
World Journal of Engineering and Technology, 2023, 11, 409-416
https://www.scirp.org/journal/wjet

ISSN Online: 2331-4249
ISSN Print: 2331-4222

DOI: 10.4236/wjet.2023.113029 Jun. 30, 2023 409 World Journal of Engineering and Technology

Python SystemVerilog (Python SV)

Santhosh Nagaraj Nag

Intel, San Jose, California, USA

Abstract
This paper discusses Python SystemVerilog (Python SV), a simulation-based
verification approach leveraging the power of Python and SystemVerilog. The
use of Python-implemented UVM classes in SystemVerilog enables users to
write less code, minimize errors and reduce the verification time. This paper
evaluates the use of Python SV in the verification of digital designs, its bene-
fits, limitations, and future prospects. Python-SystemVerilog (Python-SV) is
a research area that investigates the feasibility of building a high-level verifi-
cation environment using Python and SystemVerilog. Python-SV aims to
provide a unified framework for the design, simulation, and verification of
digital systems, with an emphasis on ease of use and productivity. SystemVe-
rilog is a hardware description and verification language that is widely used
for designing digital systems. On the other hand, Python is a powerful,
high-level programming language that is widely used in various fields, in-
cluding software engineering, scientific computing, and data analysis. Py-
thon’s popularity has grown in recent years, primarily due to its simplicity,
ease of use, and wide range of libraries and frameworks. Python-SV research
primarily focuses on the following areas: 1) Integration of Python and Sys-
temVerilog: Python-SV aims to seamlessly integrate SystemVerilog and Py-
thon, allowing designers to write test benches and verification code in Python
and interface them with SystemVerilog modules. This integration simplifies
the development process, making it easier to write and maintain large and
complex verification environments. 2) Development of Python libraries for
verification: Python-SV research focuses on developing Python libraries spe-
cifically for digital system verification. These libraries provide a higher-level
interface for writing test benches and other functions, such as analysis and
visualization of simulation results. 3) Implementation of verification metho-
dologies: Python-SV research investigates the implementation of various in-
dustry-standard verification methodologies, such as the Universal Verifica-
tion Methodology (UVM), in Python. This implementation aims to enable
designers to use Python to develop and simulate UVM-compliant test
benches. 4) Development of simulation tools: Python-SV also explores the

How to cite this paper: Nag, S.N. (2023)
Python SystemVerilog (Python SV). World
Journal of Engineering and Technology, 11,
409-416.
https://doi.org/10.4236/wjet.2023.113029

Received: May 18, 2023
Accepted: June 27, 2023
Published: June 30, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/wjet
https://doi.org/10.4236/wjet.2023.113029
https://www.scirp.org/
https://doi.org/10.4236/wjet.2023.113029
http://creativecommons.org/licenses/by/4.0/

S. N. Nag

DOI: 10.4236/wjet.2023.113029 410 World Journal of Engineering and Technology

development of simulation tools that extend the capabilities of traditional
SystemVerilog simulators. These tools leverage the capabilities of Python for
complex data analysis and visualization and provide a more intuitive and us-
er-friendly interface for working with simulation results. Overall, Python-SV
research aims to bring the benefits of Python to the world of digital system
verification, enabling designers to build more efficient, productive, and flexi-
ble verification environments.

Keywords
Python-SystemVerilog (Python-SV), Design, Framework, Simulation

1. Introduction

Python SystemVerilog [1] is an emerging methodology for developing advanced
verification environments. Python is a high-level programming language with a
wide range of libraries and frameworks [2] that can be utilized for various appli-
cations. SystemVerilog, on the other hand, is the hardware description language
used to describe digital logic circuits and systems. Python SV offers an innova-
tive approach to digital design verification, taking advantage of both Python and
SystemVerilog.

2. Python SV Overview

Python SV facilitates the development of verification environments by allowing
users to write structures and functions that can be used directly in SystemVeri-
log. Python-implemented UVM classes are used to construct verification envi-
ronments, and the SystemVerilog simulator Simulation [3] is used to execute the
verification process.

3. Applications of Python SV

Python SV has been used in various digital design verification environments,
such as memory [4] controllers, interfaces, and high-speed serial interfaces. In
these applications, Python SV has improved the quality of verification tests,
enabling the identification of issues that might have been missed in other verifi-
cation approaches.

4. Benefits of Python SV

Python SV offers several advantages over other verification methodologies.
1) Reduced Development Time: Python SystemVerilog [5] enables users to

write simpler tests by reducing the amount of code required. This reduction in
code development significantly reduces the development time.

2) Increased Test Coverage: Python SV has been shown to provide high levels
of test coverage, ensuring that all scenarios are covered during the verification
process.

https://doi.org/10.4236/wjet.2023.113029

S. N. Nag

DOI: 10.4236/wjet.2023.113029 411 World Journal of Engineering and Technology

3) Improved Debugging Capabilities: Python SV provides a more efficient
debugging process than other methodologies, allowing users to find issues
quickly and accurately.

4) Supports High-Level Abstractions: Python SV offers support for higher-level
abstractions when compared to traditional HDLs. This makes designing, simu-
lating, and testing digital designs more manageable, enabling faster execution.

Python SystemVerilog has various applications in the digital design veri-
fication process. Here are some of the best scenario uses of Python SV:

1) Memory Interface Verification: Memory interfaces are digital systems’ most
complex and critical components. Python SystemVerilog is an ideal verification
methodology for memory interfaces, as it is easy to write and execute test cases
for different memory operations. Python SV in this application ensures fewer
code lines, and high-level abstraction, and provides efficient debugging.

2) High-Speed Serial Interface Verification: Verification of high-speed serial
interfaces requires complex verification environments with thousands of test
cases. Python SV is an excellent choice for this application because it facilitates
the creation of high-speed models, which can simulate and verify the perfor-
mance of these interfaces with high accuracy.

3) SoC Verification: Python SV verifies SoCs by verifying each module in a
system. Python SV simplifies the verification process, by easing the creation of
test benches and debug utilities. Python SV used on SoC verification makes it
independent of any simulation tool-specific command interface and structured
hierarchical connection support.

4) Network-On-Chip (NoC) Verification: Verification of NoCs has become a
significant challenge in the design of complex SoCs. Python SV offers several
advantages in this scenario, as it facilitates the development of scalable and com-
plex test benches that stimulate different traffic patterns across the NoC topology.

5) Analog-Digital Interface Verification: Python SV is useful for Analog-Digital
Interface (ADI) verification as it supports the UVM methodology and facilitates
checking the behavior of ADC, DAC, and other analog-digital blocks. This ap-
plication also highlights the ease of testbench implementation, integrating vari-
ous Analog Mixed Signal elements in the verification testbench.

Python SV enhances the digital design verification process by providing a po-
werful and flexible simulation-based verification methodology. Its use cases in-
clude each module in a complex SoC design, network-on-chip (NoC) verifica-
tion, high-speed serial interface verification, and analog-digital interface verifi-
cation. These best scenario uses to demonstrate the potential of Python SV and
highlight its superiority over traditional verification methodologies, such as pure
SystemVerilog HDL, VHDL, and C++.

The Python-SV keywords are classified into several categories, including
modules, tasks/functions, operators, and control structures. Each category is
discussed in detail, providing a thorough understanding of the keywords’ func-
tionalities.

The module category includes keywords such as “module”, “input”, “output”,

https://doi.org/10.4236/wjet.2023.113029

S. N. Nag

DOI: 10.4236/wjet.2023.113029 412 World Journal of Engineering and Technology

and “wire”, which are used in defining SystemVerilog modules. The task/function
category includes keywords such as “task”, “function”, “if”, “else”, and “case”,
which are used in defining testbench components, such as stimulus generators
and checkers.

The operator category includes keywords such as “module”, “and”, “or”,
“not”, and “xor”, which are used in defining Boolean expressions and digital
logic gates. The control structure category includes keywords such as “for”,
“while”, “repeat”, and “forever”, which are used in controlling the execution flow
of a testbench.

5. How to Connect SystemVerilog with Python

Verification of a digital design often requires an interaction between several
language domains (SystemVerilog and C, SystemVerilog and Python, SystemVe-
rilog and e-language, etc.). This article shows you how to set up a connection
between SystemVerilog and Python.

SystemVerilog is not able to communicate directly with Python. Instead, the
SV code first needs to talk to a C code via a DPI-C, with the C code then able to
talk to the Python code. A SystemVerilog-Python connection, therefore, needs to
follow certain guidelines, otherwise, the communication will fail. A connection
of this kind is shown in the diagram below. (Figure 1)

This interconnection is made up of 4 layers:
1) The User layer
2) The Client layer
3) The Connection layer
4) The Server layer

5.1. The User Layer

The User layer is where the main verification activity takes place. It is the User
layer that initiates a connection with another code written in a different pro-
gramming language. The first step when initiating a connection is to invoke the
call_client() function from the Client layer using the address and port number of
the server. Optionally, we can provide a message for the Server.

Figure 1. SystemVerilog communication workflow with Python.

https://doi.org/10.4236/wjet.2023.113029

S. N. Nag

DOI: 10.4236/wjet.2023.113029 413 World Journal of Engineering and Technology

5.2. The Connection Layer

The connection between SystemVerilog and Python works like a Client-Server
application connecting 2 entities. The handshake and communication flow be-
tween the Client and the Server are shown in Figure 2 below.

In this Client-Server architecture, we are going to use a concept known as a
socket, which is an endpoint in a network. A socket is bound to a port of the
machine where the application is running. In a Client-Server architecture, both
parties must have an associated socket. Moreover, both parties must use a com-
mon protocol (TCP or UDP) to be able to understand each other, e.g. when
sending and receiving data.

Please note that, as depicted in the diagram, the communication must be in-
itiated by the Client. The Server cannot initiate communication on its own.

Figure 2. Client-Server communication/handshake flow.

https://doi.org/10.4236/wjet.2023.113029

S. N. Nag

DOI: 10.4236/wjet.2023.113029 414 World Journal of Engineering and Technology

5.3. The Client Layer

The Client layer acts as a proxy between the User layer and the Server layer. A
connection with the Server is initiated from within this layer. The Client and the
User layers are connected via the DPI-C. For more information on the DPI-C,
please refer to this article.

Information (port number, hostname, message to send) received from the User
layer is packed into a container struct (client_config) inside the call_client()
function. The call_client() function is responsible for:

creating the client socket
managing the connection handshake
handling connection errors
returning the server response to the User layer

5.4. The Server Layer

The Server layer is responsible for providing a response to a user request.
After establishing a connection with the Client, the Server decodes the mes-

sage received from the Client and generates the message to be sent back to the
User. The Server layer and the Client layer are connected via the Connection
layer.

In the current implementation, the Client is responsible for closing the con-
nection. The Server catches this event and closes the associated connection han-
dle. There may be different requirements for other applications (the Server is
responsible for closing the connection, etc.).

6. Limitations of Python SV

While Python-SystemVerilog (Python-SV) is a promising framework for the de-
sign, simulation and verification of digital systems, there are some limitations
that need to be considered. The following are some of the major limitations of
Python-SV:

1) Learning curve: Python-SV requires programmers to learn two languages—
Python and SystemVerilog. The syntax and semantics of these languages are very
different and learning both to a high level of proficiency can be time-consuming
and challenging.

2) Performance: Python-SV is an interpreted language and is generally slower
than compiled SystemVerilog code. This can be a disadvantage when working
with very large designs or handling large amounts of data, where performance is
critical.

3) Compatibility: Not all SystemVerilog features are supported in Python-SV,
which can limit the flexibility of the framework. Python-SV also requires specia-
lized tools that may not be compatible with all SystemVerilog simulators or de-
sign tools.

4) Debugging and testing: Debugging Python-SV code can be more challeng-
ing than debugging SystemVerilog code due to the two languages’ different na-

https://doi.org/10.4236/wjet.2023.113029

S. N. Nag

DOI: 10.4236/wjet.2023.113029 415 World Journal of Engineering and Technology

tures. Additionally, testing Python-SV code requires specialized tools that are
not always readily available.

5) Availability of libraries: While Python has a vast library of useful modules
and packages, the same cannot be said for Python-SV. The community around
Python-SV is not as extensive as that of Python, and there may be a limited
number of libraries available for certain applications.

6) Limited FPGA Support: Some FPGAs do not yet support Python SV verifi-
cation, limiting the scalability of the methodology. This limits the scope of Py-
thon SV with designs that can only be implemented on specific FPGA devices.

7) Backend Compatibility: Python SV’s simulator compatibility is limited.
Hence, it cannot work with all available backend system simulators like
NC-Verilog.

7. Future Prospects

The use of Python SV is on the rise and could revolutionize the digital design
verification process. Several broader adoption frameworks, like Cocotb, enhance
Python SV’s capabilities, providing a simulation interchange format between
Python and SystemVerilog. Further improvements on Python SV aim to expand
its support for a wider range of FPGA devices, improving its applicability.

8. Conclusions

Python SV offers a unique approach to digital design verification, offering faster
development, higher test coverage, and more efficient debugging. Its limitations
must be taken into account. Nevertheless, its popularity is on the rise, and
broader adoption frameworks like Cocotb enhance its application domain. The
future potential of Python SV is vast, and further advancements on the devel-
opment roadmap would increase its overall effectiveness.

Overall, Python-SV is a promising framework for the design and verification
of digital systems, offering several benefits over traditional design methodolo-
gies. Python-SV is a strengthening technology in the field of digital system de-
sign and verification. Its potential has been proven through various papers, and
it offers several benefits over traditional design methodologies.

While challenges exist, the ongoing research in this area is expected to over-
come these challenges, enabling Python-SV to become a mainstream methodol-
ogy for digital system design and verification.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] https://github.com/Kuree/pysv

[2] Jiang, S.N., Pan, P.T., Ou, Y.H. and Batten, C. (2020) PyMTL3: A Python Frame-

https://doi.org/10.4236/wjet.2023.113029
https://github.com/Kuree/pysv

S. N. Nag

DOI: 10.4236/wjet.2023.113029 416 World Journal of Engineering and Technology

work for Open-Source Hardware Modeling, Generation, Simulation, and Verifica-
tion. IEEE Micro, 40, 58-66. https://doi.org/10.1109/MM.2020.2997638

[3] Shahzad, F. (2016) Pymote 2.0: Development of an Interactive Python Framework
for Wireless Network Simulations. IEEE Internet of Things Journal, 3, 1182-1188.
https://doi.org/10.1109/JIOT.2016.2570220

[4] Huggi, S. and Jamuna, S. (2020) Design and Verification of Memory Elements Us-
ing Python. 2020 IEEE International Conference on Electronics, Computing, and
Communication Technologies (CONECCT), Bangalore, 2-4 July 2020, 1-4.
https://doi.org/10.1109/CONECCT50063.2020.9198470

[5] https://github.com/topics/SystemVerilog

https://doi.org/10.4236/wjet.2023.113029
https://doi.org/10.1109/MM.2020.2997638
https://doi.org/10.1109/JIOT.2016.2570220
https://doi.org/10.1109/CONECCT50063.2020.9198470
https://github.com/topics/SystemVerilog

	Python SystemVerilog (Python SV)
	Abstract
	Keywords
	1. Introduction
	2. Python SV Overview
	3. Applications of Python SV
	4. Benefits of Python SV
	5. How to Connect SystemVerilog with Python
	5.1. The User Layer
	5.2. The Connection Layer
	5.3. The Client Layer
	5.4. The Server Layer

	6. Limitations of Python SV
	7. Future Prospects
	8. Conclusions
	Conflicts of Interest
	References

