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Abstract 
The asymptotic stability of two species stochastic Lotka-Volterra model is ex-
plored in this paper. Firstly, the Lotka-Volterra model with random parameter is 
built and reduced into the equivalent deterministic system by orthogonal poly-
nomial approximation. Then, the linear stability theory and Routh-Hurwitz cri-
terion for nonlinear deterministic systems are applied to the equivalent one. 
At last, at the aid of Lyapunov second method, we obtain that as the random 
intensity or statistical parameter of random variable is changed, the stability 
about stochastic Lotka-Volterra model is different from the deterministic 
system. 
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1. Introduction 

Stability is a hot topic in the ecological literature. It is not only associated with 
the structure, function and evolution of ecosystem, but also closely related to 
strength and characteristics of external disturbance. It is well known that there 
exist various kinds of stabilities from the different aspects of research both in-
ternal and external, such as resistance, recovery, persistence, variability and so 
on. For example, the recovery refers to the ability to return to the original state 
after suffering the external disturbance. Although the stability of ecosystem has 
been studied comprehensively and systematically in theory, research on the sta-
bility of ecological system is and will be an eternal topic due to the ecosystem is 
constantly changing. Hence, study on stability has been vigorously done from 
mathematical and applied perspectives whether present or in the future. 

Lotka-Volterra system as a model of undamped oscillations in autocatalytic 
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chemical reactions, was firstly developed by Alfred J. Lotka independently in 
1920 [1] and was later applied by Vito Volterra in 1926 [2] to treat predator-prey 
interactions in ecology. From then on, the application of Lotka-Volterra system 
has a wide range in various fields, such as population dynamics, epidemiology, 
physics, economics and chemistry [3] [4] [5]. Other applications occur in neural 
networks, game theory, plasma physics and so on [6] [7]. Owing to its unrealistic 
stability, Lotka-Volterra model, as a starting point is a more advanced model in 
the analysis of population dynamics, and receives much attention for a long 
time including the addition of small random perturbations, polynomial inte-
ractions, time delayed [8] [9] and diffusion effected [10]. Liu and Luo [11] 
gave the discriminant conditions of local stability, global stability and proved 
that the local stability and global stability are equivalent at the equilibrium po-
sition. Reference [12] has obtained the sufficient conditions of stability in a non-
autonomous Lotka-Volterra system based on the differential and integral method. 
The condition for the existence of a globally stable equilibrium of n-dimensional 
Lotka-Volterra systems is presented in references [13] and [14]. In reference 
[11], based on the large deviation principle, the influence of some small random 
perturbations on stability and extinction to predator-prey systems is explored. 
Up to now, some researchers have already studied some other dynamical beha-
vior such as bifurcation, chaos and so on [15] [16] [17]. To our best knowledge, 
as a mathematical model, the system with random physical parameters is more 
close to the actual, so the research about stability under the influence of random 
internal parameters in these systems is tremendously done form a practical point 
of view. 

Motivated by the above discussion, the statistical characteristic of random va-
riable, a Lotka-Volterra system with random parameter is investigated by the 
orthogonal polynomial approximation in this paper. 

This paper is organized as follows. Transformation of the stochastic Lotka- 
Volterra system into its equivalent deterministic one by orthogonal polynomial ap-
proximation is shown in Section 2. Section 3 investigates the locally asymptotic sta-
bility and globally asymptotic stability of stochastic Lotka-Volterra system. And in 
Section 4, the locally and globally asymptotic stability of one of the prey-predator 
models is discussed. Finally, conclusions are drawn in Section 5. 

2. Orthogonal Polynomial Approximation for Stochastic 
Lotka-Volterra Model 

The classic two species Lotka-Volterra mathematical model can be described as 

( )1 1 1 11 1 12 2

2 2 2 21 1 22 2( )

x x b a x a x

x x b a x a x

 = + +


= + +





 ( )d d , 1,2i ix x t i =
            (1) 

where 1 2,x x  are all nonnegative variables and 1 2,b b  account for the self-regula- 
tion of each species. Biologically, we can interpret this system as follows, 2 0b <  
stands for the natural mortality of heterotrophic organisms such as predators (or 
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parasites). If 1 0b < , 2 0b <  that means the mortality of two symbiotic species 
separated. The case 1 0b > , 2 0b <  means that the species 1x  interacts strong-
ly with species 2x  and weakly among themselves. Similarly, 1 0b < , 2 0b > , 
species 2x  interact more strongly with 1x  than they do with themselves. 

The parameters ( )1,2; 1,2ija i j= =  describe how species 1x  and 2x  inte-
ract each other as follows: 

1) 12 210, 0a a< > , represent prey-predator models; 
2) 12 210, 0a a< < , represent competition model; 
3) 12 210, 0a a> > , represent cooperation model. 
What’s more, 11 220, 0a a< <  refer to that the two species are controlled by 

the density and 12 210, 0a a= >  (or 12 210, 0a a> = ) means dominance effect; 

12 210, 0a a= <  (or 12 210, 0a a< = ) means partial damage effect; 12 210, 0a a= =  
represents neutral relationship. With these interpretations, only solutions of (1) 
with 1x  and 2x  nonnegative are physically interest. The equilibrium points of  

(1) are ( )1 0,0A , 2
2

22

0,
bA
a

 
− 

 
, 1

3
11

,0
bA
a

 
− 
 

,  

12 2 21 1 11 2 21 1
4

21 12 22 11 21 12 22 11

,
a b a b a b a bA

a a a a a a a a
 − −
 − − 

. 

Obviously 1 2 3, ,A A A  are unstable, and the stability of 4A  is all depends on 
the parameter. This article focuses on the nontrivial equilibrium position 4A  of 

system (1) which is the solution of the equation: 
2

*

1
0, 1, 2i ij i

j
b a x i

=

+ = =∑ , where 

* 12 2 21 1
1

21 12 22 11

a b a bx
a a a a

−
=

−
, * 11 2 21 1

2
21 12 22 11

a b a bx
a a a a

−
=

−
. 

Utilizing the coordinate transformation 
*

1 1
*

2 2

,

.

x x x

x y x

 = +


= +
                         (2) 

The nontrivial equilibrium point 4A  is converted to origin (0, 0). Then we 
can obtain the following Lotka-Volterra model 

2 * * * * *2 * *
11 12 1 11 1 12 2 12 2 1 1 11 1 12 1 2

2 * * * * *2 * *
22 21 2 22 2 21 1 21 2 2 2 22 2 21 1 2

d 2 ,
d
d 2 .
d

x a x a xy b x a x x a x x a x y b x a x a x x
t
y a y a xy b y a x y a x y a x x b x a x a x x
t

 = + + + + + + + +

 = + + + + + + + +


 (3) 

The necessary and sufficient condition of locally asymptotic stability of de-
terministic dynamics Equation (3) at the zero solution is that * *

1 11 2 22 0x a x a+ < , 

21 12 22 11 0a a a a− <  [1]. The sufficient condition of locally asymptotic stability of 
this deterministic dynamics equation at the zero solution is that the zero solu-
tion is locally asymptotic stable and two species are controlled by the density.  

Namely, 

* *
1 11 2 22 21 12 22 11

11

22

0, 0
0
0

x a x a a a a a
a
a

 + < − <


<
 <

. 

For natural disaster or other reasons for each species, the parameters 
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( ), 1, 2ib i =  should be affected by uncertain factors. So suppose that the parame-
ter ( ), 1, 2ib i =  can be described as a random parameter, ( ), 1, 2i ib b u iδ= + =  
where ( ), 1, 2ib i =  is deterministic parameters of ( ), 1, 2ib i = , δ  is regarded 
as intensity of random disturbance and u is random parameter which defined on 
[−1, 1] subject to some probability density function. 

Corresponding to this random variable, the orthogonal ploynomial is choosen 
as, 

( ) ( )
( )( )

0

2 21 1
1! ! 2
2

kn
k

n
k

k

n uG u
k n k

η η η

η=

+ − =  −    + 
 

∑ ,            (4) 

where 

( ) ( ) ( )
( ) 01 1 , 1k

k
k

η
η η η η η

η
Γ +

= + + − = ≡
Γ



 
And the Orthogonal of Gegenbauer polynomial can be expressed as  

( ) ( ) ( )1

1

0,
d

,m n
n

m n
p u G u G u u

b m nη−

≠= 
=

∫ ,              (5) 

where 
( )

( ) ( )
2 1

21
1 12 !
2 2

n

n
b

n n

η
η

η η

η η η
−

Γ +
= ⋅

   + Γ Γ + Γ   
   

π
 

Substituting Equation (4) and Equation (5) into Equation (3), we get  

2 * * * * *2 * *
11 12 1 11 1 12 2 12 2 1 1 11 1 12 1 2

2 * * * * *2 * *
22 21 2 22 2 21 1 21 2 2 2 22 2 21 1 2

d 2 ,
d
d 2 .
d

x a x a xy b x a x x a x x a x y b x a x a x x ux
t
y a y a xy b y a x y a x y a x x b x a x a x x uy
t

δ

δ

 = + + + + + + + + +

 = + + + + + + + + +


 (6) 

By the following replacement, 
* * * * * *

11 1 12 2 1 12 2 21 1 21 1 22 2 22 , , , 2A a x a x b B a x C a x D a x a x b= + + = = = + + , 

* *2 * * * *2 * *
1 1 11 1 12 1 2 2 2 22 2 21 1 2,P b x a x a x x Q b x a x a x x= + + = + + , 

we simplify the Lotka-Volterra model as 

2
11 12

2
22 21

d ,
d
d .
d

x a x a xy Ax By ux P
t
y a y a xy Dy Cx uy Q
t

δ

δ

 = + + + + +

 = + + + + +


              (7) 

The only one equilibrium point of Equation (7) is (0, 0). Furthermore, the re-
sponse of Lotka-Volterra system with random parameter can be approximately 
expressed by the following Fourier series under the condition of the convergence 
in mean square 

( ) ( ) ( )

( ) ( ) ( )

0

0

, ,

, .

M

i i
i
M

i i
i

x t u x t G u

y t u y t G u

=

=

 =

 =


∑

∑
                    (8) 

where ( )iG u  is the ith Gegenbauer orthogonal polynomial, M represents the 
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largest order of the polynomial we have taken. 
Substituting Equation (8) into Equation (7), we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

11 12
0 0 0

0 0 0
2

22 21
0 0 0

0 0

d
d

,

d
d

M M M

i i i i i i
i i i

M M M

i i i i i i
i i i

M M M

i i i i i i
i i i

M M

i i i i
i i

x a x t G u a x t G u y t G u
t

A x t G u B y t G u x t uG u P

y a y t G u a x t G u y t G u
t

D y t G u C x t G u y

δ

δ

= = =

= = =

= = =

= =

    = +    
    

+ + + +

    = +    
    

+ + +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ( ) ( )
0

.
M

i i
i

t uG u Q
=













+


∑

    (9) 

The coefficients of ( ) ( )i jG Gη ηµ µ  can be donated as 

( ) ( ) ( ) ( ) ( ) ( )
2

0 0 0
,

M M M

i i i i i i
i i i

x t G u y t G u H t G uη η η

= = =

   =  
  
∑ ∑ ∑  

( ) ( ) ( ) ( )
2 2

0 0
,

M M

i i i i
i i

y t G u L t G uη η

= =

  = 
 
∑ ∑                (10) 

( ) ( ) ( ) ( )
2 2

0 0
.

M M

i i i i
i i

x t G u M t G uη η

= =

  = 
 
∑ ∑

 
where ( ) ( ) ( )( ), , 0,1, 2, , 2i i iH t L t M t i M= ×  which stands for the linear com-
bination of non-linearity can be calculated by Maple. 

Substituting Equation (10) into Equation (9), we obtain  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

11 12
0 0 0

0 0
2 2

22 21
0 0 0

0 0

d
d

,

d
d

.

M M M

i i i i i i
i i i

M M

i i i i
i i
M M M

i i i i i i
i i i

M M

i i i i
i i

x a M t G u a H t G u A x t G u
t

B y t G u u x t G u P

y a L t G u a H t G u D y t G u
t

C x t G u u y t G u Q

δ

δ

= = =

= =

= = =

= =

 = + +



+ + +

 = + +


 + + +

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑

    (11) 

With the help of the cycle recurrence formula of Gegenbauer polynomial 

( ) ( ) ( )1 1 .n n n n nuG u G u G uη η ηα γ− += +                 (12) 

where 
( )

2 1
2n

n
n

ηα
η
+ −

=
+

, 
( )

1
2n

n
n

γ
η
+

=
+

. 

The stochastic term and the non-linearity in the right equation of system (11) 

can be written as ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1
0 0

,
M M

i i i i i i i i
i i

x t uG u x t G u x t G uη η ηδ δ α γ− − + +
= =

= +∑ ∑  

(13) 

( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1
0 0

.
M M

i i i i i i i i
i i

y t uG u y t G u y t G uη η ηδ δ α γ− − + +
= =

= +∑ ∑      (14) 

Substituting Equation (13) and Equation (14) into Equation (11), we get  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

2 2

11 12
0 0 0

1 1 1 1
0 0

2 2

22 21
0 0 0

1 1 1 1
0 0

d
d

,

d
d

.

M M M

i i i i i i
i i i

M M

i i i i i i i i
i i
M M M

i i i i i i
i i i

M M

i i i i i i i i
i i

x a M t G u a H t G u A x t G u
t

B y t G u x t G u x t G u P

y a L t G u a H t G u D y t G u
t

C x t G u y t G u y t G u Q

η η

η η

δ α γ

δ α γ

= = =

− − + +
= =

= = =

− − + +
= =

 = + +

+ + + +


= + +

+ + + +

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑












  (15) 

Multiply both sides of Equation (14) by ( ) ( ), 1, 2, ,iG u i Mη =   in sequence 
and take expectation. Based on the orthogonal of the polynomial approximation 
of convergence random function in the Hilbert spaces and the orthogonality of 
Gegenbauer orthogonal polynomials, we can finally obtain the equivalent de-
terministic equation. As M →∞ , the Lotka-Volterra system with random pa-
rameter is strictly equivalent to the system (7) under condition of the conver-
gence in mean square. We denote the coefficient of ,i iH M , and  

( )0,1, , 2iL i M=   in the linear combination as ( ), 0,1, ,i iK S i M=   respec-
tively. According to the principle of approximation 1 1,x y− −  are zero. The non-
linear term of 

Equation (11) can be expanded into 

( )

( )

( )

( )

0
0 0 0 1 0

0
0 0 0 1 0

1
1 1 1 0 1 2 1

1
1 1 1 0 1 2 1

1 1

1 1

d
,

d
d

.
d

d
,

d
d

.
d
,

d
,

d
d

.
d

M
M M M M M M M

M
M M M M M M M

x
Ax By x K

t
y

Dy Cx y S
t

x Ax By x x K
t
y Dy Cx y y S
t

x Ax By x x K
t

y Dy Cx y y S
t

γ δ

γ δ

δ α γ

δ α γ

δ α γ

δ α γ

− +

− +

 = + + +
 = + + +
 = + + + +
 = + + + +


 = + + + +

 = + + + +













         (16) 

3. The Stability Analysis of Zero Solution 

In this section we take zero solution as the example and discuss the asymptotic 
stability in stochastic Lotka-Volterra system (7). The equivalent deterministic 
system (16) can be rewritten as 

( ) ( ) ( ) ( )( ), ,i iZ t JZ t f x t y t= +

 
where ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }T

0 0 1 1, , , , , ,M MZ t x t y n x t y n x t y n=  , J is the coefficient 
matrix and ( ) ( )( ) ( )( ),i if x t y t Z t=  . 

In order to analyze the stability of Equation (16) at the equilibrium point. We 
first need two lemmas. 

Lemma 1. (Routh-Hurwitz criterion) All of the eigenvalues of the Equation 
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(16) have real parts strictly less than zero if and only if all elements in the first 
column of the Routh table are nonzero and have the same sign. 

An elementary proof of the Routh-Hurwitz criterion can be found in refer-
ences [18] and [19]. 

Lemma 2. Suppose all of the eigenvalues of Equation (16) have negative real 
parts. Then the equilibrium solution is asymptotically stable [20]. 

It is obvious that the zero solution is the equilibrium point of Equation (12). 
In order to facilitate the numerical analysis of this paper, we select 1M = , 

1η = . According to Equation (12), the coefficients 1 0,α γ  are 
1 1,
2 2

 respec-

tively. 
Then the Equation (16) can be rewritten as 

0
0 0 1

0
0 0 1

1
1 1 0

1
1 1 0

d
,

d
d

.
d

d
,

d
d

.
d

1 2

1 2

1 2

1 2

x
Ax By x

t
y

Dy Cx y
t

x Ax By x
t
y Dy Cx y
t

δ

δ

δ

δ

 = + +
 = + +

 = + +

 = + +


                  (17) 

The Jacobian matrix J at the equilibrium point of Equation (16) is 
0

0
.

0
0

1 2
1 2

1 2
1 2

A B
D C

J
A B
C D

δ
δ

δ
δ

 
 
 =
 
 
 

                (18) 

With aid of Maple, we obtain the characteristic polynomial of Jacobian matrix 
can be obtained as 

( ) 4 3 2
0 1 2 3 4 0,f a a a a aλ λ λ λ λ= + + + + =              (19) 

where ( )0, , 4ia i =   are coefficients of characteristic equation, which are 

shown as follows: 

( ) ( )( )
( )( )

0

1
2 2

2
2

3

2 2
4

1 2

1

1,
2 ,

2 2 ,

24

1 4 1 4

,

.

a
a A D C

a BC DA DC CA A BD

a A C D A C D BC CA AD

a BC AD BD AC

δ

δ

δ δ

=

= − − −

= − − + + + + −

= + + − + + − −

= − + − +

 

The determinants which construct by the Routh-Hurwitz criterion are shown 
as follows: 

1 1

1 0
2

3 2

1 0

3 3 2 1

5 4 3

1) ,

2) ,

0
3) .

a
a a
a a

a a
a a a
a a a

∆ =

∆ =

∆ =
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where 5a  is zero. 

4. To Take a Prey-Predator Model as Example 

In this section, the asymptotical stability of a prey-predator model is considered. 
And the complex dynamic behavior is discussed and numerical simulation is 
performed. We select the coefficients 11 12 1 21 22 2, , , , ,a a b a a b  are 1, 2,1,2, 1, 1− − − −  
respectively. Obviously, with all these coefficients, the stochastic Lotka-Volterra 
system (7) is a prey-predator model accurately. Then the Jacobian matrix (18) 
can be rewritten as 

1 5 2 5 1 2
2 5 1 2

1 2 1 5 2 5
1 2 2 5

0
1 0

.
0

0 1

J

δ
δ

δ
δ

− − 
 − =
 − −
 

− 

                (20) 

By the Mathematical software, the coefficients of characteristic equation of the 
Jacobian matrix J (20) are as follows. 

0 1a = , 1 12 5a = , 2 54 2 1 25a δ= − , 2
3 108 125 3 5a δ= − , 

2 4
4 9 50 81 625 1 16a δ δ= − + + . 

And all eigenvalues of Equation (19) are 

1,2 3,4
3 3,

2 5 2 5
δ δλ λ= − − = − . 

We can see 1 1 0a∆ = >  easily, So only if 2,3 0∆ > , we can say all of the ei-
genvalues of Jacobian matrix (18) have negative real parts. The functions are 
constructed by Routh-Hurwitz criterion 

2

4 3 2

3 5 6 5 108 35 0,

12 25 18 25 3456 1250 648 625 47502 15125 0.

δ δ

δ δ δ δ

 − + >


+ − + + >
   (21) 

i.e. 2 5 6 5δ− < < . 
Theorem 1. The necessary and sufficient condition of locally asymptotically 

stable at the zero equilibrium solution is 2 5 6 5δ− < < . 
Prof. Depend on the lemma2, we know if all of the eigenvalues of Equation 

(19) have negative real parts. Then the equilibrium solution is asymptotically 
stable. Obviously, 1,2,3,4λ  have negative real parts when 2 5 6 5δ− < < , so we 
get it. 

Theorem 2. The sufficient condition of globally asymptotically stable at the 
zero equilibrium solution is 2 5 6 5δ− < < . 

Prof. (Using the Lyapunov function) 
We choose the Lyapunov function ( ),V x y  as  

( ) ( ) ( )2 2,V x y Dx By AD BC x= − + − , Obviously 0AD BC− > , So Lyapunov 

function ( ),V x y  is always positive. Then the total derivative of Equation (19) 

is ( )( )( )2 2

(19)

d d d d d 4
d d d d d

1 2V V x V y x AD BC D x BDy Ax By x
t x t y t

δ= ∗ + ∗ = − − − + , 
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At the aid of the image of quadratic function, it’s not difficult to get at the 

condition of 2 5 6 5δ− < < , 
(19)

d
d
V
t

 less than zero constantly. 

5. Conclusion 

Orthogonal polynomial approximation is applied to study the stability in a 
stochastic Lotka-Volterra system with random parameter. Analysis shows that 
orthogonal polynomial approximation is effective to reduce the stochastic 
Lotka-Volterra system with random parameter into its equivalent deterministic 
system. The linear stability theory and Routh-Hurwitz criterion for nonlinear 
deterministic systems are applied to the equivalent one. By the mathematics 
analysis method, we have discovered that as the random intensity or statistical 
parameters of random variable are increased, results are different from the de-
terministic system which are characterized the stability of realistic models accu-
rately. 
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