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Abstract

Utilization of the shift operator to represent Euler polynomials as polynomi-
als of Appell type leads directly to its algebraic properties, its relations with
powers sums; may be all its relations with Bernoulli polynomials, Bernoulli
numbers; its recurrence formulae and a very simple formula for calculating
simultaneously Euler numbers and Euler polynomials. The expansions of Eu-
ler polynomials into Fourier series are also obtained; the formulae for ob-

taining all 7™ as series on k™ and for expanding functions into series of
Euler polynomials.
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1. Introduction

Euler is widely regarded as one of the greatest and most prolific mathematicians
of all time [1] as everyone can contemplate when reading the list of his publica-
tions concerning plenty of mathematical notions in [2]. From this list we know

that he has introduced among others the notion of function f(x) of a variable

x, the exponential notation ", the symbol 7such that i =—1, the trigonomet-

ric definition of cosx and sinx by the formula
" =cosx+isinx, etc.

In the same period, Leibniz and Newton introduced the notions of infinitesi-

mals dx; dy; the derivative f’(x) %f(x) of a function and so on [3] [4].
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Later, in 1766, Lagrange succeeded Euler at the Prussian Academy of Sciences
and invented the shift operator € having the property ¢ f(x)= f(x+¢)
[5].

After the introduction of shift or translation operators, it was introduced
about in 1970 the notion of hyper-differential operator, noticeably by Wolf of
Universidad Nacional Auténoma de México [6] who obtained that the Fourier

x i i

Ip? L2

x

transformation is representable by the operators FT = ete 2 e e?
where X designates the Eckaert “multiply with x” operator analogous with the
position operator in quantum mechanics.

At the same period, many authors such as Moshinsky, Quesne [7] and Treves
[8] introduced the notion of linear canonical transforms.

Now, this work aims to utilize the Lagrange shift operator e to express
E,(z) as the transform of the monomial z" by a hyper differential operator
then to obtain by differential calculus, its known and new found properties, its
recursion relations; maybe all of its relations with the Bernoulli polynomials; its
Fourier series which give 7" from seriesin k™™ as so as expansions of func-

tions into Euler series; etc.
2. Definition

The Euler polynomial is defined from the generating function [9] [10]

. 2,
Yo B (z)—=——¢ (1)

m! e +1

Utilizing the Lagrange translation operator e’
eaezf(z)zf(z+a) )

that haves the properties

el = gdle) _ ga™” (3)

=f(a(z+£jj=f(az+l) v

o 1
C(ZCtZ — et(Z+ ) — etetz (5)

etz (6)

0 € :t
e +1 e +1

we may write E, (z) as the transform of the monomial z” under a differen-

tial operator

E, (z) = e5:2+1 z" (7)

Le,that E, (z) isan Appell type polynomial [11].
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3. Properties of E,, (z)

3.1. From (7) We Get Immediately
2m

E,(z)= o " =mE,  (z) (8)
and the interesting property
22" = (e +1)E, (2) = E, (z+1)+E, (2) 9)

saying that
e " isequal tothe meanvalueof E,(z) and E,(z+1).

3.2. Power and Alternating Powers Sums

From the property (9) one gets immediately by addition lines-lines
2(Z+n—1)m :Em(z+n)+Em (z+n—1)

-2(z+n-2)"=-E,(z+n-1)-E, (z+n-2)

2(z+n—n)m :—Em(z+l)—Em(z)

the interesting formulae on alternating sums of powers from z" to (Z +n— l)m

2 —(z41)" et (1) (24 n-1)" = %(Em(z)+(_1)"“Em(z+n)) (10)

and on sums on powers from z" to (z+n—1)"
() =SB, () DOE, (en-k)4 B, (5) D)
As simple examples one has the remarkable identities
1" 2" 43" g (<1) " :l(E (W) +(=1)"(E, (n+1)) (12)
from which we get the formula
5. (1) =Xk =2 B, )+ T E (n-k)+3E(0) ()
that one may find in [12] and the followings

2(0’” 42" +---+(2n—2)m):Em(0)+Em(l)+~~~+Em(2n—1)
2(1"’ +3m +---+(2n—1)m):Em(l)+Em(2)+---+Em(2n)

2(17=2" 43"~ = (20-1)" ) = E,, (21) - E,,(0) (14)

3.3.Values of E, ((2n+1)z)

From the differential form (7) of E, (z) and the property
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52— -l a9
n n e"" +1\n
exp(ﬁ[ZJ]+l

as so as the formula for a sum of terms of a geometric progression with common

ratio identical to —e’:

B n haz_ _ n+l "o,
1_665+...+(—1)”’le<n—naz:( e -1 l)a — (16)

- —1 e’ +1

or, replacing nwith 2n+ 1,

o i s
(2o +1:(e82 +1)(1—e”z e 4ol +e2"9z)

one gets from (7)

Em( z j: _Za ( z j (17)
2n+1) @0 L1\ 2n+1

0. 20, | ., 200, z _ —m
(1 e +e’ +-te )Em(2n+lj (2n+1)"E,(z2)

ie,

a new property of Euler polynomials

CEN RO ACIA 18)

2n+1

SUSORCERE

Formula (18) means that

For example

e E (z) is (Zn + l)m times the alternating sum (—l)k E, (ZZLI{J,O <k<2n
n+

or, equivalently,

k
E,((2n+1)z) is (2n+1)" times the alternati -1)'E
L ((2n+1)z) is (2n+1)" times the alternating sum (-1) '"(Z+2n+1j
For examples

3"E,(3z)=E,(z)-E, (z +§j +E, (z +§j

3"E, (z)=E, [EJ—EM (Z—HJ+EM(Z+2J
3 3 3

5"E,(5z)=E,(z)-E, (z+%)+-~+Em[z+%j

3.4. Symmetry of Euler Polynomials

From (7) we may write

2

B(-2)= (2

e +1

0
_ 2e”

1+e

(=z)" =(-1)"e"E, (z)=(-1)"E, (z+1) (19)
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so that

E, (—z +%) =(-1)"E, [z %) (20)

Le.,

1
e The graph of E,(z) is symmetric with respect to the straight line z =3

1
for m even and to the point (E’Oj for m odd.

In particular

E,(0)=(-1)"E,(1) (21)
1 m 1
E, (5] =(-1)"E, [Ej (22)
— n2m+l l _
E2m+1 - 2 E2m+1 (2j 0 (23)

where E, designated the Euler number of order n.

3.5. Symbolic Formula of Euler Polynomials

Now from (7) we may the write down symbolic formula

2 (z+a) =——(z+a)"

(z+a) % +1

+1
N

2
*+1 k=0

Em(z+a)=

3
e
E, (z+a) ::(E(z)+a)m (24)
where undefined notation E*(z) is to be replaced with well defined E, (z).
Permuting zand a in (24) we get the complementary symbolic formula
E,(z+a) ::(E(a)—i-z)m (25)
which for a =0 leads to the formula

E,(z)=(E(0)+z)" (26)

similar to the Lucas formula for calculating Bernoulli polynomials [12].
Another way for obtaining symbolic formula of Euler polynomials is by re-

marking that as
ea”yf(z+y)=eazf(z+y)=ea"’f(Z+J’) (27)

we may write

2 w2 "
E = =
MERSY T +1(Z+y) o 2tY)

_ 2 [ m k m:m
e +1,§{ij Y /;

or, symbolically, the symbolic relations
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E, (z+y) = (E(z)+y)m ::(E(y)+z)m (28)
E,(z+E(y))=(E(2)+E(»))" = (E(E(y))+z)" (29)
The above results are resumed in Table 1.

4. Relations between Euler and Bernoulli Polynomials
4.1. The First Relation

From the known property of the Bernoulli polynomials [12]

B, (z): ——z" (30)

which makes them also of Appell type we get
20 e -1 20 ) 20, (zY"
0.E (z)=—"-2z"=— =" =2"(e% -1 e
£, (2) e +1 e +1e” —1 ( )e261—1(2j

ie, according to (7) and the property of the shift operator e’ , the known
property one may find in Ref. [13]

mE, ,(z)=2" (" ~1)8, H

2

(m+1)E, (z)=2"" (B,m (ZTHJ—BM (ED (31)

2

4.2. The Second Relation

Now, thanks to the formula obtainable from (30).

Table 1. Simple properties of Euler polynomials.

£ (-2) () B, (2 )
£ (z +lj (-1)'E, (_z +7j
- B, (2)E, (=+1)
:(Hk)"‘ :fEm(z+n)+:Em(z+n—k)+fEm(z)
s, (n)z:;k”’ =B (n)+ E, (n-k)+1E (0)
> () ke B+ ()" B (n+1)
E,((2n+1)2) :(2n+1):2:(;(—1) E, (Hz“lj
E,(z+a) =(E(z)+a)" =(E(a)+2)"
E,(z+7) =(E(z)+E(y))
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5 (2. O zY'_ 20, (zY'_ 1 20, Ly m
"\ 2) &% 1\ 2 e —1\ 2 e +1e% -1
1
1+¢*)B | Z|=B |Z|+B [0 ]=2"B (2 32
( )m[z) m(z e L (2) (32)

we may put the formula (31) under the more useful form

mE, ,(z)=2B,(z)-2""B, (gj (33)

We note that formulae (31) and (33) are proven by Roman [3] by another
method.

As consequence of (33) we have the very important relation linking E,, (0)
with B,

(m+1)E, (0)=(2-2"")B (34)

m+l1

from which one can obtain easily E, (0) knowing B, and vice-versa.

For example, with B; = ;_3

1 -1 1255 17
E (0)==2(1-2% ) —=—""=—
»(0) 8 ( )30 430 8

4.3. The Third Relation

Searching for other relations between Euler and Bernoulli polynomials we get

from (7) the relations

a 28 62/2 (ij (Zj
“—F = " =2"— —| =2"B, | = 3
JN w(2) ezaz_lz 7 _1\2 as (35)
z
E (B =2"B | = 36
() =25, ] 5

and

mE, (z)=2" (Bm (ZTHJ B, GD (37)

EZ(B(Z))::BZ(Z)—BI(Z)ZZZ—22+%:2232(§j

4.4. The Fourth Relation

Moreover we find from the differential representations of Euler and Bernoulli
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polynomials that

0
. . m z m 2/2 m m z
E (z)= zZ" = z" = z"=2"B | — 38
3 m( ) eaz -1 ef)z +1 6262 -1 eﬁg/z -1 m(zj ( )

Ie., another relation between Euler and Bernoulli polynomials
z V4 "
E (B(z))=2"B,| = |=2"| B(0)+= 39
. (B(2)) @ (()J (39)

For examples

=B, (z) =:(B+Z)2 =2z +2Bz+B,

4.5. The Fifth Relation

More curiously concerning the interrelation between Euler and Bernoulli poly-

nomials we discover from the relation

d. 2 .__2 0. . (40)
e’ —le% +1 e +1e’% 1

the symbolic relation
E,(B(z))=B,(E(z)) (41)

For example

Formula (41) suggests the great theorem which may be very useful.
e The property E, (B (z)) =B, (E (z)) holds for any two Appell type poly-

nomials.

4.6. The Sixth Relation

Now, if we write
£ (2)= S0 o (0 = ECO)) )

then apply the operator (30) on both members of it and utilize (39) we get

z

E,(B(z))=(B(z)+E(0))" =2"B, (5) (43)

and another relation between F, (B) and the Bernoulli numbers
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E,(B)=(B+E(0))" =2"B, (44)

For examples

E,(B)=85, +ZBIE1(O)+E2(0):%+2_71_?1+0:2232 :%

The relations between Euler and Bernoulli polynomials are summarized in
Table 2.

5. Obtaining Euler Polynomials

5.1. From Values at Origin E,, (0)

From the symbolic formula (42)
E, (Z) = (z + E(O))m
We see that E, (z) may be obtained from the values E, (0),k=1,---,m.
Moreover, because of (34)

(m+1)E, (0)=(2-2"")B

m+1

they are also obtainable from Bernoulli numbers.
Finally, in a recent work on Bernoulli polynomials [12] we have obtained the

famous formula giving easily all values B, , says
(1-m)B, =(B-B)" (45)
Combining (31) with (45) we may calculate very simply all B, =B, (0) and
all E£,(0).

For examples

~5B, =6B,B, = 41—2

6 1(-1) -1
~7B,=2| _|B,B, =30—| — |=—
2 6130) 6

Table 2. Relations Euler-Bernoulli polynomials.

1
N
mE, ,(2) ~28, (:)-2""B, @
(m+1)E,(0) (s
1
S
E(B(Z)) =2"B, (g =" [3(0)+§)
E,(8(2)) =B, (E(2))
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6E; (0)=(2-2"")B, =-126B,

5.2. From Recursion Relation on Euler Polynomials

From the following identity of operators that we characterize fundamental [14]

1(2.)2(2) = ()1 (2.)+ 338 () (2.) + 58" ()7 (0) )

obtainable by recurrence from the property
8zzg(z)=g(z)+zg'(z) (47)
we obtain the new symbolic recurrence relation on Euler polynomials

2 2¢%
E = = — " 48
wa (2) S+l el (eé’z +1)2 ) )

Le,

e’-
E, . (z) =zE, (z)— o E, (z)

E,.(z)=E, (z)—%Em (E(z+1) (49)
For example, because E,(z)=2z"-z,

E,(2)=2E,(2) -5 (E: (2 1) £, (2 +1))

:(23 —zz)—%((zﬂ)z —2(z+1)+%j:z3 57t

5.3. From Euler Polynomials of Sums of Arguments

Another way for obtaining recursion relation between E, (z) comes from (49)

and the property
eaZ”’f(z +y)=ef(z+y)= ea”f(z +y) (50)
which leads to
2% n
E, (z + y) = (z+ y)Em (z + y) ——2(2 + y)

(7 +1)

9y

=(Z+y)Em(Z+y)—e§+1(y+E(Z))m

m

~(242)E, (4 0) -3 (E(+1)+£(2))

and
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Le,because E,, . (1)=-E,,, (0), E,, (1)=E,,(0)=35,>

By (2)=(z -1 E, (2) + 5 (E(0)+ E(2)) (52)

In particular

For examples

_3 » 1
=z =o'ty
E; (1) ZI%(E(O) E(l))2 _ 1 (2E1 (0)E1 (1))=—%

We note that (52) is equivalent with the formula about Bernoulli polynomials
found by the similar method cited in Ref. [10]

(m=1)B, (z)=mzB, ,(z) - (B(z)+B(1))"
It gives rise also to the second symbolic formula concerning £, (0)
E,. (0)+E,(0) =:%(E(O)+E(0))m (53)
to be compared with the marvellous formula (45) concerning Bernoulli numbers
(1-m)B, (0)=(B(0)-B(0))"

and the mixed formula coming from (44)

E,(B)=(E(0)+B)" =2"B, (54)
E,(B)=(E(0)+B)" =E,(0)+2E,(0)B +B,=2"B,
E,(B)=(E(0)+B)" =4E,(0)B, + B, =2'B,
Some examples concerning £, (0) given by (53) where E,, (0)=5,,
£ (0)+1=
£,(0) =5 (E(0) + £(0)) =3(2£,(0) 5 (0)) =
E,(0) :%(E(0)+ E(0))' =—(4E,(0)E, (0)+ 4E, (0) £, (0)) = —%
E, (0) —:%(E(O)JrE(O))G :_(z@g(o)Es(o)+@E3(o) 3(0)}%
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Table 3. Recursion relations on Euler polynomials.

E, () = (z+E(0))
B (2) =:E, (2)- 3 B, (E(z+1)
E, (z+y-1) —(z+y-1)E, (z+3)-=(E(»)+E(2))
Eu(2) = (z=1)E, () +5(E(O)+ ()
£, (0)+E,(0) =2 (E(0)+E(0)

Hereafter we summarize the recursion relations between E, ,(z) and

E,(z) oflower orders in Table 3.
Although (53) is convenient for calculating £, (0) we would like to expose

hereafter a formula for calculating them not by recurrence but individually.

5.4.Obtaining E, (z) from E,_ (z)

From the property (8) one may write

2 -
E' (z) = eaz’j_ I z" = mE, (Z)
and by taking primitives of both sides
E,(z)= mJ‘Ew1 (z)+E, (0) (55)

From (55) we get
E,,a(2) =(2m+1)jE2m (z)+E,,.. (0)

But according to (20)
E2m+l (Z) = _E2m+| (1 - Z)

so that from

Byt (1)= By (0)=(2m+1)([ By, (),

one gets after all the formula giving E,,,, (0) from an integral of E,, (z)
1
Eppr(0)= = (2m+ 1) [[E,, (2)dz (56)

This new algorithm may be utilized to calculate them as shown in Table 4.
e We remark that because B,,(z)=B,,(1-z) a similar formula as (56) for
Bernoulli numbers and polynomials doesn’t exist.
For examples, noting that E,, (0)=6,,,

E(0)==3 [}y (2)dz =~
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Table 4. E, (0) and Euler polynomials E, (z).

1
m E,(0)==T] Eui(2) E,(z)=m] E, (z)dz+E, (0) E,(z)
0 E,(0)=1 E,(z)=E,(0) E,(z)=1
1p 1 1
1 EI(O):—ELEO(z)dz:—E E ( 1jE (z)dz+E, (0) E(2)=2-7
2
2 E,(0)=0 E,(2) 2[22—;] E(z)=2" -z
3 1 3 1
3 E(0)=-3[ /(2 ~z)dz= 2)=3[ E, (2)dz+E, ( E(5)=2~27 4+
4 E4(0):0 E4(Z)=Z4—223+Z E4(z):z4—223+z
5 524 520 1
5 E(0)=-3 (-2 z)dz=—— E,(2)=5[ E,(z)dz+ E (0) Es(z):zs—% %_5
6 E (0)=0 E(z)=2z"-32"+52"-3z+ E,(0) E (z)=z"-32+52 -3z
6 6
E. (2)227—72 +3—SZ4 E. (z): 7—72 £z4
7 17 ! 4 ’ 2 4
7 E, (0)=—=| E (z)dz=—
27 8 21 , 21 , 17
—72 +E7(0) —?Z ?
o Ex(()):() E, (2)228_427 +147° -287° E, (2)228—427 +147°
+17z+ E(0) -282" +17z
E,( :—%I (z —47" +142° - 28z +17z)dz E,(z)=2 —%zs-t-le(’—63z4 EQ(Z)ZZQ—%ZS+2126—63ZA
9
0 £, (0)=0 E,(z)=2"-52"+30z" 1262  E, (z)=2"-52"+30z" —1262°

+2552° 1552+ E,, (0)

+2552° —155z

(2)=1]E,(z

YAz +E,(0)=z——

22 z
z)=2[E (z)dz+E, (0)= 2(7—5}22—2

¢ Another algorithm for obtaining E, (z) is:

Let E (0)= —% and E, (z) be the primitive of mkE,  (z) we see that

El(z)zz—%—>—>E2’(z)=zz—z—>—>E2(0)=1—1=0

E, (Z)=Z2 -z E;(z)zz3 —%Zz —>—> E3(0)=E;(1):—5
E (z)=z"-4z" +142° - 282° +17z >

E,(z)=2 —%zf‘ +212° - 632" +9(17722J—>—> E,(0)=E, (1)=-=
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6. Integral of Product of Euler Polynomials

Thanks to the property (8) one may perform successive integrations by parts on

products of Euler polynomials and get

VE(2)E, () =—— [ E, () B, (=)
1 : n(n—l) !
=B ()En (2)) 0 ‘m(’% (2)E,..(2)) 0

1

+...+(_1)"1'“_"“)!(E1(Z)Em+n (=)

(m+n

0

() [ (2) B, (2)d2

(m+n)!

But E,, (1)=E,, (0)=0 and E,,, (1)=-E,,, (0) so that we finally get

1
! n nlm!
E E =(-1) ——F
LGB (=00 (e () =
In particular for m+n=2p
1 wt nlm!
E(2)E, (2)dz=(-1) 1(m+—n+l)!2E2p+l (0) (58)

Thanks to the relation (34) we see that the formula (58) is conformed with the

result given in [13] says

1 n n'm’ mn+
E,(2)E, (2)dz=(-1) m4(2 *~1)B,,., (59)

We observe that by integration by parts one may also calculate
['E,(2)E, (z)dz.
7. Fourier Series of Euler Polynomials

From the famous relation (33) between Euler and Bernoulli polynomials
mE,_(z)=2B,(z)-2""B, [gj

and the Hurwitz formula on Bernoulli polynomials [12]

m! 1 i2mkz
B (z)=- —e'7,0<z<1
m( ) (21,7_[)"1 ka

k=0
keZ
we get directly the Fourier series expansions of Euler polynomials

m' 1 i27hz m 1 imkz
E _(z)=- 2 —e -2 —e
m 1( ) (21,“)/11 lliggkm = k"

k=0
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m! | B 1
L 11 s ——
(2in)" e 2 ( k)'”

inkz
k#0 k#0

©

m! 1 ik

=— 2 60
(2111‘) kodd[kjm (60
2
__ m! ) - 1 (2k+1)
(im)" = (2k+1)
ie,
(Zn 1) cos(2k+1)nz
E,, = 0 . 2n 61
&= SR (o)
and
E, (z):(—l)" (2n)!4 w sin(2k+l)nz 62)

7T2n+1 k=0 (2k+1)2n+1
For example

B (2)=- i 0s(2k +1)nz

k=0 (2k + l)

The formulae (61), (62) were known for example in [10]. They do not depend
On B, or E,(0).On the contrary they show the apparition of n" and per-

mit to calculate them by summations of infinite series, for examples

| \ 111
EZn—l(O):mnz :(—1) (12" +32n + 52n +j (63)

:n—z—l+i+i+
8§ 17 3 &

2 &sin(2k+1)nz

£(2)= _?4; (2k+1)

(2n)! & sin(2k +1)nz

E,, (Z) = (_l)n 2n+1 42

oS (2k+1)

1) o A1 1 1
E | —|—=(-1 — + +eee 64
2n (zj 4(2”)' ( ) (12n+1 32n+1 52n+1 J ( )
~_1 1.1
32 1P 3 5

8. Euler Polynomials and Euler Zeta Functions

From the Hurwitz formula on Bernoulli polynomials [13]
1

B ()= Y e

(2i7r) 1;:0

12111(: O<Z<1
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we get
m! 1
B,(0)=———)> —
(2m!)2 1
By, (0) =~ (2" 20 (65)

Formula (65) leads to the relation of the Euler-Riemann zeta function [15]

with Bernoulli numbers

cm)=3, = ony, =

and, thanks to (34), with E,, ,(0)

_ 2m m (_1)”171
4(2’") - (27-(:) 1_22m 2(2m)'E2mfl (O) (67)
For example
1 1 2 4 ) _Tc_z
(O B O g ()

a result that Euler had proven in 1734 by a laborious method described in [15].

1
More generally, by putting z=— in (65) we get the general formulae per-
n

mitting to calculate the values of n" from the values of sin(%] and

n
(ZNk)
CoS| —
n
1 i27'cé

(2n)m LB [lj = —Zwo —c (69)

n keZ (ik)

L p (Loy, L & g (70)
(m—-1)! ") i:g(lk)'”

Explicitly, from (69) we get Table 5.

Regarding these results one may say that

1
e There have five types of infinite sums over o for calculating each

n"B, [lj,n <12.
n

Besides, from (70) we get ©"E, (l) from summation of serieson k™"
n

w1 _p (L) L[ (71)
(m=1)1""\n) ™ =42 (i)

1 1 1 . _
TCm 2m—1 Em, (_j —_ ezan _m emk
(m-1)r""1 ,z; (ik)" ( )

keZ
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1
Table 5. Series of Infinite Sums over o

m n 1 1 27tk
-nB | —|= —sin| —
I[I’l] Zbok ( n j
1 1
—chl(l)—l -(2,0,0.0,
2 1 2 3 4
2
0=(0.0,0_0_ .
1 2 3 4
3 1) B(1 1 1
_TCBI — = -4+
3 2\ 2 4
4 1 1 1 11 Gregory-Leibnitz formula
—TCBI R [ E
4 1 3 5 7
6
S 0 PR A L
6 2\1 2 4 6 7
8 \/51 1 \/51 \/51 1 \/51 1\/5 Newton-Euler formula
21 2 23 25 6 27 92
12 ( 1 j 11 31 1 B1 11
-mB | — |=| =t — =+t —————
12 21 22 3 24 25
BRI RN
27 28 9 210 211
m n 1 1 2nk
;)2
2 ! nzl_(2+£+£+...j
6 1?2 3
2 nzi_[ﬂ_i 0.0
12 22 3 4
3 o O T X L S SR SR S O
N3) 22 22 4 52 7
4 1 1 1 1 1
B(z)[r? ?7*"')
6 B [lj_j[L+L_L_L 1, )
e) 2\12 22 4 ¢ 7
8 1N (V21 1 V21 2101
B, |~ |= Tt 2 2 2
8 217 2 23 25 6
21 142
277 92
12 1(1 1 1 1 1
—| =+ B+2—+B——
2(12 273 4 szj
5Ll 1,1 11
—| = 3 777777 \/gi_i R
2( 78 T 10? 112j
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1 1 1 1 1 1 1 1
2wk (5 )0~z F e
SRR TR NI S
4 2° 4 1 3 4 5 7 8
1 1 . (k¢ 1 1 1 1
“32Ez(5j=——7r3:—16;—3sm(7)—— 6(1—3—3—3 P j
and so all.

9. Euler Series of Functions

We already know the formulae on Fourier series (60)

B ()= Lo

(@) i

mEm—l(Z):_ m! 2 N 1 eiﬂ(2k+1)z

(im)" k:zm(zkﬂ)’”

and that entire functions may be expanded into series of Bernoulli polynomials

k+1
1 eiZnnz
2imn

1

=IJf(z)dz+Zi;o[f<“(1)—f<k>(o>]m3k“(z) (72)

NG M WALE

neZ,n#0 k=0

for examples
" :.[;z'”dz+ZZl[kan%Bk (z) 0<z<l (73)
Now from the relations
1=0.2"=(¢" ~1)B, ()= B,(z+1)-B,(z)
22" =(e% +1)E, (2)=E, (2 +1)+ E, (=)

we see that entire functions may also be expanded into series of Bernoulli as so
as into series of Eulerpoly nomials.

For examples, because

m k m
2B, (z)=2B, ++ . B, 22" +--+ B2z

we may write

2B, (2)=(1+¢" 1(':] B, ,E, (z)+B,22"
()8 e B 05 o
+(E, (z+1)+E, (z))
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IfZ:Z 20+ :(eaz—1)(Bl(z)+B2(z)+---+Bm(z)+ ) (75)
2 ()4 B (1) 4t (B (2) B (2 41+ (76)

—Z
:%(1+e52 )(El (z)+%Ez (Z)%E} (Z)+...+%Ek (Z)+...j
The above relations may be resumed in Table 6.

10. Remarks and Conclusions

The main particularity of this work is the use of the Lagrange translation or shift
Operator e“ that is curiously let apart by quasi all authors although this is
seen here to be very useful and easy to utilize. From it, Euler polynomials
E,(z) may be presented under the form of an Appell type polynomial which
gives directly many algebraic properties concerning E, (-z), E, ((2n+1)z),
E, (z+a), many relations with sums of powers, many known and new relations
with the Bernoulli polynomials B, (z), noticeably E,, (B (Z)) =B, (E (Z)) ; the
symbolic relation E, (z+y)=: (E (z)+ y)m , a formula simultaneously giving
E,(0) and E,(z); relations between E,, ,(0) and Euler-Riemann zeta

m

Table 6. Series of and on Euler polynomials.

m! i 1 ok
__ D) exn(2k+l)z
E,.(2) (in)" k;o(2k+l)m

2n—1)!4 * cos(2k+1)nz

£ (2) (a2

=3 (2k+1)”

2 (2n—=1)! 1 1 1
2n—1(0) :(_1) ( 2n ) 4 12'1 +32n e

2n

+(2k+1)

2n)! & sin(2k +1)nz

E, (Z) :(_1)" ( 2041 42

T k=0 (2/{4—1)2"+1

(om) ) e 0)

28, (2) :[’Z]z; o (0)(E, (z+1)+ B, (2))+ (B, (=+1)+ E, ()
22" =E,(z)+E,(z+1)

2 =B (2)+ B, (z41)+ B, (2)+ E, (1) + -

In(1-z) :%(l+ea:)(El(z)+%E2(z)+---+%Ek(z)+---j
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. 1 . 1 . k=m
functions {(2m) as so as between n"E,, | —| and series on ———sin—,
m n k m+1 n

k%mcoszl;—7T generalizing ¢ (2m) are given.

Last but not least, Fourier series of Euler polynomials and Euler series of func-
tions are discussed and shown.

We think that this work has some significative value for the comprehension of
the Euler polynomials. Nevertheless it may be completed with many works on
them, one may find in literature for example by Vergara-Hermosilla [16] con-
cerning the properties of Hurwitz polynomials and by Ghisa, D. [17] concerning

Euler Product Dirichlet Functions.

Acknowledgements

The author specially dedicates this works to Profs. Tu Ngoc Tinh, Nguyen
Chung Tu who teach him in the years 60’s of the last century in Vietnam; to his
Prof. Demeur M. and Drs. Quesne C., Reidemeister G., Deenen J., Beart G. at
ULB, Brussels; Profs. Dagonnier R., Van Praag P. at UEM, Mons.

He would like also to thank very, very much his lovely wife Truong K.Q. for

the perseverant cares she devote to him during his researcher life and life.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this

paper.

References

[1] Famous Mathematicians—List of World Famous Mathematicians
http://www.thefamouspeople.com

[2] (2023) Leonhard Euler. Wikipedia. https://wikipedia.org/

[3] (2023) Calculus. Wikipedia.

4] (2023) Leibniz-Newton Calculus Controversy. Wikipedia.

5] (2023) Shift Operator. Wikipedia.

6] Wolf, K.B. (2002) Integral Transforms in Science and Engineering. Springer, Berlin.

7] Moshinsky, M. and Quesne, C. (1971) Linear Canonical Transformation and Their
Unitary Representation. Journal of Mathematical Physics, 12, 1771-1783.
https://doi.org/10.1063/1.1665806

[8] Treves, F. (2022) Functions and Differential Operators in Euclidean Space. In: Ana-
Iytic Partial Differential Equations, Grundlehren der mathematischen Wissenschaf-
ten, Vol. 359, Springer, Cham, 221-247. https://doi.org/10.1007/978-3-030-94055-3

[9] Abramowitz, M. and Stegun, L.A., Eds. (1972) Handbook of Mathematical Func-
tions with Formulas, Graphs and Mathematical Tables, 9th Printing. Dover, New
York, 16-806.

[10] (2023) Bernoulli Polynomials. Wikipedia.

[11] Appell, P.E. (1880) Sur une classe de polyndmes. Annales scientifiques de ! Ecole
Normale Supérieure, 9, 119-144. https://doi.org/10.24033/asens.186

DOI: 10.4236/am.2023.147029

479 Applied Mathematics


https://doi.org/10.4236/am.2023.147029
http://www.thefamouspeople.com/
https://wikipedia.org/
https://doi.org/10.1063/1.1665806
https://doi.org/10.1007/978-3-030-94055-3
https://en.wikipedia.org/wiki/Bernoulli_polynomials
https://doi.org/10.24033/asens.186

D.T.Si

(12]

(13]

[14]

(15]

(16]

(17]

Si, D.T. (2022) Selection of Coherent and Concise Formulae on Bernoulli Polyno-
mials-Numbers-Series and Power Sums-Faulhaber Problems. Applied Mathematics,
13, 799-821. https://doi.org/10.4236/am.2022.1310051

Dilcher, K. (2023) DLMF: §24.4 Basic Properties Properties Chapter 24 Bernoulli and
Euler Polynomials, DLMF: Chapter 24 Bernoulli and Euler Polynomials (nist.gov),
Dalhousie University, Halifax.

Do, T.S. (2016) Operator Calculus. Edification and Utilization. Lambert Academic
Publishing, Saarbriicken. https://www.lap-publishing.com/.../978-3-659-9160

Coen, L.E.S. (1996) Sums of Powers and the Bernoulli Numbers. Master’s Thesis,
Eastern Illinois University, Charleston.

Vergara-Hermosilla, G. (2021) On a Dual to the Properties of Hurwitz Polynomials
1. American Journal of Computational Mathematics, 11, 31-41.
https://doi.org/10.4236/ajcm.2021.111003

Ghisa, D. (2019) On the Zeros of Euler Product Dirichlet Functions. Advances in
Pure Mathematics, 9, 959-966. https://doi.org/10.4236/apm.2019.912048

Notations

d
A[Ej z" = Appel-type polynomials;

B, (z) = Bernoulli polynomials;

B, =

m

B, (0) = Bernoulli numbers;

E,(z) = Euler polynomials;

1
E =2"E, (Ej = Euler numbers;

Symbolic relation E, (z)=(E(0)+ z)m where E"(0)=E, (0);

_ n=l g m _ .
S, (n)=2 k" =Powerssums;

n-1

k=0

(—l)k z" = Alternating sums of powers;

g (2m) = Euler-Riemann zeta function.
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