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Abstract 

Various efficient generalized sphere decoding (GSD) algorithms have been proposed to approach optimal 
ML performance for underdetermined linear systems, by transforming the original problem into the 
full-column-rank one so that standard SD can be fully applied. However, their design parameters are heuris-
tically set based on observation or the possibility of an ill-conditioned transformed matrix can affect their 
searching efficiency. This paper presents a better transformation to alleviate the ill-conditioned structure and 
provides a systematic approach to select design parameters for various GSD algorithms in order to high effi-
ciency. Simulation results on the searching performance confirm that the proposed techniques can provide 
significant improvement. 
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1. Introduction 

Sphere decoding (SD) is an efficient searching method to 
obtain maximum-likelihood (ML) solution for NP-hard 
integer least-square (ILS) problems. SD can have poly-
nomial time average complexity for many practical 
communication problems [1]. It offers large complexity 
reduction over the exhaustive search method in numer-
ous applications, e.g., lattice decoding [2], multi-input, 
multi-output (MIMO) detection [3] and multi-user detec-
tion (MUD) [4]. However, when the problem is under-
determined, zero elements appear in the diagonal terms 
of the upper-triangular matrix generated by QR or Cho-
lesky decomposition before searching, and the standard 
SD searching cannot apply. Such underdetermined ILS 
problems arise in many areas, e.g., MIMO detection with 
the number of transmit antennas larger than that of re-
ceiver antennas; MIMO detection with strongly corre-
lated channel gains [5] or MUD for overloaded CDMA- 
related systems [8]. To solve such problems efficiently, 
generalized SD (GSD) algorithms, fully or partly based 
on SD, have been developed [6–12] for underdetermined 
or rank-deficient MIMO systems.  

The GSD algorithms in [6,7] modify the underdeter-
mined problem for constant-modulus constellation (e.g., 
QPSK) into a full-column-rank one by introducing a de-
sign parameter purely based on observations and then 

uses SD on the modified problem. For non-constant- 
modulus ones, e.g., 16/64QAM, they have to be trans-
formed into multiple QPSKs, leading to larger dimension 
and hence increased complexity. To avoid this problem 
and obtain better efficiency, the λ-GSD algorithm pro-
posed in [8], performs transformation without expanding 
the size of M-ary QAMs. Unlike the GSD algorithms in 
[6,7], the design parameter can be is upper-boun- 
ded [8,13] to guarantee near-ML performance for high 
QAMs and has little effect on the efficiency of λ-GSD 
[14].  

In this paper, we first present an improved version of 
the λ-GSD algorithm to alleviate the ill-conditioned 
problem in the transformed matrix of [8]. Then we study 
the setting of the design parameter for the improved ver-
sion of λ-GSD, as well as GSD in [6,7]. A more system-
atic approach is proposed to select design parameters for 
the above GSD algorithms to achieve high efficiency.  

The remainder of the paper is as follows. Section 2 
summarizes transformations employed in several popular 
GSD algorithms. Section 3 presents the improved ver-
sion of λ-GSD over [8] and briefly discusses its per-
formance characteristics; then we proceed to propose a 
systematic approach to choose the design parameter for it 
and also for that of [6,7] in Section 4. Section 5 provides 
illustrative results under flat-fading underdetermined 
MIMO scenarios. Section 6 concludes the paper. 
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2. Transformations by G SD Algorithms 
 
The objective of ILS problem is to find the least-square 
(LS) solution for a linear system with integer unknowns. 
When the transmitted vectors (the unknowns) are from a 
finite set A in communications, i.e., nA Z x , 
where nZ denotes the n-dim vector space with integer 
entries, the objective function is  

2

2
min

nA 


x Z
y Hx , for ,       (1)   y Hx v

where  is a  vector for a real-valued 

system1, the system matrix typically with full 
column rank (i.e., rank( )=n) and  a 

my
H

1m

H

m n

v 1m  

zero-mean Gaussian noise vector, . It’s 

well known that SD algorithm and its variants are effi-
cient approaches to solve such problems: it reduces the 
complexity of exhaustive-search greatly by conducting 
search within a hyper-sphere but still guarantees the ML 
optimality. One advantage of SD algorithms is that the 
search can be divided into layered enumeration of integer 
values in one-dimensional interval, so that it can effi-
ciently decide which points are inside the hyper-sphere. 
However, SD algorithm was originally designed for 
full-column-rank system only. For underdetermined ILS 
problem when has rank ( ) =m, m

2~ (N v I

H

0, )

nm nH   in 
(1), the original SD algorithms can not proceed effi-
ciently, as on certain searching layers, the candidate 
point set is no longer in a 1D-interval. [6–8] introduce 
transformations for underdetermined problem so that SD 
can be utilized on the transformed full-column-rank sys-
tem. The transformations used are as follows. 

The original underdetermined problem for constant- 
modulus constellation (e.g., QPSK) was modified into a 
full-column-rank system [6] and the equivalent new ob-
jective function is  

 2 2
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
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x Z
y Hx x 2

2
,          (2)  

where 0   is a design parameter. (2) is equivalent to 
2
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where  in (3) is full-column-ranked with 
n n   



 

H
I




0  . If  is from constant-modulus constellations, x
2

2
x  is constant and (3) is the same as (1); and when 

applying SD on the new problem (3), ML performance 
can still be achieved. For high QAMs, in order to guar-
antee ML performance, high QAMs are transformed into 
multiple QPSKs in [6] before using the above transfor-

mation, e.g., 16QAM vector  can be represented as x

1 22x  2x / 2 
   where  are from QPSK. The 

16QAM system is transformed into a QPSK one with  

1,x x2

1

2

2
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x
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x
.           (4) 

Hence the transformation in (3) can be used on (4) and 
SD can then be applied efficiently. Despite the fact that 
the complexity of the GSD algorithm in [6] depends on λ, 
the parameter is set arbitrarily in [6].  

The transformation of high QAMs into multiple QPSK 
ones in [6] unavoidably lead to larger problem size for 
the ILS problem and increased search complexity. To 
avoid this problem, another transformation is utilized in 
[8] for both the constant-modulus and non-constant 
modulus constellations, i.e.,  

 
2

2 2 1 2 12
22 2

( - ) ( - ) 2 2
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0 I xx Z

y

0

(5) 

where 2x  is subset of =[x 1 2 x x ] with length (n-m). 

SD searching is applied on (5) directly for both QPSK 
and high QAMs. Consequently, exact ML performance 
can be achieved for QPSK constellation with arbitrary 
value of λ whist close-to-ML performance can be 
achieved with sufficient small λ [8]. Moreover, an upper 
bound is provided in [8] for λ in high QAMs to approach 
ML performance with negligible loss and it’s also shown 
that the efficiency is quite insensitive to λ [14] for λ-GSD, 
unlike GSD in [6]. Therefore, the choice of λ can be 
randomly set for QPSK and judiciously set to be within 
the upper bound for high QAMs. 

Later in [7], by noticing the structure of the transfor-
mation in (5) is less efficient2 and also targeting to alle-
viate the size expansion problem in [6,7] considers to 
utilize a transformation of adding the 2x  part of  

=[

x

1 2x x ] with length (n-m+1) instead of (n-m), and then 

apply SD to achieve ML performance for con-
stant-modulus constellations. The resulted new ILS 
problem is  

 2 22
22 2
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(6) 
For non-constant-modulus constellations, [7] adopts 

the same strategy as [6], i.e., to transform high QAMs 
into multiple QPSKs in order to achieve exact-ML per-
formance in a similar way as [6,7] also suggests a value 

1For complex-valued communication systems, linear transformations 
are generally used to obtain real-valued ones and apply SD. 2to be discussed in Section 3. 
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Figure 1. Histogram of condition number distribution of MIMO system matrices over 104 runs @12dB, QPSK. (a) 12x12 real 
matrices of regular i.i.d. 6x6 complex-valued matrices; (b) transformed 12x12 real matrices of λ-GSD at λ=10-3; 
(c)transformed 14x12 real matrices of improved λ-GSD at λ=10-3. 
 
of λ purely based on experimental observations though 
apparently the efficiency depends on λ. 

3. Improved Transformation Structure to 
Speed up λ-GSD Algorithm  

For a negligible performance loss, λ-GSD keeps the 
problem size intact for high QAMs as mentioned, and 
hence it is more efficient than [6,7] for high QAMs. 
However, despite of the high efficiency of λ-GSD com-
pared to its counterparts, the efficiency of λ-GSD is still 
significantly higher than SD on regular full-column-rank 
system. Ill-conditioned structure of the transformed ma-
trix of λ-GSD partly accounts for the inefficiency. It is 
known that well-conditioned matrix generally leads to 
more efficient searching than ill-conditioned ones [16]. 
Figure 1 illustrates histograms for the occurrence of the 
condition number of the three categories of matrices over 
104 runs for a QPSK MIMO system at 12dB, where (a) is 
for the 12x12 real-valued matrices of the i.i.d. regular 
6x6 complex-valued system with full-column-rank; (b) is 
for the transformed 12x12 real matrices of λ-GSD in a 
4x6 complex-valued system. (c) is for an improved ver-
sion of λ-GSD to be proposed in this section. Comparing 
Figure 1(a) and (b), we can see that over 104 runs, the 
condition number of transformed matrices of λ-GSD is 
centered at around 8x103 whilst that of the regular 
full-column-rank ones is only centered at around 10. 
Next we will propose an improved version of λ-GSD, 

which combines the transformation in [7] and the idea of 
keeping problem size intact of λ-GSD. The modified 
version of λ-GSD to alleviate the ill-conditioned problem 
can be presented as follows.  

Consider a real-valued underdetermined system 
 y Hx v  in (1) where 2<rank( )=m<n. Partition H

1 2H = [H  H ]  where 1 2H , H  are  and ( 2m m  )

2)(m n m  
m m

 matrices respectively, instead of 

  and (m n m)   in the original λ-GSD (5). Then 

partition T
1 2[  ]T Tx x x  so that 1 2[  ]y H H T

1 2[  ]T Tx x  

v . Adding an equation 2 2  0 x x  where 0 is a 
zero-vector with length (n-m+2) andl >0 is a weighting 
factor, the transformed new ILS problem becomes, 

2
11 2

2( 2) ( 2) 2
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0    n n m n mx A Z       
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y xH H
0 xI

 

 2 22
22 2

min
nx A Z


 

  y Hx x  

(7) 
Again, SD algorithms then can be used on (7) to solve 

the transformed full-column-rank ILS problem. Note that 
the transformation in (7) appears very analogous3 to that 

3The only difference in transformation is the length of (n-m+2) in 2x
is used in improved version of λ-GSD, instead of (n-m+1) in [7]. Using 
(n-m+2) in real-valued ILS problem is actually equivalent to using 
((n-m)/2+1) in corresponding complex-valued problem; i.e,, “+1” is
assumed to operate in complex-valued domain, whilst [7] applies “+1” 
directly on real-valued domain. 

Copyright © 2010 SciRes.                                                                                IJCNS 



P. WANG  ET  AL. 129                                    
 

)

used in [2], i.e., (6), yet they are distinct for the case of 
high QAMs: the improved version of λ-GSD keeps the 
problem size intact for high QAMs and hence SD algo-
rithm is directly applied on (7) without further transfor-
mation. Performance of the modified approach can be 
analyzed following the analysis for λ-GSD in [13], and 
the conclusions are similar. Specifically, for con-
stant-modulus modulations, the modified GSD can 
achieve exact ML performance and for high QAMs, the 
choice of λ has to be sufficiently small to keep the per-
formance close to optimal. Here we omit the detailed 
upper bound analysis for simplicity and only provide the 
conclusions for a  (x x x xR T R T 

21) /x x sT R E     

 complex linear 

system using uncoded square M-QAM with average 
symbol energy Es: Approximately, assuming ε denotes 
the difference in the upper bound error probability be-
tween λ-GSD and ML performance, the upper bound for 

λ is . 
1/21/4(32 ) 3( 


Compared to original λ-GSD, we expect the improved 
version is more efficient as it has better transformed ma-
trix structure, which can be seen from the illustrative 
histogram of condition number in Figure 1(c) for the 
transformed 14x12 real-valued matrices in the improved 
version of λ-GSD over 104 runs for a QPSK MIMO sys-
tem. We can see that the condition number in this exam-
ple is centered at around 6x103. Compared to 8x103 in 
Figure 1(b), the ill-conditioned situation gets alleviated. 
The complexity efficiency of the improved version of 
λ-GSD will be illustrated in Section 5 via simulations. 
 
4. Selection of Design Parameters for the 

GSD Algorithms  

It was mentioned in [6,7] that there may exist an optimal 
value for the design parameter in their GSD algorithms. 
It is very hard, if not impossible, to derive a closed-form 
expression for the optimal value in a strict sense. In this 
section, alternatively, we propose one criterion to choose 
design parameters for these GSD algorithms, which en-
ables the underlying algorithms with high efficiency. The 
proposed criterion also works for the improved version 
of λ-GSD algorithm in QPSK systems, since the under-
lying transformation shares similarity with that for GSD 
in [7]. Therefore, we mainly derive the design parameter 
for the improved version of λ-GSD in QPSK systems for 
simplicity, which can be applied to GSD in [7] as well. 
Note that for high QAMs, the selection of the design 
parameter for the improved version of λ-GSD is limited 
by the upper bound as mentioned in previous session. 

For SD searching, if the first point found is closer to 
ML point, the search tends to be faster [15]. For the im-
proved version of λ-GSD and GSD in [6,7], the first 
point obtained in search is different for various values of 
λ. Let us consider the transformation (5) of GSD [6] first. 

Since the first point using Shnorr-Euchner enumeration4 
is the midpoint, hence, the elements of the first point can 
be written as [15]  

_ , _ ,1( ) / ,   n
init k k k i init i k ki kx y R x R for k n      , ,1 , 

         (8) 
where  is the ZF-DFE point [15] for the trans-

formed ILS problem; 

_init kx
( )T

ky  Q y k  where( ,R ) are the 

resulted matrices after QR decomposition of the trans-
formed matrix; is the (i,j)-th element of  and  

is the equivalent received vector for the transformed ILS 
problem. Then at k=n, based on (5), we have 

Q
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(9) 
Clearly,  depends on λ. From (8) and (9), we _init nx
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Figure 2. Avg. searching FLOPS vs. λ @ 2x4 MIMO, 
16QAM, 28dB, 104 runs. 
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Figure 3. Avg. searching FLOPS vs. λ @ 4x8 MIMO, QPSK, 
12dB, 104 runs. 
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

know that when λ is 0, the first element of (9), , 

is the first element of ZF-DFE point of the original ILS, 
i.e, ; Thus, the first point, , is 

its ZF-DFE point. On the other hand, when λ is equal 

to

_init nx

initx_init n zf dfe n
x x  

1/ s , where s  represents the SNR ratio, (9) be-

comes which is 

the first element of MMSE-DFE point for the original 
ILS, i.e,  and  is the MMSE- 

  1
_ /T T

init n n n s
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   

H H I H y

_init n mmse dfe n    initx

x 

x x

DFE point. It’s known that MMSE detector is the best 
linear estimator to the ILS problem based on mean- 
square error criterion and MMSE-DFE is generally 
closer to the optimal ML point than ZF-DFE; Using 
MMSE-DFE point as the first point in the searching pro-
cedure could lead to a fast convergence [15]. Therefore, 

to achieve high efficiency, we suggest using 1/ s   

in GSD [6], so that the first valid point is the MMSE- 
DFE point of the original ILS. 

Next, we continue to derive the suggested value of λ 
for the improved version of λ-GSD for QPSK system as 
follows. From (8), we obtain  in the improved 

version of λ-GSD: 
_init nx
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Comparing with the first element of MMSE-DFE 
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(11) 

We would like to choose λ such that (10) and (11)  

are as similar as possible. Thus, we propose to choose 

λ such that the two following matrices, 

in (10) and  

 in 
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(11) are as similar as possible. One way to measure the 
similarity between the two matrices is the norm of the 
difference. Here we use Frobenius norm to measure the 

difference and choose λ to minimize 1 2 F
A A , i.e.,  
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Clearly, when / [( 2) ]sn n m    , 1 2 F
A A  

achieves the minimum, zero.  
 
5. Illustrative Results 

This section illustrates the merits of the improved ver- 
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Figure 4. Avg. searching FLOPS vs. λ @ 4x8 MIMO, QPSK, 
12dB, 104 runs. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
4.5

10
4.6



A
vg

. S
ea

rc
h

in
g

 F
L

O
P

S

 

 

Improved -GSD

 
Figure 5. Avg. searching FLOPS vs. λ @ 4x8 MIMO, QPSK, 
12dB, 104 runs. 

4Shnorr-Euchner enumeration refers to the ordering of the integer poi-
nts in each layer in a zig-zag manner, which is more efficient than nat-
ural ordering and recommended to be used for SD searching recently.
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]

sion of λ-GSD and verify the efficiency of the selection 
of design parameter for the improved version of λ-GSD 
and GSD [6] via simulation in a flat fading underdeter-
mined MIMO channel with n transmit and m receive 
antennas (m<n ). In simulations, we use the “acceler-
ated” standard SD algorithm in [17] as the sub-algorithm 
for GSDs. The received signal can be represented 
as , where  is the transmitted vector from 

M-QAM and  is an  AWGN noise vector with 
varianceE .  is an underdeter-

mined  matrix where  follows Rayleigh fad-

ing model~ ( . We define 

 y Hx v

H

m´

x

m
22 ms I

)

v
( )v v

n

CN

1´
H=

0,1

[ ijh=

ijh

1010 log ( /sSNR nE  

2(2 ))  dBq , where Es is the average M-ary QAM 

symbol energy. Note that the complex model would be 
transformed into an equivalent real model with 2n un-
knowns (from L M= -PAM equivalently) before us-
ing . The average searching FLOPS are 
counted as complexity measurement for simulation 
comparison for the GSDs. 

GSDl-

Figure 2 provides the average searching FLOPS com-
parison between the original λ-GSD and the improved 
version for various λ values under a 2x4 16QAM 
flat-fading MIMO scenario at 28dB. Note that the upper 
bound for λ in these two GSD algorithms with ε=1% is 
0.0167 and 0.0149 respectively. We can see that the 
complexity is reduced by about 5% with the better struc-
ture. Besides, Figure 2 indicates that in the improved 
version of λ-GSD for 16QAM, the complexity is quite 
insensitive to the choice of the design parameter λ as 
long as the value of λ is within the upper bound, similar 
to the case of the original λ-GSD. 

Figure 3 plots the complexity comparison of three 
GSD algorithms for 4x8 QPSK flat-fading MIMO sce-
narios at SNR=12dB, including the original λ-GSD, the 
improved version and GSD in [6] (i.e., GSD-CT). Figure 
3 shows the average searching FLOPS w.r.t. various 
values for the design parameter in all the three GSD al-
gorithms for QPSK system. We can see that the com-
plexity of the original λ-GSD is insensitive to the choice 
of the design parameter; yet the other two GSD algo-
rithms are more sensitive to the design parameter and 
apparently there is an optimal value for the lowest com-
plexity as expected. 

Thus, we calculate the λ =1/ s  value for a 4x8 

MIMO QPSK system at 12dB and the resulted value for 
λ is λ0=0.710468. Then we simulate the complexity for 
different λ values in the range (0.1, 2) in Figure 4, which 
indicates that the lowest complexity is achieved ap-
proximately at λ0=0.710468, i.e., choosing λ equal to λ0 
can lead to very good efficiency. Correspondingly, we 

calculate the sλ = n / [(n - m + 2)γ ]  value of the im-

proved version of λ-GSD for the same 4x8 MIMO QPSK 
system at 12dB and the resulted value for λ is λ0= 0.8987. 

Then we simulate its corresponding complexity for dif-
ferent λ value in the range of (0.1, 2). Figure 5 indicates 
that the lowest complexity is achieved for λ around λ0, 
i.e., choosing λ equal to the suggested value of λ0= 
0.8987 also can lead to very good efficiency for the im-
proved version of λ-GSD.  
 
6. Conclusions  
 
An improved version of λ-GSD algorithm was first pro-
posed for underdetermined linear systems by transform-
ing the original problem into a full-column-rank one with 
better structure, so that standard SD can be efficiently 
applied. As the introduced transformation maintains the 
original problem dimension and has better system struc-
ture than the original one, lower complexity can be ob-
tained compared to its counterparts, especially for high 
QAMs. Selection of design parameter  was then stud-
ied for the improved version of λ-GSD. The resulted 
systematic approach to select the design parameter can 
also be used for GSD in [6], [7] in which the design pa-
rameters were only selected randomly or based on ob-
servations. Simulation results confirmed the high effi-
ciency achieved by such choices of design parameters for 
these GSDs. 
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