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Abstract 
Two cubical 3D electric circuits with single and double capacitors and twelve 
ohmic resistors are considered. The resistors are the sides of the cube. The 
circuit is fed with a single internal emf. The charge on the capacitor(s) and 
the current distributions of all twelve sides of the circuit(s) vs. time are eva-
luated. The analysis requires solving twelve differential-algebraic intertwined 
symbolic equations. This is accomplished by applying a Computer Algebra 
System (CAS), specifically Mathematica. The needed codes are included. For 
a set of values assigned to the elements, the numeric results are depicted. 
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1. Introduction 

The motivation for considering this project stems from our previous work [1]. 
In short [1], the issues of interest for an electric circuit composed of twelve oh-
mic resistors forming the sides of a 3D cube are addressed. For instance, 1) all 
seven equivalent resistors of the circuit symbolically were identified and 2) for a 
chosen set of numeric values assigned to the resistors, the current distributions 
were graphed. A point of clarification: the considered circuit(s) is an actual 
three-dimensional structure and does not need to be confused vs. a 3D repre-
sentation of a 2D circuit customarily constructed with simulation programs e.g. 
(Lab Report) [2]. The current project in addition to including the twelve resis-
tors embodies one, two, and potentially more capacitors, and the driver instead 
of being an external is an internal DC emf. The analysis paves the research road 
generalizing the issues by including numerous emfs with desired polarities. The 
former scenario [1] ought to be considered the simplest 3D circuit with its chal-
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lenges. Irrespective of the detailed specifics of the case on hand, the solutions 
hinge heavily on the employment of a Computer Algebra System (CAS), namely 
Mathematica. To focus on the issue at hand see Figure 1. 

This report embodies four sections. In addition to Section 1, Introduction, in 
Section 2, the needed equations conducive to charge and current distributions in 
all twelve sides of the cube are identified. Section 3 deals with the second 3D 
circuit leading to the identification of the currents. Section 4 is the Conclusion 
and Discussions embodying suggestions for generalizations. 

Noting again the circuit depicted in Figure 1 is an actual 3D structure, i.e. the 
design of the shown circuit deviates from the norm; this is not a 3D profile of a 
2D circuit. A literature search [2] reveals the shown design is a fresh creation 
and is not addressed yet. The mentioned reference has a module converting a 2D 
circuit into 3D, this is not the intent of the project in hand. Comparing to [1], 
one realizes there are three major differences: 1) there is no outside feeder cur-
rent, so the issue of the equivalent resistor, Req, is irrelevant, and that 2) an internal 
emf drives the circuit and 3) the circuit embodies a capacitor. As one may im-
agine, even the shown design with the embodied elements may be restructured 
by rearranging the elements e.g. by separating the capacitor from the emf and 
then inserting them separately on the different sides. This would change the 
character of the circuit, namely would change the current distributions, etc. In 
other words, since we may not consider all these interesting scenarios in one re-
port, we rather focus only on one. However, our analysis provides clues for gene-
ralizations. 

Nonetheless, the analysis hinges on applications of limited principles. These 
are Kirchhoff’s laws, specifically, the nodal and loop laws. Paraphrasing the laws, 
they state: the node law, the algebraic sum of the currents at any node is null. 
And the loop law indicates in a closed circuit, the algebraic sum of the emfs equals 
the algebraic ohmic voltage drops across the resistors [3]. 

Although on the face, the mentioned laws should solve the issues on hand, 
namely the identification of the currents and charge on the capacitor, because 
the charge on the capacitor and the capacitor’s feeder current differential-wise 
related to the set of governing equations instead of being coupled algebraic equ-
ations are differential-algebraic equations. The issue becomes more complicated 
because as shown in Figure 1, the eight nodes of the cube and all twelve currents 
are intertwined. The symbolic solution to the problem poses a mathematical chal-
lenge. That is why the solution calls for the deployment of a CAS. This is ad-
dressed in the next section. 

With this introduction we processed, first, by applying Kirchhoff’s laws, we 
form the needed equations. For the mentioned reasons, since there are eight cor-
ners and twelve sides to the cube, we foresee twelve coupled equations. However, 
because the master capacitor’s equation is q = (ΔV) C with q being the charge 
on the capacitor, ΔV, the voltage across the cap, and because the diver current is 
related to the charge via i = dq/dt, the nodal law leads to differential equa-
tions. In short, the twelve equations become differential-algebraic intertwined  
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Figure 1. A 3D cubic electric circuit embodies one emf, 
one capacitor, and twelve ohmic resistors. 

 
equations. We solve the equations by applying Mathematica [4]. The solutions 
are symbolic and for a set of assigned numeric values, the results are depicted 
graphically. 

2. Applied Kirchhoff’s Laws 

All the resistors and associated currents are labeled as shown in Figure 1. The 
side AB  includes a single emf,  , a capacitor, C and a resistor, R. Because of 
the character of the capacitor that deals with the charge rather than the current 
Kirchhoff’s node law ought to be reformatted by underlying the conservation of 
charge rather than the currents at the nodes. Therefore, the nodal law for the cir-
cuit on hand applies not to the conservation of current but rather to the conser-
vation of charge. These are embodied in (1). 
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Applied Kirchhoff’s Laws to Circuit Shown in Figure 3 

By the same token, the applied loop law results in the set of Equation (2). 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 10 10 5 5 9 9
1

3 3 11 11 7 7 12 12

2 2 11 11 6 6 10 10

4 4 12 12 8 8 9 9

1 1 1 2 2 3 3 4 4
1

19 0

10 0

11 0

12 0
113 0

eq R q t q t R q t R q t R q t
c

eq R q t R q t R q t R q t

eq R q t R q t R q t R q t

eq R q t R q t R q t R q t

eq R q t q t R q t R q t R q t
C

′ ′ ′ ′= − − − + + =

′ ′ ′ ′= + − − =

′ ′ ′ ′= + − − =

′ ′ ′ ′= + − − =

′ ′ ′ ′−



= − − + + =
















      (2) 

https://doi.org/10.4236/ajcm.2023.133021


H. Sarafian 
 

 

DOI: 10.4236/ajcm.2023.133021 382 American Journal of Computational Mathematics 
 

In (2), primes mean derivative w/time. 
The set of Equations (1) and (2) contains twelve coupled differential-algebraic 

equations. Solving these equations for the unknowns qn[t] with the initial condi-
tions qn[t = 0] = 0 and the chosen values of Rn for 1,2, ,12n =   yield qn[t] and 
the associated currents in[t]. 

Applying Mathematica DSolve, we solve the equations symbolically. The 
output fills pages leading to no insight. On the other hand, we select a set of nu-
meric values for the emf, capacitor, and resistors. For the case of twelve identical 
resistors, and {  , c, R} = {10. V, 1.0 F, 1.0 Ω}, noting c1 = c, and by applying 
NDSolve the deduced numeric solutions are displayed in twelve plates in Figure 
2. 

solqE-
qualR=NDSolve[{eq1,eq2,eq3,eq4,eq5,eq6,eq8,eq9,eq10,eq11,eq12,eq13,q1[0]==0
,q2[0]==0,q3[0]==0,q4[0]==0,q5[0]==0,q6[0]==0,q7[0]==0,q8[0],q9[0]==0,q10[0]=
=0,q11[0]==0,q12[0]==0}/.{R1->R,R2->R,R3->R,R4->R,R5->R,R6->R,R7->R,R8->R,
R9->R,R10->R,R11->R,R12->R}/.{ϵ->10.,c->1.,R->1.0},{q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q
11,q12},{t,0,10}]                                                    (3) 

As shown the capacitor is being charged and the feeder current, the red curve 
exponentially fades away as expected. This is expected and is referred to as the 
“gold standard”. 

Each plate in Figure 2 contains two curves, a blue and a red. The blue curves 
are the time-dependent charge, and the red curves are their slopes, i.e. the cur-
rents. For instance, the first plate confirms the accuracy of the solution, i.e. this 
represents the “gold standard” of a charging RC-series circuit. The charge ac-
cumulates gradually and the feeder current fades out. The feature is true for all 
the twelve sides, although the “sign” of the charge and the direction of the cur-
rent in some cases, e.g. Plate 3, is opposite of Plate 1. Meaning in an actual cir-
cuit current runs in the opposite direction. The character of the shown curves in 
Figure 2 does make physics sense although without providing our results they 
would not have been predictable. Note also each frame shows all the currents 
fade as expected. 

There are general variations to the presented analysis. 1) With the above- men-
tioned code we may simulate: a) for any desired set of chosen non-identical re-
sistors and b) for any chosen value of the capacitor. The former is completed but 
not included in this report. 2) The RC may be inserted in any one of the sides of 
the circuit. This will change the characters in all twelve plates in Figure 2, ex-
pecting no extraordinary surprises. 3) The three elements in the AB side, name-
ly,  , R, and C may be separated, and each element may be inserted on different 
sides of the cube! …there are many possibilities. As a potential research project, 
the author wishes to leave the investigation to the interest of the reader. To in-
vestigate the latter, one may tweak the given (1), (2) and code (3) expecting no 
major code alterations to produce results. 

Another topic of interest: the individual who is reading this report and is fa-
miliar with the “gold standard” of the RC circuit maybe interested in asking  
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Figure 2. The charge and their associated currents in all 12 sides of the cube in Figure 1. 

 
about the “effective” resistance of the resistor in the RC circuit of the AB side in 
Figure 1! Although all the twelve resistors are set to unity, R = 1.0 Ω the value of 
that resistor in the RC cannot be 1.0 Ω. This is because the other eleven resistors 
through the cubic network alter its value. To find its effective value we use the 
red colored current in Plate 1 in Figure 2. The abscissa of the intersection of a 
horizontal line with the ordinate of the 1/eth value of the maximum current is 
2.67 s. Because this condition requires t/RC = 1 for C = 1.0 F this yields R = 2.67 
Ω. In other words, a cube composed of 12 identical 1.0 Ω resistors makes the re-
sistor that is in series with the 1.0 F capacitor 2.67 Ω. 

3. An Alternate 3D Circuit Design 

Motivated with the progress made in Section 2, we designed a circuit shown in 
Figure 3. 

As shown this circuit is different from the one shown in Figure 1. This one 
includes two capacitors inserted on two different sides of the cube. Notice, there 
is no specific reason for our choice, the second capacitor may be interested in 
any of the eleven sides. Here we report the result of the shown configuration. An 
interested reader may exercise I to place the second capacitor in any of the ele-
ven sides II to insert non-equal resistors and capacitors and III to insert more 
than one capacitor in the sides of the cube. In other words, many cases yield to 
different scenarios. Here we report our findings for the circuit shown in Figure 3.  
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Figure 3. A 3D cubic circuit with two capacitors and twelve 
resistors. 

 

 
Figure 4. The charge and their associated currents in all 12 sides of the cube in Figure 3. 

 
To so doing, we replace eq12 of (2) with eq12 of (4). The mentioned replacement 
with (1) and modified (2) leads to the needed equations. The solutions, q(t), and 
the associated currents, i(t) = dq(t)/dt, noticing c8 = c1 = c = 1.0 F, yield the de-
picted plates in Figure 3. 

( ) ( ) ( ) ( ) ( )4 4 12 12 8 8 8 9 9
8

112 0eq R q t R q t q t R q t R q t
C

′ ′ ′ ′= + − − − =        (4) 

One notices the characters of the charges and the currents in Figure 2 and Fig-
ure 4 are different. The time of the latter is extended to 20 s revealing the asymp-
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tote feature. Despite their differences, they share a common feature, all the cur-
rents as expected over time plunge to zero as they should. Among all twelve 
cases, plates #6 and #8 are the peculiar ones. Especially, plate #8 shows the capa-
citor c8 starts uncharged after going through charging it loses the accumulated 
charge ending up with a discharged status. During this process, since there is 
more than one feeder current at the end of the shown time, the overall current 
vanishes. 

4. Conclusion and Comments 

The motivation for crafting this report stems from thinking about the electric 
circuits that are different from what is in the literature. We designed a variety 
of circuits and suggested variations conducive to potential generalization. All 
these are different from the traditional 2D circuits. In our previous work [1], 
we considered a cubic circuit with “only” twelve resistors driven by an exte-
rior source. Here, in this report, we considered an actual 3D cubic structure 
circuit with twelve resistors embodying one and then two capacitors driven by 
an internal power supply. For the latter, we discovered previously not reported 
current distributions. As an extension, one may consider a similar but gene-
ralized circuit by including ten more capacitors tailed to each of the resistors 
in Figure 3. The analysis becomes more challenging but doable. The current 
report and its potential suggested generalization add to the body of knowledge. 
For Mathematica codes, the interested reader would find [5] [6] [7] resource-
ful. 
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