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Abstract 
This paper studies the effect of breaking single-class building data into multi- 
class building data for semantic segmentation under end-to-end architecture 
such as UNet, UNet++, DeepLabV3, and DeepLabv3+. Although, the already 
existing semantic segmentation methods for building detection work on the 
imagery of developed world, where the buildings are highly structured and 
there is a clearly distinguishable space present between the building instances, 
the same methods do not work as effectively on the developing world where 
there is often no clear differentiable spaces between instances of building thus 
reducing the number of detected instances. Hence as a noble approach, we 
have added building contours as new class along with building segmentation 
data, and detected the building contours and the inner building regions, 
hence giving the precise number of buildings existing in the input imagery 
especially in the convoluted areas where the boundary between the buildings 
are often hard to determine even for human eyes. Breaking down the building 
data into multi-class data increased the building detection precision and re-
call. This is useful in building detection where building instances are convo-
luted and are difficult for bare instance segmentation to detect all the instances. 
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1. Introduction 

Remote sensing images have a wide range of applications, including monitoring 
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and counting wild-life [1], detecting and classifying vegetation from grasslands 
and heavily forested areas [2], mining land cover classification [3], flood extent 
mapping [4], and multi-feature building extraction in urban area [5]. Most of 
the applications are based on high-resolution images which can be used for the 
pixel-level classification known as semantic classification [6] [7] [8]. The higher 
resolution Unmanned Aerial Vehicle (UAV) images can create better semanti-
cally segmented images [9] which help to understand the contents in the given 
images. Despite the higher resolution, it lacks spectral information of ground 
objects which is inherently available in satellite imagery, and thus possesses dif-
ficulty in segmentation [10]. 

The deep learning methodologies have been studied extensively in remote 
sensing [11]. With the rise of Deep Convolution Neural Networks (DCNN), they 
have been widely used in object detection and segmentation [10]. Architecture 
like UNet, based on DCNN, can be used to extract spatial features of required 
regions. The building region detection can also be treated as a feature detection 
problem where we can extract the features of the buildings using a Convolution 
Neural Network (CNN) in encoder-decoder network architecture [10]. 

In order to tackle this problem, many deep learning architectures [12] [13] 
extract the building’s mask from the given satellite imagery. The building extrac-
tion can also be treated as an instance segmentation [14] problem where the 
building localization follows the segmentation. However, this method is compu-
tationally intensive because it requires running each instance of the building de-
tection process every time. Furthermore, we can treat this problem as a seman-
tic segmentation problem [15], but this gives us a very vague representation of 
building count. Especially in convoluted buildings, the identification of individ-
ual buildings is cumbersome. On top of that, the detected buildings lack a clear 
boundary between the buildings. While the existing methodologies [16] [17] for 
building segmentation work well in developed countries, where buildings are 
typically well-defined and distinct, they may not be suitable for developing 
countries where buildings are often disorganized and complex, making it diffi-
cult even for humans to differentiate. This possesses challenges when automat-
ing building segmentation using semantic segmentation for humanitarian aid, 
population estimation, or urban density calculations. 

Existing methodologies have treated building detection as a binary classifica-
tion problem between building inner segments and the background [18]. Since 
buildings have a clear boundary between the inner and the outer regions, we can 
treat it as a multi-class classification problem where the boundary of a building, 
inner regions, and background can be treated as different classes on their own. 
This converts the existing binary segmentation problem into multi-class seg-
mentation. It can be applied to all existing datasets with minor modifications. 
The use of edge detection can help to separate a merged building into separate 
buildings. 

Treating the building segmentation as multi-class segmentation, we increased 
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the building count while preserving the inner building segmentation regions. 
The erosion process in OpenCV [19] is applied to the building mask, resulting in 
the creation of inner regions. The new class for the multiclass dataset is defined 
by taking the difference between the original building mask and these inner re-
gions. Further, we can use the existing model architecture, which does not sig-
nificantly increase computation complexities. Moreover, the features regarding 
the building exterior are also already learned during the binary segmentation so, 
it does not pose any problem with the network convergence instead it converges 
faster to similar precision and recall metrics. 

In summary, we experimented with multiple architectures with joint contour 
and structure learning. Our experiment showed a clear efficiency in building de-
tection on often complex and convoluted areas, increasing the precision and re-
call on datasets such as Opencities [20] and Inria building dataset [21] along 
with our own dataset. The rest of the paper is organized as follows: Section 2 
summarizes the previous work on building detection. Section 3 describes the 
proposed method, while Section 4 provides implementation details. In Section 5, 
experimental results are presented, followed by Section 6, 7, and 8, which in-
clude discussions, challenges, and conclusions, respectively. 

2. Literature Review 

Building segmentation from satellite imagery has been rigorously studied over 
the decade [9] [10] [18]. The abundance of data has led to the use of numerous 
machine-learning methods for building detection [12] [13]. The majority of 
the building detection techniques can be classified into either classical or deep 
learning approaches. While visually identifying various simple and complex 
building patterns may be easy, classifying buildings in remote sensing based on 
their diverse patterns and styles proves to be challenging for classical machine 
learning algorithms. Traditional remote sensing image processing methods like 
Support Vector Machine (SVM) do not perform well on UAV images, as they 
require a training sample from the multiple variations of building datasets 
[22]. Also, the building is extracted from high-resolution images using Norma-
lized Difference Vegetation Index (NDVI) indices [23] or even further custom 
indices like Morphological Building indices (MBI) have been developed [24]. 
Such methods are prone to errors due to variations in the building’s characters 
and properties. Buildings extractions from the top-view have also been evaluated 
to be prone to building complexities [25]. The building segmentation from 
high-resolution images is also done based on the binary mathematical morphol-
ogy (MM) operator [26]. Furthermore, direct building extraction by ensembling 
models trained on multi-spectral images, OpenStreetMap (OSM) dataset, and 
the RGB images have also been experimented with [27]. The building can be 
extracted by combining results from two models trained on high-resolution sa-
tellite imagery and Digital Surface Model (DSM) data from the LIDAR dataset 
[28]. 
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The use of convolution neural networks has created state-of-the-art results on 
object identification, classification, and segmentation [29]. Deep learning archi-
tecture like Mask RCNN [30] is used for object detection and instance segmen-
tation which is based on region proposal while architecture like UNet [31] is 
used in semantic segmentation originally used in the small datasets of biomedi-
cal images. On the other hand, UNet can extract feature masks from an input 
image that is equal to the original image in spatial resolutions. Further, the fea-
tures extracted from the initial feature layers are also appended to the later layer 
preserving the information of predictions. Despite having fewer features, the 
UNet architecture consistently achieves state-of-the-art results in medical im-
agery segmentation [32]. For segmentation, medical images and satellite images, 
both have an issue of data deficiency [33] [34]. UNet has also been widely used 
in satellite imagery by many precursors. UNet architecture has been found to 
be beneficial in many competitions like Spacenet building detection where it 
achieved the leading score in the competition [35]. 

To enhance building detection and segmentation, the authors employed mul-
tiple UNet architectures and incorporated an attention layer to generate the final 
mask [36]. Here, the instance segmentation of the building is done using a mul-
tiple UNet where each model learns building contours, building regions, and 
background which is mixed later on. MAP-Net has been used for building seg-
mentation [37] where the author tried to learn both features like building edges 
and the inner building regions from the same image. 

3. Proposed Method 
3.1. Model Architecture 

We divided the ground truth into single-class and multi-class building datasets, 
effectively increasing the number of classes. In order to create a multi-class da-
taset from the single-class dataset, we applied an erosion operation to the build-
ing mask using a 15 × 15 pixel kernel as specified by Equation (1). This process 
generated eroded regions, which were assigned as a new building class, while the 
disparity between the inner building and the original mask was designated as 
another new class. Subsequently, we divided the region into three distinct 
classes: background, building edges, and inner building regions. This allows the 
segmentation architecture to learn edge information separately, thereby increas-
ing the count of identified buildings. The following equation shows the erosion 
operation [19] 

( )
( ) ( )

( )
, : , 0

, min ,
x y element x y

dst x y src x x y y
′ ′ ′ ′ ≠

′ ′= + +              (1) 

To validate our methods, we experimented with UNet [31], UNet++ [38], 
DeepLabV3 [39], and DeepLabv3+ [40] architectures using efficientnet-b0 [41] 
as the encoder trained on imagenet datasets [42]. 

We used the UNet architecture as the baseline architecture for experimenta-
tion. The network architecture consists of an encoding network on the left and a  
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Figure 1. Overall system architecture: Multi-class segmentation. 

 
decoder network on the right side. The input image is convoluted using a 3 × 3 
convolution layer followed by ReLU and 2 × 2 max-pooling with stride 2 for 
downsampling. During upsampling, 2 × 2 up-convolution is used followed by 3 
× 3 convolution and ReLU. During concatenation, zero padding is used to match 
the size of the feature. To match the number of features, a 1 × 1 convolution 
layer is used. 

3.2. Loss Function and Evaluation Metrics 

We used dice loss [43] instead of Intersection over Union (IOU) [44] as the loss 
function, as it results in higher consistency between the predicted segmentation 
mask and the labels, without favoring common regions. The following is the 
formula for dice loss [43], 

1

1 1

ˆ2
1

ˆ
i

i i

N
i i

N N
i i

y y
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=

= =

∗
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+
∑
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                  (2) 

We employed cross-entropy loss [31] in addition to dice loss to detect differ-
ences between the predicted and original masks. The binary cross-entropy loss 
was utilized for binary segmentation, while the cross-entropy loss was used for 
multi-class segmentation. To assess the predicted results, we used the dice coef-
ficient [43] to measure the similarities among the building’s datasets. Addition-
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ally, the building mask was assessed using precision and recall [37] [45], which 
were computed based on the number of building counts in each image slice. 

( ) ( )ˆlog
K

k k

k
CrossEntropy y y= −∑                   (3) 

TotalLoss diceloss CrossEntropy= +                 (4) 

TPprecision
TP FP

=
+

                      (5) 

TPrecall
TP FN

=
+

                       (6) 

4. Implementation Details 
4.1. Training Pipeline 

We used an image size of 224 × 224 which we resized from the original image of 
1024 × 1024. A batch size of 8 was used for the 20 epochs with an initial learning 
rate of 0.001 which decreases by a factor of 10 at each 30% of epochs with SGD 
optimization. We used the threshold pixel of 100 pixel area in the image for the 
building size. 

Training Configurations, all the models use efficient-net-b0 as an encoder 
which is trained on Imagenet dataset [42]. We implemented the model using 
Python and PyTorch [46] for deep learning model architecture using two GPUs 
(NVIDIA RTX 3090), CPU (i9 10th gen), and RAM 32GB. 

We also implemented the model parallelism using the PyTorch data paral-
lelism [46] pipeline which enabled us to experiment with larger models and large 
batch sizes. Although it did not improve the training time, this allowed us to 
train larger models. During the training phase, the datasets were split into mul-
tiple GPUs and merged on each epoch. 

4.3. Datasets 

The experimentation of segmenting the building was carried out in the UAV 
imagery of Kathmandu, Nepal. The area covered by the dataset is sparsely popu-
lated with medium size houses. Along with it, there are tunnels that are used for 
farming in the regions. We also used the regional datasets from the Nima regions 
of Accra, Ghana [20] which has densely populated buildings. This region is 
represented by tier_1_source_acc_d41d81 in the open cities tier1 sample datasets. 
The building structures were arduous for humans to identify building instances 
due to limited space between building roof structures. Furthermore, to validate our 
methodology, we also utilized the Inria Aerial Image Labeling Dataset [21]. 

While datasets from Kathmandu regions have been sliced in the 850 × 850 px 
RGB images, the open cities datasets are sliced on 1024 × 1024 px RGB images, 
and inria aerial images are randomly cropped at 224 × 224 px since they were 
less magnified. This variation in image sizes and cropping methods ensured that 
the datasets were appropriately prepared for the building segmentation task in 
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different regions. The corresponding mask is created from each of these slices 
and the segmentation error produced while creating a raster image has been re-
duced to a minimum. Thus created samples are separated on the training and 
testing samples with 80% and 20% ratio and the validation size is taken as 20% 
of the training sample with all the images resized during training. 

4.4. Data Augmentation 

We used the Albumentation [47] library for dataset augmentation, which in-
volved rotation, brightness and contrast manipulation, and RGB shift opera-
tions. Augmentation increases the diversity of datasets thus improving the gene-
ralization capability of the model [48], leading to a better performance in build-
ing detection. The image was subjected to rotation with a 50% probability, while 
variations in brightness and contrast ranged from 0 to 20%. Additionally, hori-
zontal and vertical flips, as well as color shifts within the range of 0 to 20%, were 
performed with a 50% probability. 

4.5. Post Processing 

Once the image are predicted using the above pipeline, all the images are post- 
processed to remove any noisy building regions. We use binary thresholding and 
created the contour from the given segmentation mask using the marching square 
algorithm [49] using skimage [50] library. Then created contour is processed 
using Ramers Douglas Peuckar algorithm [51] which minimizes the number of 
points for the contour. The predicted contour is considered building if its pix-
elated area exceeds 100 pixels. This threshold is calculated from the smallest 
building contour area in the given dataset. Once the building cases are identified, 
we calculate the precision and recall only if they cover an area greater than the 
minimum building threshold and have an IOU score greater than 0.5. In all the 
following cases, building recall and building precision are calculated based on 
the number of buildings following the previous assumptions. 

5. Experiments & Results 

We trained UNet, UNet++, DeepLabV3, and DeepLabV3+ on datasets from re-
gions of Kathmandu, Opencities datasets [32], and Inria Aerial Image Labeling 
Dataset [46] individually with image resized to 224 using efficientnet-b0 as an 
encoder pre-trained on ImageNet for 20 epochs. All the models had plateaued 
building precision and building recall scores at 20 epochs. Data was grouped in-
to binary segmentation and multiclass classification which consists of back-
ground, building contour, and inner building segments. 

The segmentation results on the regions of Kathmandu, the Open Cities data-
sets and Inria building datasets are displayed in Figures 2-4 using four columns. 
There has been an increase in the number of buildings, and it is apparent that 
there is a distinct separation between building boundaries in the multi-class 
scenario compared to the single-class scenario. 
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Figure 2. Using UNet, Ground Image, Mask, Predicted mask in a single channel, Predicted mask with three channel on Kath-
mandu regions. 
 

Similarly, the evaluation metrics for the regions of Kathmandu, the Opencities 
datasets, and the Inria Aerial Image Labeling Dataset on different architectures 
are shown in Tables 1-3. The dice loss is computed by comparing the actual 
building pixels with the predicted building pixels. Building precision and Build-
ing Recall are determined by comparing the building count in the actual image 
with that in the predicted image. IOU and Accuracy are calculated based on pix-
el counts for comparison with existing results. 

In terms of building recall for multi-class segmentation, Unet++ demonstrated 
the best performance, achieving a recall rate of 72% on the Opencities dataset 

https://doi.org/10.4236/ars.2023.123004


S. Adhikari, V. P. Ojha 
 

 

DOI: 10.4236/ars.2023.123004 79 Advances in Remote Sensing 
 

 
Figure 3. Using UNet: Ground Image (first column), Ground Truth Mask (second column), Predicted mask in a single channel 
(third column), Predicted mask with three channel on Open Cities Dataset (last column). 
 

and 67% on the Inria dataset. On the other hand, UNet achieved a higher recall 
rate of 76% on the region of Kathmandu dataset. Notably, when transitioning 
from a single class to a multiclass setup, Deeplabv3+ exhibited the most signifi-
cant improvement in building recall, with an impressive increase of 20%. These 
findings highlight the effectiveness of different architectures in accurately iden-
tifying and segmenting buildings in various datasets. 

All model architectures achieved an average accuracy of 95% on both single 
and multiclass datasets, which is comparable to the existing leaderboards on the 
Inria Building dataset. Similarly, the IOU values obtained were also comparable. 
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Figure 4. Using UNet: Ground Image (first column), Ground Truth Mask (second column), Predicted mask in a single channel 
(third column), Predicted mask with three channels on Inria Building Dataset (last column) 

 
These results indicate that our models performed at a similar level of accuracy as 
the established benchmarks in the field. 

We conducted a comparison of F1 scores among various model architectures on 
the Inria Building Datasets in Table 5. Specifically, we evaluated the performance 
using an IOU (Intersection over Union) threshold of 0.5, which is the same thre-
shold that [10] uses. The comparison revealed that the utilization of multi-class 
datasets resulted in improved F1 scores compared to single-class datasets. Deep-
LabV3+ model exhibited the highest improvement of 12% in F1 score, while the 
Unet model showed a comparatively lower improvement of 3% in F1 score.  
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Table 1. Result on Kathmandu region. 

Model  
Architecture 

Dice Loss Building Precision Building Recall IOU Accuracy 

Single Multi Single Multi Single Multi Single Multi Single Multi 

UNet 0.107 0.109 0.756 0.734 0.698 0.767 0.846 0.835 0.944 0.946 

UNet++ 0.104 0.09 0.771 0.746 0.683 0.759 0.832 0.813 0.937 0.942 

DeepLabV3 0.098 0.095 0.795 0.822 0.620 0.678 0.814 0.810 0.932 0.939 

DeepLabV3+ 0.086 0.106 0.776 0.758 0.626 0.694 0.825 0.808 0.940 0.942 

 
Table 2. Result on Opencities dataset. 

Model  
Architecture 

Dice Loss Building Precision Building Recall IOU Accuracy 

Single Multi Single Multi Single Multi Single Multi Single Multi 

UNet 0.165 0.167 0.664 0.681 0.621 0.702 0.629 0.650 0.851 0.852 

UNet++ 0.163 0.167 0.651 0.695 0.617 0.721 0.625 0.638 0.834 0.856 

DeepLabV3 0.165 0.175 0.597 0.673 0.524 0.699 0.636 0.579 0.874 0.851 

DeepLabv3+ 0.172 0.174 0.601 0.678 0.553 0.679 0.644 0.658 0.820 0.850 

 
Table 3. Result on Inria building dataset. 

Model 
Architecture 

Dice Loss Building Precision Building Recall IOU Accuracy 

Single Multi Single Multi Single Multi Single Multi Single Multi 

UNet 0.184 0.287 0.721 0.704 0.552 0.629 0.697 0.575 0.950 0.953 

UNet++ 0.173 0.222 0.712 0.721 0.569 0.675 0.712 0.649 0.948 0.961 

DeepLabV3 0.190 0.230 0.757 0.735 0.528 0.654 0.677 0.637 0.947 0.960 

DeepLabv3+ 0.178 0.239 0.671 0.674 0.469 0.671 0.694 0.613 0.944 0.954 

 
Table 4. Building count metrics using UNet architecture on different datasets. 

Datasets 
True Positive False Positive False Negative 

Single Multi Single Multi Single Multi 

Inria Building dataset 1251 1080 558 488 978 610 

Kathmandu Dataset 3358 3980 1111 1442 1506 1217 

Opencities dataset 450 569 238 268 293 184 

 
Table 5. Building instance F1 score on Inria building dataset. 

Model Architecture 
F1 Score 

Improvement 
Single Multi 

Unet 0.625 0.664 0.039 

UNet++ 0.633 0.697 0.064 

DeepLabV3 0.622 0.692 0.07 
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Continued 

DeepLabV3+ 0.552 0.672 0.12 

MapNet 0.755 NA 

Joint Learning [9] 0.776 NA 

6. Discussion 

We conducted inference on a randomly selected subset of the test dataset to cal-
culate the metrics presented in Building Counts using Unet. The table reveals a 
significant reduction in false negative cases when utilizing a multi-class dataset 
as opposed to a single-class dataset, resulting in improved building recall results. 
Conversely, false positive cases have increased, which can be attributed to the ab-
sence of a comprehensive ground truth dataset or nearby similar structures for 
reference. In order to validate the functionality of our model, we trained it on the 
Inria building dataset and achieved comparable IOU and accuracy metrics com-
pared to the Inria leaderboard [52]. This further confirms that our methodology 
can be employed without compromising IOU and accuracy results on the leader-
board, while simultaneously enhancing overall building recall and precision. The 
results indicate that the UNet model performed well in building segmentation 
tasks across different datasets, and the use of multi-class datasets consistently im-
proved the building count. However, there was a trade-off observed between false 
negatives and false positives, with some datasets experiencing an increase in false 
positives when using the multi-class dataset. Nonetheless, the improved building 
count with the multi-class dataset indicates its effectiveness in capturing the 
complexity and diversity of buildings in different urban environments. Overall, 
the results highlight the importance of dataset selection and the potential bene-
fits of utilizing multi-class datasets in building segmentation tasks with UNet. 

The comparison of F1 scores across different model architectures, Table 5 
highlights the improvement achieved when utilizing multi-class datasets. To spe-
cifically validate the enhancement between single and multi-class datasets, we 
conducted the training for all models on 20 epochs, as opposed to the MAP-Net 
and Joint Learning approaches. This approach allowed us to assess the impact of 
dataset composition on the F1 score and validate the benefits of utilizing multi- 
class datasets in the context of building segmentation. So that opens up a possibil-
ity of experimentation on MAP-Net and Joint learning using multi-class datasets. 

When evaluating our model on the Inria building dataset, we achieved com-
parable performance in terms of metrics like IOU and accuracy to the leader-
board [52]. This indicates that our methodology can effectively generalize to the 
dataset used for benchmarking. Additionally, in the experimental results with 
other datasets such as the Kathmandu Dataset and Opencities dataset, we ob-
served similar trends and performance patterns, further highlighting the genera-
lization potential of our approach across different datasets. These findings dem-
onstrate the robustness and adaptability of our methodology, enabling accurate 
building segmentation across multiple datasets while maintaining comparable 
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performance to the established leaderboard. 
However, due to lack of similar studies done using multi-class dataset which 

not just utilize the background and building instances, but also make use of 
building contours as a class to improve the efficacy of the model, we could not 
directly compare with the existing studies on the same basis. 

7. Challenges and Limitations 

Dataset bias in our study arises from two main factors: the similarity of regions 
surrounding the buildings and the limited availability of comprehensive ground 
truth data. The presence of similar structures or elements in the surrounding re-
gions poses a challenge for our model, leading to an increase in false positive 
cases. This occurs when neighboring structures exhibit visual characteristics or 
patterns resembling buildings. Additionally, the lack of accurate annotations for 
certain buildings or structures in the vicinity contributes to dataset bias, affect-
ing the precision of our model’s predictions. Addressing these biases requires 
careful consideration and further research to overcome the challenges posed by 
regional similarities and the need for improved ground truth data in building 
segmentation tasks. One another particular limitation of this study is that we 
could not experiment with multi-class dataset on architecture like MAP-Net and 
Joint-learning presented in [9], in which case, our study would have beend di-
rectly comparable to [9]. 

8. Conclusion 

In this paper, we experimented the building detection and counting problem 
with multiple architectures (UNet, UNet++, DeepLabV3, and DeepLabV3+) on 
single and multi-class datasets and calculated the evaluation metrics. Using the 
multi-class method instead of ensembling the network reduces the computa-
tional complexities and inference time by making the model learn both features, 
building contour and inner building segments, on a single model. Building recall 
has increased substantially on the convoluted regions which helps us to decrease 
the human effort during the labeling process. And not only that, our work can 
be used to detect, segment and count the building instances in the convoluted 
areas more effectively than the other existing methods to our knowledge. 
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