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Abstract 
Climate change and global warming results in natural hazards, including flash 
floods. Flash floods can create blue spots; areas where transport networks 
(roads, tunnels, bridges, passageways) and other engineering structures with-
in them are at flood risk. The economic and social impact of flooding re-
vealed that the damage caused by flash floods leading to blue spots is very 
high in terms of dollar amount and direct impacts on people’s lives. The im-
pact of flooding within blue spots is either infrastructural or social, affecting 
lives and properties. Currently, more than 16.1 million properties in the U.S 
are vulnerable to flooding, and this is projected to increase by 3.2% within the 
next 30 years. Some models have been developed for flood risks analysis and 
management including some hydrological models, algorithms and machine 
learning and geospatial models. The models and methods reviewed are based 
on location data collection, statistical analysis and computation, and visuali-
zation (mapping). This research aims to create blue spots model for the State 
of Tennessee using ArcGIS visual programming language (model) and data 
analytics pipeline. 
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1. Introduction 

The constant and erratic nature of the global weather pattern and global warm-
ing results in the occurrence of several natural hazards including flooding. While 
flooding can occur because of engineering failures (dams and levee breaches), 
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most occurrences are linked to weather extremes. According to U.S. Global 
Change Research Program (USGCRP) in 2017 (USGCRP, 2017), there are more 
flooding events occurring in the Mississippi River Valley, Midwest, and North-
east region of the United States. Floods can occur with little or no warning, par-
ticularly flash floods; in addition to the hazardous nature of floods is the occur-
rence of flash floods with speed and unpredictability, heavily impacting lives, 
and infrastructures. Among the infrastructures impacted are the transport net-
works (road stretches, bridges, tunnels, water passageways) and other engi-
neering structures constructed to aid transportation. Flash floods result in the 
creation of blue spots; these are the areas vulnerable to flooding during fill or 
overflow water conditions, putting the lives and infrastructure within it at flood 
risk. 

The weather channel (2018), reports on the economic impacts of flooding; 
annual flood fatalities in the United States is over 100 lives and vast property 
damage. According to Nation Resourced Defense Council (NRDC) in 2019 
(NRDC, 2019), Federal Emergency Management Agency (FEMA), estimated the 
cost of repairing and replacing flood-damaged transport networks (roads, 
bridges), utilities, and other public infrastructure within the blue spots areas 
between 1998 and 2014 to be $48.6 billion. Generally, the economic impact of 
flooding particularly in blue spots has been the concern of the states and federal 
governments, as well as the flood experts. The endeavor of the science world to 
solve complex problems such as climate change among many others has driven 
researchers to embrace interdisciplinary approach; some of the recent methods 
used for flood impact assessment and predictions combine the knowledge from 
applied sciences and computer science. This article reviews the existing methods 
and models created for flood impact assessment and predictions in blue spots 
areas. 

2. Literature Review 

Historical records of floods are essential tools for predicting current and future 
flood levels and their economic impacts. Urban areas flood when drainage ex-
ceeds their storm water sewer system’s capacity, causing surcharging. Water in 
flooded areas will follow flow paths such as roads, local depressions (blue spots) 
and other available pathways that allow the flow of water. Flooding is a natural 
hazard that has been directly linked to climate change. During and after a heavy 
rainfall, water flows downhill into adjacent streams. Some water may also collect 
in sinks belonging to catchments. Excess water can collect in blue spots: loca-
tions that can flood, usually with significant consequences. Infrastructure that 
can be damaged when blue spots fill, and overflow include adjacent buildings 
and roads (Baby et al., 2021). According to Pregnolato et al. (2016), lives and in-
frastructures threatened by flooding, including transport networks such as roads, 
water passageways, tunnels, and bridges, can be protected through preventive 
measures developed from the analysis of climate change data.  
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2.1. Economic Impacts of Flooding 

The disastrous impacts of weather extremes, particularly flooding, affect trans-
port infrastructures like roads, tunnels, and bridges. The economic impacts of 
flood events can be weighty. According to Marques (2021), annual flood losses 
cause billions of dollars in annual property damage. Flood Factor (2022) notes 
that more than 16.1 million properties in the U.S are subject to flooding, includ-
ing approximately 389,000 in Tennessee; it projects an increase in risk “by 3.2% 
within 30 years due to constantly changing environmental factors.” According to 
NCEI (2018), flood events along the Mississippi, Missouri, and Arkansas Rivers 
in 2018 caused $20.3B in damage, impacting multiple infrastructures, including 
roads. A 2020 report from the Tennessee Advisory Commission on Intergo-
vernmental Relations stated that “on the average, the annual cost of flooding in 
Tennessee is $234 million.” (PEW, 2022). 

2.2. Social Impacts of Flooding 

Winter et al. (2016) note that flooding has social impacts, including delays to 
transportation during flood events and impacts employment, health, education, 
and social activities. The assessment of flooding events has become more im-
portant due to population increase, migration, and urbanization; the makes it 
more important to the state governments and other stakeholders. In 2016, Mi-
chielsen et al. (2016) discussed the need for improved means for evaluating flood 
risks for critical transport infrastructures and communicating these to these in-
frastructures’ stakeholders. According to these authors, “improved methods for 
estimating current and potential flood risks should be adopted by the depart-
ment of transportation and environments; this method should provide precise 
location and the extent of potential infrastructure damage.” (ibid.) The authors 
cite land use, soil types, topography, and geology as important factors to consid-
er in analyzing current and potential flood risk, along with seasonal changes in 
the environment due to changing climatic factors. 

2.3. Flood Risks Mitigation and Management 

According to Miller, Hughes and Whitlock (1996), the Tennessee Valley Au-
thority (TVA) is responsible for flood management in the Tennessee River Ba-
sin. Historically, the TVA treats the December-April time frame as the Basin’s 
major flood season, with the frequent storms occurring in March. Flood events 
have also been recorded outside major flood seasons. After a devastating storm 
hit Waverly, Tennessee in late August 2021, Tennessee Coalition (Flood Ready 
Tennessee) asked Tennessee’s governor and policy makers “to commit to state 
level resilience planning, technical assistance for local governments and projects 
that will mitigate the impact of flood events.” (PEW, 2022). 

Federal Emergency Management Agency (FEMA) provides National Flood 
Insurance Policies (NFIP) to alleviate the socio-economic impact of floods. Still, 
flood management and mitigation strategies remain important practices. The 
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Tennessee state government is concerned about funding mitigation planning as 
an act of preparedness. Bliss (2020), responding to a 2010 flood that cost the 
state up to $4 billion, noted that flood mitigation could save the state money in 
the future; thereafter, the federal government allocated $85.5 million to Tennes-
see for flood hazard mitigation. Most states in the United States engage in 
five-year cycles of hazard mitigation planning. FEMA (2022) notes that such 
planning can “identify natural disaster risks and vulnerabilities and develop long 
term strategies” that “reduce[s] loss of life and property by minimizing the dis-
asters’ impact.” The government’s proactive planning, readiness and involve-
ment of flood experts has generated several flood models. 

2.4. Models Used in Flood Risk Analysis and Management 
2.4.1. FloodStroem Model 
According to Teng et al. (2017), commonly used flood models include the 1D 
(one dimensional) distributed drainage model, the 2D (two dimensional) distri-
buted surface overland flow model and the dynamical coupling model (1D-2D). 
The large computational time demand of the 1D-2D flood model renders it use-
less for large areas requiring multiple simulations and more running time. 

Thrysøe et al. (2021) developed a dynamic urban pluvial flood and damaged 
assessment model termed FloodStroem, which requires no calibration being a 
surrogate mechanistic model. The research’s goal was to investigate Flood-
Stroem model’s ability to emulate overland processes. The model is comprised of 
five sub-model components; these include M1—Dynamic distributed input e.g., 
from 1D model, M2—Generation of flow network, M3—Dynamic mechanism 
modelling of surface flows, M4—Conversion of conceptual results to 2D floods 
maps, and M5—Damage assessment; each of which models a specific aspect of 
flooding. One component, which identifies local blue spot, pour points and 
downstream flow paths from a digital elevation model (DEM), uses a surface 
flow network generated using Arc-Malstroem; an open-source software applica-
tion by Balstrøm and Crawford (2018). Thrysøe et al.’s model postprocesses the 
blue spots identified by Arc-Malstroem to reduce the sub-model’s number of 
elements and computational costs. 

According to Thrysøe et al. (2021), FloodStroem was 33 times faster than the 
MIKE21 flood model and 60 times than the MIKE FLOOD model. FloodStroem 
supports the reuse of results from some of its modules when evaluating multiple 
simulations for the same catchment. The surface routing simulations of the 
FloodStroem model consumed the least time and performed better when applied 
to multiple scenarios and large-scale modelling. Other advantages of Flood-
Stroem include support for generating simulated flooding times, patterns, and 
water levels. Floodstroem’s limitations include its rigid surface network model, 
which does not allow for multidirectional spilling and dynamic adjustments to 
its surface network, its subpar performance for modeling flat (low-lying depres-
sion areas) catchments (Jamali et al., 2019; Zhang & Pan, 2014). 
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2.4.2. PCD, PLS and ANN Prediction Models 
Michielsen et al., developed a model of a region of Sweden that “predict[s] flood 
hazard probability using roads, railways, and catchment characteristics [along 
with] a method to effectively interpret and communicate results of flood risk 
analysis to stakeholders.” Geographic information systems were used to calculate 
physical catchment descriptors (PCDs) for land use, soil type and road characte-
ristics. Five flooded areas and 10 non-flooded road stream intersections areas 
were selected for the first study area; 9 flooded locations and 15 non-flooded 
stream road-intersections were selected for a second. The authors’ dataset which 
included a digital elevation model, road and stream shapefiles, land use data, and 
soil data, was acquired from the Geological Survey of Sweden. 

The PCD calculations for flooded and the non-flooded areas for the two study 
areas were used in combination with partial least square (PLS) regression, bi-
nomial logistics regression, and artificial neural networks (ANN) to predict vul-
nerable locations (floods risks). A cut-off value of 0.5 was selected as the thre-
shold for flood risk using the PLS regression model. Locations with values above 
0.5 were identified as “flooded” and values 0.5 were identified as “non-flooded”. 
The authors found that “PLS correctly predicted the outcome of the flooding 
events selected in an 85% of the catchments within each study area.” (ibid.). Us-
ing binomial logistic regression, the authors identified urban land use and local 
channel slope as this model’s most important variables for predicting flooding, 
i.e., “the model correctly predicted the outcome in 72% of catchments following 
the results of the cross-validation.” (ibid.). 

The study locations used for the ANN cross-validation were newly introduced 
into this statistical model (they were not used in the other statistical models); five 
networks were combined into one for the purpose of visualization. The outcomes 
of flooding events for each location were assigned “flooded” and “non-flooded” 
depending on the most common outcome of the five best networks selected. i.e., 
3 times flood prediction and 2 times non-flood predictions for a location identi-
fied that location to be at flooding risks (ibid.). Overall, the ANN model outper-
formed the PLS and binomial logistic regression models, correctly predicting 
flooding in 97% of the catchments. The authors noted that flood risk predictions 
from the models matched the actual events selected in the model design. For 
example, some blue spot areas (road-stream intersection) that were flooded in 
real life were also predicted to be at risk of flooding by the 3 models and an addi-
tional blue spot analysis. Similarly, locations that were not flooded (in reality) 
were predicted not to be at risk of flooding by the 3 models. 

2.4.3. Integration Framework (City Catchment Tool and GIS) 
In 2016, Pregnolato et al. (2016) introduced an integrated framework to assess 
the economic impact of disruptions to transport networks and the use of adap-
tive measures to reduce flood risk in adverse rainfall climates. Pregnolato et al.’s 
framework “combines information from climate and flooding simulations, with 
transport networks’ exposure analysis while also considering moving vehicles at 
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flood risks.” (ibid.). The framework uses flood model tool, City Catchment 
Analysis Tool, to simulate high resolution pluvial rainfall events based on the ca-
librations applied on other cities. This tool was augmented with “rainfall (dura-
tion and intensity) [and] terrain and boundary conditions”. Road networks were 
omitted to simplify these computations. It uses geographic information system 
(GIS) data to simulate a region’s transport networks. The model “simulated 
traveling across a transport network, following the spatial and nodes’ definitions 
using least cost and shortest path tool within the GIS environment.”  

Using this data, the framework creates a vulnerability curve by calculating 
traffic disruption. The calculation accounts for flood depth for any given flood-
ing scenario, translating this into delays in travel time and economic impact. 
Pregnolato et al. applied their framework to 2012 data from a flash flood in 
Newcastle upon Tyne in United Kingdom. This flood was described as series of 
connective storms, locally referred to as Toon Monsson or Thunder Thursday. 
The authors acquired their data from the Tyne and Wear Road Traffic an Acci-
dent Data Unit (TADU). Based on their previous assessments of the vulnerabili-
ty of Newcastle upon Tyne’s Road network to flooding, Pregnolato et al. sug-
gested link hardening to improve the resilience of transport network infrastruc-
tures. Link hardening is a process of making a transportation link completely 
invulnerable to flooding, This, for example, would include constructing a better 
drainage system and road elevation to make the transport networks adapt to 
changing climate conditions. 

Pregnolato et al. (2016) characterize their framework as a cost-effective priori-
tization framework developed to introduce more interventions at the critical 
road network stretches i.e., in terms flows and flood depth; including more in-
tervention options reduced flooding risks. Overall, the method can be used in 
quantifying indirect impacts of flooding on transport delays when available 
flood risk management resources are minimal. 

2.4.4. Geospatial Models 
Also, spatial models that estimate infrastructures at risk in flooded areas can 
support decision-making for land-use and development. Creating flood aware-
ness and planning policy requires a business workflow, data collection and spa-
tial database (Baby et al., 2021). While an area’s topography can determine the 
behavior of floods, the geographical extent and flooding time can be determined 
using precipitation-runoff models. According to Sultana et al., flash floods in 
geographically small areas can cause more severe damage to infrastructures in 
blue spot regions than riverine floods because of little or no warning time; the 
authors developed a method to screen buildings and roads in areas prone to 
flood risks. 

Combining GIS (Geographic Information Systems) and hydrological model-
ling can also give insights into local flooding and flood risk areas when consi-
dering new infrastructure. Currently, geoscientific research collects a wide va-
riety of field and laboratory observations, including outcrop locations, aerial 
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image and photographs, maps, demographic data, and data on land use, climate, 
and natural hazards. The enormous amounts of geospatial data generated by 
geoscientific research is becoming increasingly challenging to manage. Accord-
ing to Le et al. (2014), most current geoscientific research now requires “the use 
a computer or an interaction with some software [system].” These geospatial in-
formation systems are being used for processing and analyzing geospatial data, 
including aerial images, point and polygon data, and other location data. 

In 2011, Kourgialas and Karatzas (2011) discuss the use of GIS technologies 
“to access the complexity in flood data and also to map the relationships be-
tween floods and the elements at risk.” The authors note that GIS applications 
are appropriate for “natural hazards such as floods, are multi-dimensional 
processes with spatial components.” (ibid.). Over the last three decades, GIS 
technologies have been combined with remote sensing to obtain insights into 
complex geospatial datasets. In 2020, Hall J. et al. (2020) discuss the use of maps 
and impervious sources in studies of Greater Chattanooga to determine “net 
spatial growth across watershed and related streams.” 

Esri’s ArcGIS applications are common tools for processing geospatial data. 
ArcGIS includes model builder, a visual programming language for automating 
GIS workflows. According to Esri (2022), data processed during an interaction 
with the ArcGIS software and the analysis done are documented by model 
builder: a model for the workflow is created visually as a diagram, which can be 
accessed with model builder. The model created can be saved, shared, and ma-
nipulated with python scripting. Uses of model builder in geospatial research in-
clude work by Hidayat and Andajani (2018) on “a Modified Universal Soil Loss 
Equation (MUSLE) model to calculate soil annual loss for Citepus watershed”, 
by Uddin K. et al. (2013) on flood hazard zone and flood shelter maps models 
using GIS and remote sensing techniques; and by Madurika H.K. et al. (2017). 

Sultana et al. identified flooded areas and their associated watersheds using 
ArcGIS geoprocessing tools. The blue spots model (BSM) was used to determine 
blue spots on the DEM (digital elevation model), analyze the results, highlight 
building footprints for spatial selection, and identify buildings within or adjacent 
to the blue spots. The main processes were carried out using a model builder. 

The results before the LiDAR data clean up indicated that approximately 
20.5% of the roads within the study area were prone to flood risks during a 
rainstorm. After the cleanup, the updated results indicated that 14.4% (149 
roads) were within or adjacent to blue spots and were at risk of flooding in the 
event of a downpour. The results also indicated that the effect of floods could af-
fect other infrastructures, such as buildings and highways present in blue spot 
areas. 

According to Sultana et al., the risks posed to infrastructures by floods differ 
from one blue spot region to another. Also, the rate of filling and overflowing of 
a sink during a rainfall event depends on its depth, catchment size, or local wa-
tersheds; these factors determine the overall impact on the infrastructure. The 
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BSM calculated the amount of water to fill each blue spot, which can be used to 
assign relative degrees to flood risks. 

Sultana et al. suggested that the inclusion of infrastructural features in the 
model could improve the outcome. Modeling the infrastructure’s location per-
meability (soil property) and whether large sections of river basins are lined was 
also suggested for assessing risk to infrastructure in blue spot regions. 

3. Conclusion 

Flash flood creating blue spots is a national problem directly affecting lives and 
states’ infrastructures. The combination of existing models and tools can be used 
to produce blue spots maps and actionable insights can be drawn from the data. 
ArcGIS’s model builder application, together with datasets that characterize a 
region’s flow accumulation, slope, elevation, rainfall intensity, land use and ge-
ology, will be used to generate a blue spot model for the state of Tennessee be-
ginning with Davidson County. According to Kourgialas & Karatzas (2011), 
“these datasets were selected and used in the study because of their relevance to 
flood hazards and they can be modelled using ArcGIS-ArcMap.” This model, 
once developed, should also be applicable to the counties Tennessee and the 
maps will be available to government, public and private organizations, espe-
cially construction companies. 
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