+

=

 ′′ ′= + − = ≥ 
 

which gives upon summing the above iterates the following exact solution  

( ) .u x x=                           (31) 

In fact, this is a well-known exact analytical solution for the Chebyshev’s dif-
ferential equation when 1n = . 

Algorithm 1 
Also, based on this algorithm, we rewrite the governing model using operator 

notation as follows  

[ ]2
1 ,

1
Lu xu u

x
′= −

−
                     (32) 

such that after applying the inverse operator 1L−  to both sides of the above eq-
uation gives  

[ ]1
2

1 .
1

u x L xu u
x

− ′= + −
−

 

Thus, making use of the Taylor’s expansion on 2
1

1 x−
 to obtain  
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3
2 2 4 6

2
0

1 1 ,
1

m

m
x x x x

x =

= = + + +
− ∑  

we then proceed to write the resulting recursive relation of the governing model 
as follows 

( ) ( )[ ]
0

1 2 4 6
1

,

1 0, 0,k k k

u x

u x L x x x xu u k−
+

=

′= + + + − = ≥
 

which obviously sums to similar exact solution as in above as follows  

( ) .u x x=  

2) Case 2: 2n =  

( )
( ) ( )

21 4 0, 1 1,

0 1, 0 0.

x u xu u x

u u

′′ ′− − + = − < <

′= − =
               (33) 

Standard ADM  
In an operator notation, the governing differential equation is re-expressed as 

follows  
2 4 ,Lu x u xu u ′′ ′= + −                      (34) 

such that after applying the inverse operator 1L−  to both sides of the above eq-
uation yields  

1 21 4 .u L x u xu u−  ′′ ′= − + + −   

In the same fashion as in the preceding problem, the following recursive rela-
tion is thus obtained  

( )
( )
( )
( )

0

1 2 2
1 0 0 0

1 2
2 1 1 1

1 2
1

1,

4 2 ,

4 0,

4 0, 2,k k k k

u x

u x L x u xu u x

u x L x u xu u

u x L x u xu u k

−

−

−
+

= −

 ′′ ′= + − = 
 ′′ ′= + − = 
 ′′ ′= + − = ≥ 

 

which leads to the following exact solution  

( ) 21 2 .u x x= − +                       (35) 

Notably, the exact solution obtained above is a well-known exact analytical 
solution for the Chebyshev’s differential equation when 2n = . In the same fa-
shion, various exact solutions of the Chebyshev’s differential equations could be 
obtained upon choosing different values of n.  

Algorithm 1  
This approach requires the model to be written in the following operator no-

tational form  

[ ]2
1 4 .

1
Lu xu u

x
′= −

−
                     (36) 

More, with the application of the inverse operator 1L−  on both sides of the 
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above equation, one gets  

[ ]1
2

11 4 ,
1

u L xu u
x

− ′= − + −
−

 

which subsequently leads to the following final recursive relation 

( ) ( )[ ]

( ) ( )[ ]

( ) ( )[ ]

( ) ( )[ ]

0

1 2 4 6 2 4 6 8
1 0 0

1 2 4 6 4 6 8 10
2 1 1

1 2 4 6 8 10
3 2 2

1 2 4 6 10
4 3 3

1,
1 2 11 4 2 ,
3 15 14

1 2 1 1811 4
3 15 15 4725

1 41 4
210 675

11 4
4725

u

u x L x x x xu u x x x x

u x L x x x xu u x x x x

u x L x x x xu u x x

u x L x x x xu u x

−

−

−

−

= −

′= + + + − = + + +

′= + + + − = − − − − +

′= + + + − = − − +

′= + + + − = − +









 

and leading to the following series solution  

( ) ( )
6

2 10

0

21 2 ,
45k

k
u x u x x x

=

= = − + − +∑                (37) 

where the exact solution of Chebyshev’s equation for 2n =  is ( ) 2
2 1 2T x x= − + . 

Thus, we report the absolute error difference between the exact and the obtained 
approximate solution of ( )u x  in Table 1. 
 
Table 1. Absolute errors of Chebyshev’s equation for 2n = . 

x Exact Solution Error 

−1 1 5.06530 × 10−2 

−0.75 1.250 × 10−1 2.61351 × 10−3 

−0.50 −5.00 × 10−1 4.4014 × 10−5 

−0.25 −8.750 × 10−1 4.2000 × 10−8 

0 −1 0 

0.25 −8.750 × 10−1 4.2000 × 10−8 

0.50 −5.00 × 10−1 4.4014 × 10−5 

0.75 1.250 × 10−1 2.61351 × 10−3 

1 1 5.06530 × 10−2 

 
Remark: In the same way, we compute the cases when 3, 4n n= = , and 5n =  

and reported the results in Table 2 using the following initial conditions:  

( ) ( )
( ) ( )
( ) ( )

3: 0 0, 0 3;

4 : 0 1, 0 0;

5 : 0 0, 0 5.

n u u

n u u

n u u

′= = = −

′= = =

′= = =

 

Remarkably, the application of the present algorithm on the solution of Che-
byshev’s equation reveals that the error increases as the value of n increases. 
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Table 2. Absolute errors of Chebyshev’s equation for 3n = , 4n = , and 5n = . 

x 3n =  4n =  5n =  

−1 2.26477 × 10−1 5.25333 × 10−1 8.68388 × 10−1 

−0.75 9.32890 × 10−3 1.29600 × 10−2 3.69511 × 10−3 

−0.50 1.06956 × 10−4 5.13800 × 10−6 2.72306 × 10−4 

−0.25 5.2000 × 10−8 1.2600 × 10−7 2.2800 × 10−7 

0 0 0 0 

0.25 5.2000 × 10−8 1.2600 × 10−7 2.2800 × 10−7 

0.50 1.06956 × 10−4 5.13800 × 10−6 2.72306 × 10−4 

0.75 9.32890 × 10−3 1.29600 × 10−2 3.69511 × 10−3 

1 2.26477 × 10−1 5.25333 × 10−1 8.68388 × 10−1 

 
Example 4.2. Let us consider the following form of Chebyshev’s differential 

equation  

( )2 2 2d1 1 .
d

x x u n u
x

′− − = −                   (38) 

Algorithm 2 will be considered for the solution of this form of Chebyshev’s 
equation, with  

( ) ( ) 21 .h x p x x= = −  

1) Case 1: 1n =   
Consider the following IVP  

( )
( ) ( )

2 2d1 1 ,
d

0 0, 0 1.

x x u u
x

u u

′− − = −

′= =
                   (39) 

Decomposing the solution ( )u x  as usual, and further make use of the form 

of Equation (23) by setting the Taylor’s expansion of 
2

1

1 x−
 as  

2 4 6

2

1 1 3 51 .
2 8 161

x x x
x

= + + +
−

 

We, therefore, get via the algorithm the following  

( ) ( ) ( ) ( )
2 4 6

0 0 0

d 1 3 50 0 0 1 d
2 8 16

x xtu u p u t t t t
p t

 ′= + = + + + 
 ∫ ∫  

( )

( )

1
1

2 4 6 2 4 6
0 0

, 0

1 3 5 1 3 51 1 d d .
2 8 16 2 8 16

k k

x x
k

u L u x k

x x x x x x u x x x

−
+  = − ≥ 

     = + + + + + + −        ∫ ∫
 

That is, 
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( )

( )

( )

( )

3 5 7
0

1 3 5 7 9 11
1 0

1 5 7 9 11
2 1

1 7 9 11
3 2

1
4 3

1 3 5
6 40 112

1 1 37 3229 253
6 12 720 90720 22400
1 1 47 1571

120 144 8640 362880
1 1 19

5040 4320 86400
1

36288

u x x x x

u L u x x x x x x

u L u x x x x x

u L u x x x x

u L u x

−

−

−

−

= + + +

= − = − − − − − +  

= − = + + + +  

= − = − − − +  

= − =  







9 111
0 241920

x x+ +



 

and further leads to the following series solution  

( ) ( )
6

9 11 13

0

35 91 1561
1152 12672 658944k

k
u x u x x x x x

=

= = − − − +∑        (40) 

where the exact solution of Chebyshev’s equation for 1n =  is ( )1T x x=  as 
found in the above approach; the remaining terms could surely be noisy terms 
because of the method. Thus, we report the absolute error difference between the 
exact and the obtained approximate solution of ( )u x  in Table 3. 
 
Table 3. Absolute errors of Chebyshev’s equation for 1n = . 

x Exact Solution Error 

−1 −1 4.01942 × 10−2 

−0.75 −7.50 × 10−1 2.64684 × 10−3 

−0.50 −5.00 × 10−1 6.31518 × 10−5 

−0.25 −2.50 × 10−1 1.1760 × 10−7 

0 0 0 

0.25 2.50 × 10−1 1.1760 × 10−7 

0.50 5.00 × 10−1 6.31518 × 10−5 

0.75 7.50 × 10−1 2.64684 × 10−3 

1 1 4.01942 × 10−2 

 
2) Case 2: 2n =   
Consider the following IVP  

( )
( ) ( )

2 2d1 1 4 ,
d

0 1, 0 0.

x x u u
x

u u

′− − = −

′= − =
                    (41) 

In same manner, we make use of the Taylor’s expansion on 
2

1

1 x−
, and 

eventually via the algorithm arrive at the following recursive relation  
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( )

( )

1
1

2 4 6 2 4 6
0 0

4 , 0

1 3 5 1 3 51 1 4 d d ,
2 8 16 2 8 16

k k

x x
k

u L u x k

x x x x x x u x x x

−
+  = − ≥ 

     = + + + + + + −        ∫ ∫
 

such that  

( )

( )

( )

0

1 2 4 6 8 10
1 0

1 4 6 8 10
2 1

1 6 8 10
3 2

1
2 16 8 6894 2
3 45 35 16800

2 4 14 6564
3 9 45 2835

4 4 524
45 45 675

u

u L u x x x x x x

u L u x x x x x

u L u x x x x

−

−

−

= −

 = − = + + + + + 

 = − = − − − − + 

 = − = + + + 







 

( )

( )

1 8 10
4 3

1 10
5 4

2 84
315 945
44

14175

u L u x x x

u L u x x

−

−

 = − = − − + 

 = − = + 







 

which further leads to the following series solution  

( ) ( )
6

2 10

0

351 2
288k

k
u x u x x x

=

= = − + − +∑               (42) 

where the exact solution of Chebyshev’s equation for 2n =  is ( ) 2
2 1 2T x x= − +  

as found in the previous approach. Thus, we report the absolute error difference 
between the exact and the obtained approximate solution of ( )u x  in Table 4. 
 
Table 4. Absolute errors of Chebyshev’s equation for 2n = . 

x Exact Solution Error 

−1 1 1.57552 × 10−1 

−0.75 1.250 × 10−1 7.92654 × 10−3 

−0.50 −5.00 × 10−1 1.26296 × 10−4 

−0.25 −8.750 × 10−1 1.1760 × 10−7 

0 −1 0 

0.25 −8.750 × 10−1 1.1760 × 10−7 

0.50 −5.00 × 10−1 1.26296 × 10−4 

0.75 1.250 × 10−1 7.92654 × 10−3 

1 1 1.57552 × 10−1 

 
Remark: In the same way, we compute the cases when 3n = , 4n = , and 

5n =  as reported in Table 5 using the following initial conditions:  

( ) ( )
( ) ( )
( ) ( )

3: 0 0, 0 3;

4 : 0 1, 0 0;

5 : 0 0, 0 5.

n u u

n u u

n u u

′= = = −

′= = =

′= = =  

https://doi.org/10.4236/am.2023.148032


M. Al Mazmumy et al. 
 

 

DOI: 10.4236/am.2023.148032 525 Applied Mathematics 
 

Table 5. Absolute errors of Chebyshev’s equation for 3n = , 4n = , and 5n = . 

x 3n =  4n =  5n =  

−1 3.43074 × 10−1 4.86604 × 10−1 2.90097 × 10−2 

−0.75 9.86353 × 10−3 3.56384 × 10−3 1.09760 × 10−2 

−0.50 2.200 × 10−8 2.52976 × 10−4 3.17103 × 10−4 

−0.25 2.6470 × 10−7 4.1180 × 10−7 1.8300 × 10−7 

0 0 0 0 

0.25 2.6470 × 10−7 4.1180 × 10−7 1.8300 × 10−7 

0.50 2.200 × 10−8 2.52976 × 10−4 3.17103 × 10−4 

0.75 9.86353 × 10−3 3.56384 × 10−3 1.09760 × 10−2 

1 3.43074 × 10−1 4.86604 × 10−1 2.90097 × 10−2 

 
Example 4.3. Let us consider the Chebyshev’s differential equation expressed 

in the following form  
2

2 2
1 1 .nu u u u
x x x

′′ ′ ′′+ − =                      (43) 

Algorithm 3 will be considered for the solution of this form of Chebyshev’s 
equation. What’s more, we consider the right-hand side of the equation as a 
normal nonhomogeneous term, and further seek a solution of the corresponding 
homogeneous part on the left-hand side. Let us try to establish a more general 
procedure based on the present algorithm to tackle the governing equation. 
Firstly, we assume nxϕ+ =  and nxϕ −

− =  to be two solutions of the equation. 
Now, with the first solution nxϕ+ = , and let 1 1C =  and 2 0C = . We then 

seek a regular solution at 0x =  by considering the inverse operator 1L−  as a 
two-fold integration from 0 to x as in Equation (26). Thus, the procedure results 
in the following the Volterra integral equation  

( ) 2 1 1
20 0

1 d d .
x xn n n nu x x x x x u x x

x
− − +  ′′= +   ∫ ∫              (44) 

More so, solution of the above equation emerges by considering the zero- 
order approximation the nonhomogeneous term as follows  

0 ,nu x=  

and  

2 1 1
1 20 0

1 d d , 0.
x xn n n

k ku x x x u x x k
x

− − +
+

 ′′= ≥  ∫ ∫  

We, therefore, find the components as  

( )

( )( )

2 1 1 2
1 020 0

2 1 1 4
2 120 0

2 1 1 6
3 220 0

1 1d d ,
4

31 d d ,
32

4 51 d d ,
384

x xn n n n

x xn n n n

x xn n n n

u x x x u x x nx
x

n n
u x x x u x x x

x
n n n

u x x x u x x x
x

− − + −

− − + −

− − + −

 ′′= = −  
− ′′= =  
− − ′′= = −  

∫ ∫

∫ ∫

∫ ∫

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In this way, we get  

( ) ( ) ( )( )2 4 63 4 51
4 32 384

n n n nn n n n n
u x x x x x− − −− − −

= − + − +      (45) 

Also, from the second solution nxϕ −
− = , we let 1 0C =  and ( )2 2nC n= . 

Then, without lost of generality, we get the following integral equation  

( ) ( ) 2 1 2 1 1
20 0 0

12 d d d .
x x xn n n n n nu x n x x x x x x u x x

x
− − − − − +  ′′= +   ∫ ∫ ∫      (46) 

Therefore, iterative solution of the above equation is obtained recursively as in 
the preceding case as fallows  

( ) 2 1 1
0 0

2 d 2 ,
xn n n n nu n x x x x− − −= =∫  

and  

2 1 1
1 20 0

1 d d , 0,
x xn n n

k ku x x x u x x k
x

− − − +
+

 ′′= ≥  ∫ ∫  

where the components revealed explicitly are as follows  

( )

( )( )

( )( )( )

2 1 1 2
1 020 0

2 1 1 4
2 120 0

2 1 1 6
3 220 0

21 d d ,
8

3 21 d d ,
64

4 5 21 d d ,
768

n
x xn n n n

n
x xn n n n

n
x xn n n n

n
u x x x u x x x

x

n n
u x x x u x x x

x

n n n
u x x x u x x x

x

− − − + −

− − − + −

− − − + −

 ′′= = −  

− ′′= =  

− − ′′= = −  

∫ ∫

∫ ∫

∫ ∫


 

which leads to the series solution  

( )
( ) ( )( ) ( )( )( )1 2 4 6
2 3 2 4 5 2

2
8 64 768

n n n
n n n n n

n n n n n n
u x x x x x− − − −

− − −
= − + − +  

Thus, in what follows, we have made consideration to the cases of the go-
verning model for some specific values of n.  

1) Case 1: 1n =   
Let us consider the solutions to be of the following forms 1xϕ ±

± = . 
Now, for xϕ+ = . We prescribe 1 1C =  and 2 0C = . Therefore, without loss 

of generality, the following Volterra integral equation is acquired via the process  

( ) 3 2
20 0

1 d d .
x x

u x x x x x u x x
x

−  ′′= +   ∫ ∫                (47) 

which leads to the following iterative solution  

0 ,u x=  

and  

3 2
1 20 0

1 d d 0, 0,
x x

k ku x x x u x x k
x

−
+

 ′′= = ≥  ∫ ∫  

In fact, the series summation gives  
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( ) ,u x x=                           (48) 

which is the exact analytical solution of the Chebyshev equation for 1n = . 
In a similar way, we consider the solution 1xϕ −

− = , with 1 0C = , and 

2 2C = . Via the same process, the following integral equation is obtained  

( ) 1 1
20 0 0

12 d d d ,
x x x

u x x x x x x u x x
x

− −  ′′= +   ∫ ∫ ∫              (49) 

that solves to the following scheme  

1
0 0

2 d ,
x

u x x x x−= =∫  

and 

1
1 20 0

1 d d 0, 0,
x x

k ku x x u x x k
x

−
+

 ′′= = ≥  ∫ ∫  

which equally gives the same exact solution  

( ) .u x x=  

2) Case 2: 2n =  
Here, the solutions are considered as follows 2xϕ ±

± = . 
Now, for 2xϕ+ = , we prescribe 1 1C =  and 2 0C = . Therefore, without loss 

of generality, the following Volterra integral equation is acquired via the process  

( ) 2 2 5 3
20 0

1 d d ,
x x

u x x x x x u x x
x

−  ′′= +   ∫ ∫               (50) 

which leads to the following iterative solution  
2

0 ,u x=  

and  

2 5 3
1 20 0

1 d d , 0.
x x

k ku x x x u x x k
x

−
+

 ′′= ≥  ∫ ∫  

More explicitly, we get  
2

0

2 5 3
1 020 0

2 5 3
1 20 0

,
1 1d d ,

2
1 d d 0, 1.

x x

x x
k k

u x

u x x x u x x
x

u x x x u x x k
x

−

−
+

=

 ′′= = −  
 ′′= = ≥  

∫ ∫

∫ ∫

 

In this way we get  

( ) 2 1 ,
2

u x x= −                         (51) 

which is the exact solution of Chebyshev equation for 2n = . 
In a similar way, we consider the solution 2xϕ −

− = , with 1 0C = , and 2 8C = . 
Via the same process, the following integral equation is obtained  

( ) 2 3 2 3 1
20 0 0

18 d d d .
x x x

u x x x x x x x u x x
x

− − −  ′′= +   ∫ ∫ ∫            (52) 
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which leads to the following iterative solution  

2 3 2
0 0

8 d 2 ,
x

u x x x x−= =∫  

and 

2 3 1
1 20 0

1 d d , 0.
x x

k ku x x x u x x k
x

− −
+

 ′′= ≥  ∫ ∫  

More explicitly, we get 

2 3 2
0 0

2 3 1
1 020 0

2 3 1
1 20 0

8 d 2 ,

1 d d 1,

1 d d 0, 1.

x

x x

x x
k k

u x x x x

u x x x u x x
x

u x x x u x x k
x

−

− −

− −
+

= =

 ′′= = −  
 ′′= = ≥  

∫

∫ ∫

∫ ∫

 

Thus, upon summing the above iterates, it yields  

( ) 22 1,u x x= −  

which is the exact solution of Chebyshev equation for 2n = . 
3) Case 3: 3n =   
We consider the following forms of solutions are 3xϕ ±

± = . 
Then, for 3xϕ+ = , we prescribe 1 1C =  and 2 0C = . Also, without loss of 

generality, the following Volterra integral equation is acquired via the process  

( ) 3 3 7 4
20 0

1 d d .
x x

u x x x x x u x x
x

−  ′′= +   ∫ ∫                (53) 

which leads to the following iterative solution  
3

0 ,u x=  

and  

3 7 4
1 20 0

1 d d , 0.
x x

k ku x x x u x x k
x

−
+

 ′′= ≥  ∫ ∫  

That is,  
3

0

3 7 4
1 020 0

3 7 4
1 20 0

,
1 3d d ,

4
1 d d 0, 1.

x x

x x
k k

u x

u x x x u x x x
x

u x x x u x x k
x

−

−
+

=

 ′′= = −  
 ′′= = ≥  

∫ ∫

∫ ∫

 

Also, upon summing the above iterates, we get  

( ) 3 3 ,
4

u x x x= −                         (54) 

which is the exact analytical solution of Chebyshev equation for 3n = . 
In a similar pattern, we consider the other solution 3xϕ −

− = , with 1 0C = , 
and 2 24C = . Also, without further delay, we get following integral equation  
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( ) 3 5 3 5 2
20 0 0

124 d d d ,
x x x

u x x x x x x x u x x
x

− − −  ′′= +   ∫ ∫ ∫          (55) 

that solves iteratively to  
3 5 3

0 0
24 d 4 ,

x
u x x x x−= =∫  

and  

3 5 2
1 20 0

1 d d , 0.
x x

k ku x x x u x x k
x

− −
+

 ′′= ≥  ∫ ∫  

That is  
3 5 3

0 0

3 5 2
1 020 0

3 5 2
1 20 0

24 d 4 ,

1 d d 3 ,

1 d d 0, 1.

x

x x

x x
k k

u x x x x

u x x x u x x x
x

u x x x u x x k
x

−

− −

− −
+

= =

 ′′= = −  
 ′′= = ≥  

∫

∫ ∫

∫ ∫

 

Lastly, summation of the respective components yields  

( ) 34 3 ,u x x x= −  

which is the exact analytical solution for the Chebyshev equation when 3n = . 
In general one could obtain the exact solution of Chebyshev’s equation for any 
value of n following the same procedure. 

5. Conclusion 

As a closing remark, the Adomian decomposition method and its modifications 
were successfully employed in the current study to examine the important class 
of Chebyshev’s differential equations. These methods have been shown to reveal 
exact analytical solutions of the governing models in most cases; while minimal 
noisy error terms have been observed in a particular modification. Above all, 
these modification methods have rightly affirmed the exactness of the available 
results in the literature. Besides, the application of the presented sets of modifi-
cation methods could be extended to examine various singular and nonsingular 
higher-order differential equations, as approximate exact solutions are rapidly 
attained with less computation stress. 
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