
Journal of Geoscience and Environment Protection, 2023, 11, 30-55 
https://www.scirp.org/journal/gep 

ISSN Online: 2327-4344 
ISSN Print: 2327-4336 

 

DOI: 10.4236/gep.2023.117003  Jul. 12, 2023 30 Journal of Geoscience and Environment Protection 
 

 
 
 

Meteorological Drought Detection and Forecast 
Using Standardized Precipitation Index and 
Univariate Distribution Models: Case Study of 
Bamako, Mali 

Alikalifa Sanogo1*, Prince Appiah Owusu1, Roland Songotu Kabange1, Bakary Issa Djire2,  
Racheal Fosu Donkoh1, Nasser Dia1 

1Department of Civil Engineering, Faculty of Engineering and Technology, Kumasi Technical University, Kumasi, Ghana 
2Department of Mathematical Sciences, Clark Atlanta University, Atlanta, USA 

 
 
 

Abstract 
As an extended period of unusually dry weather conditions without sufficient 
rain, drought poses enormous risk on societies. Characterized by the absence 
of precipitation for long periods of time, often resulting in water scarcity, 
droughts are increasingly posing significant environmental challenges. Drought 
is therefore considered an important element in the management of water 
resources, especially groundwater resources during drought. This study there-
fore sought to investigate the rainfall variability and the frequency of drought 
for the period 1991 to 2020 in Bamako based on monthly rainfall data from 
Bamako-Senou gauge station. The standardized precipitation index (SPI) for 
12-month, 6-month and 3-month timescales and the SPI for annual totals 
were used to characterized drought in the study area (Bamako). Univariate 
parametric probability distributions such as Normal, Log-normal, Gumbel 
type I and Pearson type III (P3) distributions were fitted with drought va-
riables (severity and duration) for future planning and management. Non- 
parametric test such as Mann-Kendall trend test was also used to detect trend 
in annual rainfall data. The results showed that based on 12-month SPI, Ba-
mako experienced two (02) extreme droughts one in July 2002 (SPI = −2.2165) 
and another in June 2015 (SPI = −2.0598). Drought years represented 46.67% 
for the overall periods according to the SPI for annual totals. The result fur-
ther indicated that based on the goodness of fit test, the P3 distribution 
represents the best fitted distribution to both drought severity and duration 
over Bamako. Bamako is expected to experience several severe severities with 
higher and shorter duration in the future. Severities with 1, 2, 6, and 10-month 
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duration had return periods ranged from 2.4 to 3.8 years, while 5, 10, 20, 25, 
50, and 100-year return periods had 18.51, 26.08, 33.25, 35.50, 42.38, and 
49.14 severities, respectively, and durations associated to these severities were 
19.8, 26.9, 33.5, 35.6, 42, and 48.2 months, respectively.  
 

Keywords 
Standardized Precipitation Index (SPI), Rainfall Variability, Univariate 
Probability Distribution, Drought, Bamako 

 

1. Introduction 

Atmospheric temperature rise may affect rainfall pattern and surface tempera-
ture, which could consequently affect water availability in some regions with 
high risk of droughts and floods. Drought is characterized by lack of precipita-
tion for an extended period, usually resulting in water scarcity. Most African 
countries, more precisely sub-Saharan countries, are projected to be affected by 
the most devastating impacts due to their geographical position, low income, 
and low capability to adapt to these rapid changes among others (Boatemaa et 
al., 2020). However, recent trends on climate variability and change are found to 
strongly affect societal activities across Mali (World Bank Group, 2011), as a 
climate report found that the mean annual temperature across Mali has in-
creased by 0.7˚C since 1960 with an average rate of 0.15˚C/decade. The mean 
annual temperature across Mali was however, projected to increase by 1.2˚C to 
3.6˚C in 2060s, and by 1.8˚C to 5.9˚C in 2090s while the rate of warming was 
projected to be similar across all seasons (World Bank Group, 2011). Bamako is 
part of the Sudanian zone in Mali. Climate can be described as having a rainy 
season which lasts up to six (6) months with a maximum peak generally in Au-
gust, and one (1) dry season occurring between February to the second week of 
May. Rainfall is primarily controlled by the oscillation of the Intertropical Con-
vergence Zone (ITCZ) across the northern and southern African continent, 
usually bringing rainfall to South Mali from June to October each year (World 
Bank Group, 2011). The West African Sub-region is typically known to record 
significant variability in rainfall especially as was observed during the 20th cen-
tury (Obuobie et al., 2013; Speth et al., 2010). The West African Monsoon 
(WAM) is mainly affected by increased atmospheric temperatures caused by 
higher greenhouse gases concentrations (Christensen et al., 2013; Nikulin et al., 
2012).  

Drought is considered as a climatic extreme affecting more people than any 
other form of natural disaster (Wilhite, 2000). It is therefore classified as a natu-
ral hazard that might have a negative effect on humans, animals and the envi-
ronment. Many people have been affected by drought in Africa with famine be-
ing the most negative effect (Scrimshaw, 1987), and epidemics and land degra-
dation (UN, 2008; Bandyopadhyay et al., 2012). Drought is considered among 
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one of the most devastating natural disasters that caused a significant number of 
deaths in the past few years. It was recorded that 450,000 and 325,000 people 
were killed in 1984 and 1974 droughts respectively (UN, 2008). Among the re-
gions affected were Ethiopia, Soudan, and the Sahel region (UN, 2008). Droughts 
and floods are the most important recurring risks in Mali, with the most severe 
effects happening in the southern region (World Bank, 2019). On average, 0.4 
million people are affected by drought every year, this number can be substan-
tially higher in dry years (World Bank, 2019). Flooding poses a threat to low-
land, highland, and urban areas, affecting 500,000 people on average each year. 
A much smaller number of people are at risk from landslides (World Bank, 2019). 
Future population and economic developments in Mali, together with changes 
in climate-related hazards, are predicted to amplify the effects of droughts and 
floods (World Bank, 2019). In Mali, 400,000 people live in areas expected to ex-
perience water scarcity each year, predominantly in the southern regions like 
Bamako (World Bank, 2019). Groundwater is nearly entirely used for drinking, 
residential use, and livestock watering, and it is accessed via both conventional 
and contemporary wells (USAID, 2021). It is estimated 55 percent of the popula-
tion in Bamako depend on groundwater (USAID, 2021). Several projections of 
Mali’s drought indicated Bamako is at the medium-high risk of drought. Ground- 
water demand may increase in the future given the high rate of projected popu-
lation growth and more frequent severe droughts (USAID, 2021). Despite ex-
pected increases in precipitation, hotter temperatures could increase evaporation 
and decrease surface water supply in the regions like Bamako (Sanogo et al., 
2023). Increased interannual variability in precipitation and more frequent drought 
will impact Bamako groundwater availability and population at risk (USAID, 
2021).  

Drought is also one of the main natural sources of economic, agricultural, and 
environmental damage (Burton et al., 1978; Wilhite, 1993). For instance, the av-
erage annual cost of drought damage in agricultural sector in the United States is 
estimated between $6 and $8 billion (Mirabbasi et al., 2013). Drought is obvious 
after a long period without precipitation, but accurately quantify its characteris-
tics in terms of intensity, magnitude, duration and spatial extent is extremely 
difficult (Vicente-Serrano et al., 2010). When a drought episode occurs, moisture 
shortages are noticeable in many drought variables such as streamflow, soil mois-
ture, precipitation, groundwater levels, snow pack and reservoir storage (Mirab-
basi et al., 2013). Among drought characteristics computation, drought severity 
is the most difficult variable to accurately quantify as it is a mixture of the dura-
tion, magnitude and spatial extend of the drought (Dracup et al., 1980).  

Over the years, meteorologists and climatologists have developed and used 
many drought indices around the world (WMO, 2012). These ranged from sim-
ple indices such as normal precipitation’s percentage and precipitation percen-
tiles to more complex indices such as the Palmer Drought Severity Index (PDSI). 
The PDSI relies on the demand and supply concept of the water balance equa-
tion, considering moisture supply, precipitation, runoff and evaporation demand 
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at the surface level (Vicente-Serrano et al., 2012). One of the disadvantages of 
using the PDSI is its fixed temporal scale, which obviously influences the short-
coming of drought. In fact, available evidences such as (Szalai et al., 2000; Khan 
et al., 2008, and Vicente-Serrano, 2007) indicated that the reaction to the condi-
tions of drought of river discharge, soil moisture level, reservoir storage, ground-
water level and other environmental and economic variables occurs at different 
time scales. An evaluation of the meteorological droughts is fundamental for the 
desertification prediction and for the management of water resources, particu-
larly groundwater resources. One of the most used indices to assess drought is 
the standardized precipitation index (SPI) due to its simplicity and effectiveness 
to evaluate drought in various time scales (Reyes et al., 2022). The World Me-
teorological Organization (WMO) considers the SPI as a widespread drought 
index because of its effectiveness to estimate for various reference periods adapting 
to the difference response times of typical hydrological characteristics to preci-
pitation (Mohammed et al., 2017). The SPI can be used as a drought severity in-
dicator or excessive wetness as well as in the drought and flood development 
emergency plans (Griddings et al., 2005).  

The main advantage of using the SPI is that it allows comparison of droughts 
at any regional scale, while its minor disadvantage is that it computes only rain-
fall as an input variable. However, other pertinent factors and meteorological 
parameters in drought evaluation used in the computation of other indices are 
not considered (Sobral et al., 2019). In this study, the SPI is aggregated at various 
timescales to determine seasonal periods that occurred in Bamako during the 
last thirty (30)-year from 1991 to 2020. The main objectives of this study are 
therefore to understand rainfall variability in Bamako that occurred during the 
last 30-year using the 12-month, 6-month and 3-month SPI and the SPI for an-
nual totals. Four (4) commonly univariate probability distribution functions 
namely the Normal, Log-normal, Gumbel type I and Pearson type 3 distribu-
tions were fitted to drought variables (severity and duration), the best fitted dis-
tribution based on the goodness-of-fit test was used to compute the upcoming 
return periods of severity associated with durations. 

2. Materials and Methods 
2.1. Source of Data 

The main source of data used in this study was from the National’s Meteorolog-
ical Agency of Mali, MALI-METEO which provided monthly rainfall data from 
Bamako-Senou climate station for a 30-year period (from January 1991 to De-
cember 2020). Though an extended rainfall data beyond the thirty (30)-year pe-
riod would have been more useful for accurate and reliable results in this study, 
only 30-year data was made available by MALI-METEO.  

Monthly rainfall data from Bamako-Senou climate station were used to com-
pute the standardized precipitation index (SPI) at 12-month, 6-month and 3- 
month timescales and the SPI for annual totals, respectively. Monthly rainfall 
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data from Bamako-Senou climate station was examined statistically to assess rain-
fall variability in the study area (Table 1) using central tendency, dispersion 
(standard deviation, coefficient of variation) and distribution (skewness and kur-
tosis). Bamako-Senou rain gauge station characteristics such as longitude, lati-
tude and elevation are provided in Table 2. 

2.2. Study Area 

Bamako is the capital city of the Republic of Mali, and Mali’s administrative 
center and located at both sides on the bank of Niger river at 8˚0'0''W and 
12˚38'21''N (Figure 1). The study area has a land area of 245 Km2, and about 1.3 
million inhabitants, while the population density is 5300 people per square ki-
lometer (Keita et al., 2020). According to the World Capital Cities accessed on 
23/05/2019, the greater Bamako population is about 3.1 million of people with a 
density of 10,000 people per square kilometer. The climate can be described as 
one rainy season, which lasts almost up to six (6) months from the middle of 
May to October each year, peaking usually in August. The dry season however, 
occurs between February and the second week of May. Bamako is part of the 
Sudanian zone in Mali, and has sufficient rainfall, fertile soils, and abundance of 
trees. Rainfall is largely controlled by Intertropical Convergence Zone (ITCZ) 
oscillations across the North and South of the African continent, usually bring-
ing rainfall to South Mali from June to October each year (World Bank Group, 
2011). 

The average monthly rainfall during the rainy season usually ranges from 54.1 
mm in May to 290.2 mm in August, with a mean annual rainfall of 991.3 mm. 
Daily maximum and minimum temperature variations of 40˚C and 17˚C exist in 
April and December respectively, with an average annual figure of 29˚C in 
March. The warmest and coolest months of the year are respectively April and 
May, and December to January representing the months without rain (Keita et 
al., 2020). Bamako can receive more than 600 mm of rainfall during the rainy 
season and flooding is common. Located in a valley covered with sandstone de-
posits, Bamako has two types of soil: one caused by rock formation, and the  
 
Table 1. Descriptive statistics of annual rainfall series in Bamako. 

Annual Rainfalls (1991-2020) 

Minimum 
(mm) 

Mean 
(mm) 

Maximum 
(mm) 

Standard 
deviation 

(mm) 

Coefficient of 
Variation 

(%) 
Skewness Kurtosis 

750.5 946.77 1205.1 133.374609 14.09 0.311038 −0.987421 

 
Table 2. Bamako-Senou rain gauge station characteristics. 

Station ID Longitude Latitude Elevation (m) 

Bamako-Senou 61291 7.95˚W 12.53˚N 380 
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Figure 1. Study area map locating Bamako-Senou climate station. 
 
other due to lateralization and alluvial formation occupying the primary and 
secondary river beds and tributaries (Keita et al., 2020). Bamako’s vegetation is 
largely savannah forest and rivers (Keita et al., 2020). The topography of the 
Bamako area is given in Figure 2. 

2.3. Methods 
2.3.1. Coefficient of Variation (CV) 
Variation of the mean annual rainfall for the entire study area was measured 
using a coefficient called coefficient of variation (CV). The CV is described 
as: 

100%σ
= ×
µ

CV                         (1) 

where σ and μ are the standard deviation and mean of the annual rainfall respec-
tively. 

2.3.2. Standardized Precipitation Index for Annual Totals and Annual  
Maximum 

The standardized precipitation index (SPI) relies on the likelihood of precipita-
tion for any timeframe based on lasting precipitation data for a given period 
(WMO, 2012). The lasting precipitation record is fitted to a probability distribution  
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Figure 2. Topography of the study area. 
 
and then transformed into a normal standard distribution that defines the SPI 
(WMO, 2012). The probability distribution that defines the SPI is the gamma 
distribution function which can be expressed as (Achite et al., 2021): 

( ) ( )
11 eα− − β

α=
β Γ α

xg x x                     (2) 

where α and β are the shape and scale parameters respectively. x is consecutive 
precipitation and Γ(α) is the gamma function. The gamma function is defined by 
the following: 

( ) 1
0

e d
∞ − −Γ = ∫ a ya y y                       (3) 

The gamma distribution’s parameters α and β are estimated from the precipi-
tation time series as  

( ) ( )ln1 41 1 , ln ,
4 3

 
α = + + = − β =   α 

∑ ixA xA x
A n

         (4) 

where x is the mean precipitation value quantified; n is the number of precipita-
tion; ix  is the precipitation’s quantity in a sequence of data. 

( ) ( )
( )

1
ˆ0 0

1d e dˆ ˆ
α − − β= =

β Γ α∫ ∫ pro prox x x
a

G x g x x x x             (5) 
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To account for the chance of no precipitation, a mixture probability distribu-
tion is employed, for which the cumulative probability becomes 

( ) ( ) ( )1= + −H x q q G x                      (6) 

where q is the probability that the precipitation’s quantity equals zero.  
The SPI computation is presented on the basis of the following equation: 

( )

( )

2
0 1 2

2 3
1 2 3

2
0 1 2

2 3
1 2 3

, 0 0.5
1

SPI
, 0.5 1.0

1

  + +
− − < ≤  

+ + +  = 
 + ++ − < ≤  + + + 

c c t c tt H x
d t d t d t

c c t c tt H x
d t d t d t

         (7) 

where t is determined as 

( )( )
( )

( )( )
( )

2

2

1ln , 0 0.5

1ln , 0.5 1.0
1

  
   < ≤  
  

= 
  

  < ≤
  − 

H x
H x

t

H x
H x

              (8) 

And 0 1 2 1 2, , , ,c c c d d  and 3d  are coefficients whose values are: 

0 1 2

1 2 3

2.515517, 0.802853, 0.010328,
1.432788, 0.189269, 0.001308

= = =

= = =

c c c
d d d

 

The SPI for annual totals is computed as: 

SPI −µ
=

σ
i

i
x

                          (9) 

where SPIi  is the SPI for the year i. 
μ and σ being the mean and standard deviation, and ix  is the areal rainfall at 

the year i. Drought classification table based on SPI is given in (Table 3) below. 
Drought characteristics such as the duration, magnitude, and intensity were 

computed for the entire study area using the 12-month, 6-month and 3-month 
SPI timescales.  
 
Table 3. Drought classification based on SPI value and corresponding event probabilities. 

SPI value Drought class Probability (%) 

2 or more Extremely wet 2.3 

1.5 to 1.99 Very wet 4.4 

1.0 to 1.49 Moderately wet 9.2 

0.99 to 0.99 Near normal 68.2 

−1.0 to −1.49 Moderately dry 9.2 

−1.5 to −1.99 Severely dry 4.4 

−2 or less Extremely dry 2.3 
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2.3.3. Drought Magnitude 
Drought magnitude is the absolute SPI summation for each identified drought 
occurrence. It therefore represents drought severity (S) in this study. Severity for 
drought occurrence i, ( )1,2, ,= �iS i n  is assumed to be positive, as provided by 
(McKee et al., 1993). 

,
1
SPI

=

= −∑
D

i i t
t

S                        (10) 

2.3.4. Drought Duration  
Drought duration is the time between the onset and end of a drought occurrence 
in the year where SPI becomes positive.  

2.3.5. Drought Intensity  
Drought intensity is the SPI value of less than negative unity (−1) of a drought 
occurrence. Peak drought intensity is described as the lowest drought episode’s 
value. Mean intensity refers to magnitude split by drought length.  

2.3.6. Drought Frequency  
Drought frequency is defined as the number of times a drought event happens in 
a specified number of years over a given times scale (Boatemaa et al., 2020). 
Drought frequency was computed as: 

100%= ×i
NF
n

                       (11) 

2.3.7. Inter-Arrival Time (Td) of Drought  
Inter-arrival Time Td is the period elapsed between the onset of two successive 
drought events, or Td represents the sum of non-drought and drought dura-
tion (Ganguli et al., 2012). Figure 3 illustrates drought characteristics using the 
SPI. 
 

 

Figure 3. Drought characteristics illustration computed using the SPI. 
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2.3.8. Fitting Probability Distribution of Drought Variables 
For fitting drought variables probability distribution among parametric distribu-
tions, Normal, Log-normal (LN), Gumbel type I, and Pearson type 3 (P3) distri-
butions were assessed for fitting drought variables (Table 4). For the non-para- 
metric distribution, the Mann-Kendall trend test was used to perceive statistical 
significance increasing or decreasing trend in annual rainfall series over the study 
area. 

A closed form expression for the cumulative distribution function (cdf) of the 
P3 distribution is not available (Maidment, 1993). Tables or approximations are 
used to provide frequency factors ( )γPK  which are the pth quantle of a stan-
dard P3 variate with skew coefficient γ, mean zero (0) and variance one (1) 
(Maidment, 1993). For any mean and standard deviation the pth quantile can be 
expressed as: 

( )= µ + σ γP Px K                        (12) 

With,  

( )
322 21

6 36
γ γ

γ = + − − γ γ 

p
P

z
K                  (13) 

where zp is the pth quantile of the zero-mean and unit-variance. 
From Equation (12), 

( ) − µ
γ =

σ
P

P
xK                        (14) 

From the two (2) equations of ( )γPK , (13) and (14) zp is expressed as: 
 

Table 4. Summary table of distributions used to fit drought severity and duration over Bamako. 

Distribution Pdf and cdf Range Moments 

Normal ( )
2

1 1exp
22

  −µ
 = −  

σσ π    

x

xx

x
f x  −∞ < < ∞x  µx  and 2σx ; 0γ =x  

Lognormal ( )
2

ln1 1exp
22

  −µ
 = −    σ σ π   

y

yy

x
f x

x
 0>x  

2

exp
2

 σ
µ = µ +  

 

y
x y , ( )2 2 2exp 1 σ = µ σ − x x y ; 

33γ = +x x xCV CV  

Pearson type 3 ( ) ( ) ( )

( )

1 eβ− −λ −βλ −
=

Γ β

 xx
f x  0β >  

2
2 

β =  
γ x

, 
β

λ =
σx

 and β
= µ −

λ
 x  

Gumbel 
( ) 1 exp exp − ξ − ξ = − − −  α α α  

x xf x  

( ) exp exp − ξ = − −  α  

xF x  
−∞ < < ∞x  

0.5772µ = ξ + αx  
2

22
2

1.645
6

π α
σ = ≈ αx ; 1.1396γ =x  

* µx , 2σx  and γ x  are the mean, standard deviation and skewness of x, respectively. ln=Y x ; parameters ,λ β  and   
represent the scale, shape and location respectively of the distribution, and Γ is the gamma function. 
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1 3
6 61

6 2
 − µ γ γ  = + + −  γ σ γ  

P
p

xz                 (15) 

where, 

( )( ) ( )3
3

11 2 =

γ = −
− − ∑

n

i
i

n x x
n n s

                 (16) 

Weibull plot formula was used to compute predicted values of the drought 
severity and duration. To test the goodness of fit between Normal, Log-normal 
(LN), Gumbel type I, and Pearson type 3 (P3) distributions, the test statis- 
tics such as mean square error (MSE), mean absolute error (MAE), root mean 
square error (RMSE), relative root mean square error (RRMSE), correlation coef-
ficient (CC) and coefficient of determination (COD) were used to select the best 
fitted distribution of the drought severity and duration series as shown in Table 
5. 

2.3.9. Return Period of Drought Duration or Severity for Univariate  
Distribution 

The return period is defined in water resources engineering and hydrology as the 
average passed time between occurrences of an event with a certain magnitude 
or greater (Ganguli et al., 2012). However, when applied to drought the concept 
of return period, it is described as the average time between occurrences with a 
certain magnitude or less (Ganguli et al., 2012). The return period of drought 
severity or duration in univariate context is defined as: 

( ),
, ,

µ
=

≥
dT

S D
S D S D

T
P d D

                     (17) 

where µ
dT  is the mean inter-arrival time of the drought which can be estimated 

from drought data. 
 
Table 5. Statistical parameters for model selection. 

Statistics Formula Best Value 

Mean Square Error ( )2

1

1
=

= −∑
N

i i
i

MSE O P
N

 0 

Mean Absolute Error ( )
1

1
=

= −∑
N

i i
i

MAE O P
N

 0 

Root Mean Square Error ( )2

1

1
=

= −∑
N

i i
i

RMSE O P
N

 0 

Relative Root Mean Square Error 
2

1

1
=

 −
=  

 
∑

N
i i

i i

O P
RRMSE

N O
 0 

Correlation Coefficient 
( ) ( )

( ) ( )2 2

− −
=

− −

∑
∑ ∑

i i

i i

O O P P
CC

O O P P
 −1 or 1 
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2.3.10. Mann-Kendall (M-K) Trend Test 
Studies show that Mann-Kendall (M-K) trend test is one of the most widely used 
method for trends detection in climatologic and hydrologic time series (Mavro-
matis et al., 2011). The test was originally derived by Mann in 1945, and the test 
statistic called Kendall’s tau statistic was later derived by Kendall in 1975. Evalu-
ation of M-K S statistic is by the following equation: 

( )
1

1 1
sgn

−

= = +

= −∑ ∑
N N

j i
i j i

S x x                     (18) 

where, 

( )
1, if 0

sgn 0, if 0

1, if 0

+ − >


− = − =
− − <

j i

j i j i

j i

x x

x x x x

x x

                (19) 

jx  and ix —the annual values in the jth and ith years. 
If 10<N , values of |S| are compared directly to the theoretical distribution 

of S derived by Mann and Kendall. The two (2)-tailed test is used in M-K trend 
test to know whether trends are significant. The null hypothesis (H0) is re-
jected based on the M-K test for the alternative hypothesis (Ha) if the absolute 
value of S ≥ Sα/2, where Sα/2 is the smallest S, which has the probability less than 
α/2 to appear in case of no trend (Karmeshu, 2012). 

For 10≥N , S is approximately normally distributed, where the mean and 
variance are as follows: 

( ) 0=E S                          (20) 

Variance (σ2) for the S-statistic is computed as follows: 

( )( ) ( )( )2 1 2 5 1 2 5
18

− + − − +
σ = ∑m

iin n n t i i
           (21) 

where it —the number of ties to extent i. The summation term is then used only 
if the data series contains tied values. Note that the standard test Zs is computed 
as follows: 

1 for 0

0 for 0
1 for 0

− > σ
= =
 + <

σ

s

S S

Z S
S S

                    (22) 

The null hypothesis (H0) indicates that there is no trend and it is rejected if 
the calculated value Zs is greater than or equal to some critical value Zcr, where 
Zcr is given at some significant level α in P-value table. Kendall’s τ coefficient is a 
statistic used to measure the association between two variables, and used to de-
termine the existing relationship between two series of data. The Kendall rank 
correlation coefficient τ is computed as: 

( )
2

1
τ =

−
S

n n
                        (23) 
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2.3.11. Sen’s Slope Estimator 
The magnitude of M-K trend test is determined by a method derived by Theil 
(1950) and Sen (1968). The magnitude is computed as follows: 

with
 −

= >  − 

j i

j i

y y
Q med j i

x x
                 (24) 

3. Results and Discussion 
3.1. Rainfall Variability in Bamako 

The mean annual rainfall recorded for the entire study period in Bamako was 
946.77 mm characterized by a low variability (CV = 14.09%). Bamako is covered 
by only one climate station (the Bamako-Senou rain gauge station) and rainfall 
variability is therefore considered homogeneous in this case in the entire area. 
Bamako generally receives lower amounts of rainfall compared to other Suda-
nian zones in Mali because it is close to the Sahel, just located to the north where 
rainfall amounts and durations are largely controlled by the Intertropical Con-
vergence Zone (ITCZ) which brings rainfall across the area once a year. The 
annual total rainfalls variation over Bamako is given in Figure 4 below. 

3.2. Standardized Precipitation Index (SPI) for Various  
Timescales and Annual Totals 

The SPI was used to identify the historical drought which occurred in Bamako 
during the last three (3) decades from 1991 to 2020 based on the 12-month, 
6-month and 3-month SPI timescales. Drought is defined when the SPI reaches a 
negative value and continues progressively until it becomes positive. Positive 
values of SPI are defined as wet period, based on this definition, the computed 
SPI for 12-month timescale revealed that Bamako experienced a serious extreme 
drought once in 2002 (SPI = −2.2165) and 2015 (SPI = −2.0598). However, based 
on drought classification of SPI, nine (9) severe droughts occurred during the 
years 1993, 2002, 2003, 2013 and 2015; forty one (41) moderate droughts and in  
 

 

Figure 4. Annual total rainfalls variation in Bamako from 1991 to 2020. 
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total 168 drought events occurred during 1991 to 2020 (Figure 5(a)). Fifteen 
(15) severity droughts were recorded during drought events with a severity mean 
value of 9.618505. The maximum severity drought occurring during drought 
events was Smax = 37.2467 and had a duration of 34 months (see Figure 5(a) and 
Table 4). The peak drought during the maximum drought severity was (SPI = 
−2.2165) and classified as extremely drought according to the drought classifica-
tion based on SPI. The most prolonged drought lasted for 36 months and had a 
severity of 31.9951 and a peak intensity of (SPI = −1.2984). 
 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Standardized precipitation index using different timescales. 
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Similarly, using the 6-month and 3-month SPI timescale, the number of drought 
events was 181 events for SPI-6 and 174 events for SPI-3 respectively. For the 
6-month SPI, six (6) events extremely drought was observed in the years 1993, 
2002, 2009, 2014 and 2018 with a peak intensity in 1993 (SPI = −3.715334). The 
most intense drought severity event was S = 22.4139 and had a duration of 32 
months (from 1996 to 1999), and considered as the longest drought spell during 
drought events (Figure 5(b)). Using the 3-month SPI, the peak drought intensi-
ty was identified in 1992 with a value of (SPI = −4.158466) and fifty (50) severity 
droughts were observed throughout drought events. The magnitude of the most 
severity droughts was S = 8.16114 with 8 months duration. The longest drought 
duration with 3-month SPI was eleven (11) months. 

The SPI for annual totals revealed the same peak intense drought that oc-
curred in Bamako in 2002s as 12-month SPI but with lower intensity SPI = 
−1.486670 (Figure 6). Drought years represent 46.67% for the overall period 
whereas wet years represent 53.33%. The most intense drought severity had an 
intensity of S = 3.435569 with three (3) years of duration from 2000 to 2002 
(Figure 6). The summary statistics of SPI using various timescales is shown in 
Table 6. 

However, based on previous literature on Sahel drought, many studies argued 
that almost all the Sahel countries experienced extreme decadal variability in 
rainfall during the twentieth century with devastating drought over 1970s and 
1980s (Taylor et al., 2017). In a recent study on recent trends in the regime of 
extreme rainfall in the Central Sahel Panthou et al. (2014) showed that the West 
African Sahel was characterized by a succession of three (3) Periods of roughly 
equal duration: the wet Period (P1) from 1950 to 1969; a severe drought period 
(P2) from 1970 to 1990 and the recent period (P3) from 1991 to 2010. The 
droughts of the recent period P3 observed in the Central Sahel match with al-
most all the droughts observed in the same period in this study (Figure 6). 
Droughts are a common hazard in Mali, as well as the broader Sahel area (Dou-
koro et al., 2022). They have led to some food emergencies in 1972-1974; 1983- 
1985; 2002-2003; 2011-2012 and 2015-2018 partly due to the 2015/2016 El Niño 
induced drought (Doukoro et al., 2022). 
 

 

Figure 6. The SPI for annual total rainfalls in Bamako. 
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Table 6. Summary statistics of SPI using different timescales. 

SPI timescales Climatic Variables Statistic (1991-2020) Value 

SPI-12 

Drought Number of drought events 168 

Drought Severity 

Mean 9.618505 

Standard deviation 12.366295 

Minimum 0.0942 

Maximum 37.2467 

Skewness 1.259743 

Kurtosis 0.556482 

Drought Duration 
(Months) 

Mean 11.2 

Standard deviation 11.760709 

Minimum 1 

Maximum 36 

Skewness 1.182199 

Kurtosis 0.446859 

SPI-6 

Drought Number of drought events 181 

Drought Severity 

Mean 4.138478 

Standard deviation 5.461377 

Minimum 0.00723 

Maximum 22.4139 

Skewness 1.550083 

Kurtosis 2.334523 

Drought Duration 
(Months) 

Mean 5.323529 

Standard deviation 6.366201 

Minimum 1 

Maximum 32 

Skewness 2.427510 

Kurtosis 8.298513 

SPI-3 

Drought Number of drought events 174 

Drought Severity 

Mean 2.178106 

Standard deviation 2.299336 

Minimum 0.0224 

Maximum 8.16114 

Skewness 1.184149 

Kurtosis 0.373987 
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Continued 

 
Drought Duration 

(Months) 

Mean 3.48 

Standard deviation 2.727337 

Minimum 1 

Maximum 11 

Skewness 1.280124 

Kurtosis 0.927982 

 
The Sahel climate has been extensively studied as a result of a prolonged 

drought’s period that commenced in the late 1960s and continued into the 1990s 
(Hulme, 2001). This dry spell in the Sahel region followed a wet incident in the 
1950s, and it was linked to severe droughts in the early 1970s and mid 1980s 
(Brooks, 2014). In 1990s, there was some relief from the dry conditions and pat-
tern in annual rainfall totals persisted into the early years of the twenty first 
century. The year 2003 was the year with most rainfall across much of the terri-
tory, resulting in flooding and landslides in some areas of the Sahel (Brooks, 
2014). The African Monsoon strength and position variation is known to be as-
sociated with the lasting climatic and environmental change in the Sahel (Brooks, 
2014). Another study such as Dai et al. (2004) on the recent Sahel drought con-
firmed that Sahel rainfall has recovered somewhat through 2003 though drought 
condition was on the rise in the region. 

The prevailing view of the Sahel drought in the past was that local human ac-
tivity was driving local climate in a positive feedback cycle between poor land 
use practices land denudation among others (Charney, 1975). Studies showed 
that through observation or models indicate that land use changes were ever 
large scale to affect regional climate (Biasutti, 2019). With models progress of 
the general circulation of the atmosphere, it is now accepted that the primary 
cause of extreme decadal variability in Sahel rainfall during the twentieth cen-
tury has been the variability of sea surface temperature (SST) (Zeng et al., 1999; 
Giannini et al., 2003 and Kucharski, 2013). The African Monsoon modulation 
through regional and global-scale patterns of sea-surface temperature (SST) has 
been considered throughout the twentieth century as the best reason for varia-
tions in Sahelian rainfall on multi-year to decadal timeframes (Brooks, 2014). 
However, through statistically based climatological studies, SST trends and Sa-
helian rainfall connections have been well established and used with some suc-
cess in periodic rainfall predictions in the area (Folland et al., 1986; Ward et al., 
1993). Folland et al. (1986) confirmed that during the instrumental records pe-
riod, Sahel dry conditions were linked with a specific configuration of global SST 
patterns characterized by positive (warm) anomalies in the northern Indian Oceans 
and southern hemisphere, and negative (cool) anomalies in the remaining north-
ern hemisphere oceans. Janicot et al. (1996) investigated the El Niño-Southern 
Oscillation (ENSO) influence on Sahelian rainfall and discovered that the corre-
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lations between Southern Oscillation and rainfall in the Sahel Index amplified 
during the 1970s and 1980s. However, this indicates an underlying mechanism 
by which ENSO influences the Sahel climate, in which changes in the atmos-
phere deep convection’s distribution derives from the warming shifting patterns 
at the ocean surface, reorganizing atmospheric motion and shifting the monsoon 
rainfall zones positions (Brooks, 2014).  

The West Africa rainfall variability is known to be influenced by the Atlantic 
Ocean (Hastenrath et al., 2011; Rodríguez-Fonseca et al., 2015) and the El Niño- 
Southern Oscillation’s (ENSO) influence on the West African Climate is consi-
dered to be linked to the region’s droughts. This was viewed to be an El Niño 
events’ justification which were unexpectedly recorded in the same period as the 
Sahelian drought in 1972-1973, 1982-1983 and 1997-1998. The El Niño effect on 
weather patterns also affected rainfall across the Sahel and West Africa in 2015, 
this could also be an explaination of the Bamako’s drought recorded in 2015.  

The 12-month SPI is known to have direct effects on streamflow, groundwater 
and reservoir levels at longer periods; whereas a 6-month SPI indicates seasonal 
to medium-term precipitation trends and is still considered to be more respon-
sive to conditions at this scale than the Palmer index. The 3-month SPI is also 
known to provide a seasonal estimation of precipitation (WMO, 2012). Trend 
analysis is used to determine whether there exists a significance increase or de-
crease trend over the study area Bamako. The Mann-Kendall trend test applied 
to the annual rainfall data showed an increasing trend in annual rainfall series 
but not significant at 5% and 10% significance levels (p > 0.05 and p > 0.1. The 
rate of increase trend according to the Sen’s slope estimator was 0.475 mm/year 
(Table 7). This rate of increase could have direct effect on drought mitigation if 
annual rainfalls vary with this magnitude in the future. Detecting any existing 
trend in precipitation or in rainy season across Mali was a subject of much de-
bate and reporting in the past years (World Bank Group, 2011), because Sahel 
rainfall is characterized by high variability on both annual and inter-decadal 
time scales, which makes trend difficult to identify, and due to the large model 
uncertainties in the past year (World Bank Group, 2011). Some inter-models 
suggested an increasing drought, while other individual models predicted humid 
period related to changing climate (World Bank Group, 2011). 

3.3. Return Period of Drought Severity and Duration Using the  
Best Fitted Distribution 

Weibull plot formula was used to compute predicted values of the drought se-
verity and duration. To test the goodness of fit between Normal, Log-normal  
 

Table 7. Summary of the Mann-Kendall trend test applied to the annual rainfall data. 

Area 
Mann-Kendall 

Statistic (S) 
Tau (τ) Sen’s Slope (Q) ZS 

Significance 
Level (α) 

p-value 
(Two-tailed test) 

Test 
Interpretation 

Bamako 9 0.02069 0.475 0.14273 0.05 0.44325 > 0.05 H0 accepted 
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(LN), Gumbel type I, and Pearson type 3 (P3) distributions, the test statistics 
such as mean square error (MSE), mean absolute error (MAE), root mean 
square error (RMSE), relative root mean square error (RRMSE), correlation 
coefficient (CC) and coefficient of determination (CoD) were used to select the 
best fitted distribution of drought severity and duration series. From the Table 8 
below, the P3 distribution passed the goodness of fit test for both drought sever-
ity and duration, it is therefore taken as the best fitted distribution over the study 
area (Bamako). Sharma and Panu (2015) on the analysis of the streamflow data 
from five rivers in Canadian prairies, fitted several probability distributions such 
as Pearson 3, the gamma (2-parameter), the exponential (1-parameter), the Wei-
bull 3 and Weibull (2-parameter) to drought length for the computation of re-
turn periods of drought length found that the Pearson 3 distribution is the most 
suitable distribution for describing the characteristics of return periods for 
drought length at varying truncation levels. Mishra and Desai (2005) found the 
Gumbel type 1 distribution as the best fitted distribution to describe the fre-
quency analysis of the drought in the Kansabati river basin in India. The 12- 
month SPI was used in this study to investigate drought impact on groundwater 
resources in Bamako, as 55 percent of the population rely directly on groundwa-
ter resources (USAID, 2021).  

The return periods of the observed drought severities and corresponding du-
rations were computed using the best fitted model over Bamako which is P3 dis-
tribution, the mean inter-arrival time for the 12-month SPI was also computed 
based on the description of the inter-arrival time of drought, 22.5µ =

dT  months 
was obtained as the mean inter-arrival time. From the Figure 7(a) below, we can 
observe that severities with 1-month duration have return periods from 2.4 to 
2.5 years. However, severities with 2, 6 and 10-month duration have return pe-
riods ranged from 2.5 to 3.8 years, respectively. The return periods of the ob-
served drought severity and duration data showed that highest severities are 
more unlikely to happen with the same duration in the future. The most pro-
longed severity (37.25) and duration (36 months) in the observed severity and 
duration data have return periods of 55.8 years and 48.7 years, respectively. 
 

Table 8. Selection of the best fitted distribution. 

 Distribution MAE MSE RMSE RRMSE CC CoD 

Severity 

Gumbel type 1 8.127651 80.18528 8.954624 34.05596 0.972632 0.946014 

Pearson 3 7.921473 76.86148 8.767068 32.34591 0.972791 0.946322 

Normal 9.979758 114.5459 10.70261 42.54298 0.95484 0.911719 

Log-normal 11.45001 512.6596 22.64199 10.57356 0.914518 0.836343 

Duration 

Gumbel type 1 7.862634 71.55249 8.45887 5.47349 0.978159 0.956795 

Pearson 3 7.836583 70.5177 8.397482 5.34941 0.977947 0.956381 

Normal 9.496906 101.973 10.09817 6.59509 0.966475 0.934075 

Log-normal 8.169241 107.9339 10.38912 3.301098 0.956048 0.914027 
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(a) 

 
(b) 

 
(c) 

Figure 7. Predicted severities with various return periods. 
 

Similarly, severities with 5, 10, 20, 25, 50, and 100 year return periods were 
computed for Bamako area, and the durations at which they may occur in the 
future were also estimated using the P3 distribution over Bamako. The results 
revealed that higher severities occurred with higher durations and lower severi-
ties with shorter durations with respect to increase or decrease in the return pe-
riod Figure 7(c). Previous studies such as (Sahana et al., 2020; Adarsh et al., 
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2018 and Cavus & Aksoy, 2020) stated that when the return period increases, the 
drought severity is likely to increase owing to the physical process of the drought. 
In addition, the return periods of moderate, severe and extreme droughts using 
SPI-12 were computed as shown in Figure 7(b). The results showed that mod-
erate droughts using the 12-month SPI drought series ranged from 5.2 to 23.2 
years, severe droughts ranged from 27.3 to 281 years and extreme droughts from 
549.7 to 1596.4 years, respectively, with 1-month duration. This is clear that at 
shorter duration such as 1-month, the return period of highest severities is higher 
than at longer duration. Findings of this study revealed that Bamako is prone to 
experience severe severity droughts with shorter and higher durations (1, 2, 6, 
10-month) over time in average every 2.5 to 3.8 years. As many people in Ba-
mako depend on direct groundwater resources, public awareness programs should 
be deliberate and implemented with a perfect understanding of local perspec-
tives and needs. Local drought risk could be reduced by focusing on educating 
and training people. Scientists and planners must work together to promote the 
development of systems that are appropriate, pertinent, comprehensible, afforda-
ble and people-centered in order to enhance drought monitoring and early warn-
ing systems (UNISDR, 2009). Drought monitoring to enhance national level 
early warning system for local farmers is already established in Mali (UNISDR, 
2009). We recommend the continuing establishment of networks to support the 
sharing of basic climate information and early warning systems across various 
regions of Mali especially in Bamako where groundwater dependency is grow-
ing. 

4. Conclusion 

Lack of precipitation for an extended period of time has its effects on water 
availability and the state of the environment. Drought therefore poses enormous 
risk on societies and the environment. In this study, rainfall variability related to 
drought forecasting was assessed using various parametric probability distribu-
tions and non-parametric Mann-Kendall trend test over the study area (Bama-
ko). The SPI for different timescales revealed that Bamako experienced several 
historical droughts during the period 1991-2020. The years of historical drought 
detected in this study were from extreme droughts once in 2002 and 2015, to se-
vere droughts in 1993, 2002, 2003, 2013 and 2015 using the 12-month SPI. The 
results further indicated that using the non-parametric Mann-Kendall trend test, 
a trend was observed in annual rainfall series but was not significant at 5% and 
10% significance levels. The return periods of severity droughts were calculated 
based on the best fitted distribution which is P3 distribution, the result indicated 
that Bamako is prone to experience frequent severe severities with shorter and 
higher durations in the future. The return periods of severities associated with 1, 
2, 4, 6, and 10-month duration were computed and severities for 5 - 100 years 
return periods were also estimated using the P3 distribution. The results showed 
that the 5, 10, 20, 25, 50, and 100 years return periods have 18.51, 26.08, 33.25, 
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35.50, 42.38, and 49.14 severities, respectively, while durations associated to these 
severities are 19.8, 26.9, 33.5, 35.6, 42, and 48.2 months, respectively.  

Some of the limitations of this study are that only the SPI was used to identify 
drought over the study area. An efficient management of groundwater resources 
during drought cannot therefore be overemphasized. To add more useful infor-
mation on drought related to meteorological conditions such as evapotranspira-
tion, future investigations should consider the standardized precipitation and eva-
potranspiration index (SPEI) indicator for drought evaluation. Severity drought 
and duration are often characterized by joint behavior of mutually correlated 
random variables the use of univariate frequency distribution to describe the re-
turn periods of the drought severity and duration may lead to underestimation 
or overestimation of associated risk of events. Future investigations should also 
consider the bivariate method for return periods computation focusing either by 
drought duration or severity exceeding a specific value DST ( ≥d D  or ≥s S ) 
or by drought duration and severity ′DST  ( ≥d D  or ≥s S ). These two forms 
of return periods are generally computed using copula-based approach. 
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