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Abstract 
We predicted the extreme values of the ENSO index, the Niño3.4 index, and 
the Southern Oscillation Index (SOI) using extreme value theory. Various di-
agnostic plots for assessing the accuracy of the Generalized Pareto (GP) mod-
el fitted to the Niño3.4 index and SOI are shown, and all four diagnostic plots 
support the fitted GP model. Because the shape parameter of the Niño3.4 was 
negative, the Niño3.4 index had a finite upper limit. In contrast, that of the 
SOI was zero, therefore the SOI did not have a finite upper limit, and there is 
a possibility that a significant risk will occur. We predicted the maximum re-
turn level for the return periods of 10, 20, 50, 100, 350, and 500 years and 
their respective 95% confidence intervals, CI. The 10-year, and 100-year re-
turn levels for Niño3.4 were estimated to be 2.41, and 2.62, with 95% CI [2.22, 
2.59], and [2.58, 2.66], respectively. The Niño3.4 index was 2.65 in the 
2015/16 super El Niño, which is a phenomenon that occurs once every 500 
years. The Niño3.4 index was 2.51 in the 1982/83, and 1997/98 super El Niño, 
which is a phenomenon that occurs once every 20 years. Recently, a large su-
per El Niño event with a small probability of occurrence has occurred. In re-
sponse to global warming, the super El Niño events are becoming more likely 
to occur. 
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1. Introduction 

The Niño 3.4 index is the most commonly used index to define El Niño and La 
Niña events. The Southern Oscillation Index (SOI) is a standardized index based 
on the observed sea-level pressure differences between Tahiti and Darwin, Aus-
tralia. The SOI measures the large-scale fluctuations in air pressure occurring 
between the western and eastern tropical Pacific during El Niño and La Niña ep-
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isodes. Generally, the smoothed time series of the SOI corresponds well to changes 
in ocean temperatures across the eastern tropical Pacific. The negative phase of the 
SOI represents below-normal air pressure in Tahiti and above-normal air pressure 
in Darwin. Prolonged periods of negative (positive) SOI values coincide with 
abnormally warm (cold) ocean waters across the eastern tropical Pacific, which 
is typical of El Niño (La Niña) episodes.  

Extreme value theory (EVT) has emerged as an important statistical discipline 
in applied science. Extreme value techniques are widely used in many other dis-
ciplines. For example, portfolio adjustment in the insurance industry, risk as-
sessment in financial markets, and traffic prediction in telecommunications 
(Coles, 2001).  

Statistical approaches focused on extreme values have shown promising re-
sults in unusual forecasting events in earth sciences, genetics, and finance. For 
instance, EVT was developed in the 1920s (Coles, 2001) and has been used to 
predict the occurrence of events, such as droughts and flooding (Katz et al., 
2002) or financial crashes (Embrechts et al., 1997). Additionally, extreme value 
modeling has been applied in the fields of ocean wave modeling (Dawson, 2000), 
wind engineering (Harris, 2001), biomedical data processing (Roberts, 2000), 
earthquake thermodynamics (Alexandros et al., 2007), and public health (Tho-
mas et al., 2016). 

The monthly maximum rainfall data were modeled using the generalized ex-
treme value models (Yin et al., 2014; Onwuegbuche et al., 2019). Zhang et al. 
(2010) fitted the generalized extreme value (GEV) distribution to the winter 
season maximum daily precipitation at many individual sites over North Amer-
ica with ENSO as a predictor of the parameters of the GEV distribution. This 
study predicts the extreme values of the Niño3.4 index, and SOI using the ex-
treme value theory. An El Niño with particularly large amplitude is called super 
El Niño. A super El Niño disproportionately affects economies, societies, and 
ecosystems. Despite their importance, we do not fully understand how super El 
Niño develops its intensity and unique characteristics (Saji et al., 2018). The 
2015 super El Niño event has been widely recognized as comparable to the 1982, 
and 1997 El Niño events (Ren et al., 2017). The observational analyses and mod-
eling studies demonstrate that the principal difference between the 2015 and past 
super El Niño events lies in the exceptionally strong and consecutive occurrence 
of westerly wind burst events (Chen et al., 2017). Therefore, it is essential to pre-
dict super El Niño events. 

2. Data and Method of Analysis 
2.1. Data 

The Niño3.4 index and SOI provided by NOAA’s Climate Prediction Center, 
USA (CPC) were used. The monthly Niño3.4 index, which is a measure of the 
amplitude of an ENSO event, is defined as the monthly sea surface temperature 
(SST) averaged over the tropical Pacific areas (5˚N - 5˚S, 120˚ - 170˚W). The 
SOI is a standardized index based on the observed sea-level pressure differences 
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between Tahiti and Darwin, Australia. The negative (positive) SOI values coin-
cide with abnormally warm (cold) ocean waters across the eastern tropical Pa-
cific, which is typical of El Niño (La Niña) episodes. 

2.2. Extreme Value Theory  
2.2.1. Generalized Pareto (GP) Distributions  
The modeling only block maxima is a wasteful approach to extreme value analy-
sis if other data on extremes are available. In this technique, the data are col-
lected over a specific threshold value. Modeling the extremes using this method 
enables a more efficient usage of extreme value information than that given by 
an analysis of annual maxima data, which excludes many extreme events that 
did not happen to be the largest annual event. In this study, the data were fitted 
to the GP distribution: 

( )
1

1 1 z uG z
− ξ

 −  = − + ξ  σ  
, for 0ξ ≠ , 

( ) 1 exp z uG z  −  = − −  σ  
, for 0ξ = ,                (1) 

where z is the extreme value from the blocks, u is the known threshold, σ is the 
scale parameter, and ξ is the shape parameter.  

2.2.2. Return Levels  
The level of return for the GP distribution is formed by the geometric locations 
of the points (m, xm) for large values of m, where xm is the return level estimated 
from the m-observation: 

( ) 1m ux u m ξ = + ζ −
ξ 
σ

 , for 0ξ ≠ , 

( )logm ux u m= + σ ζ , for 0ξ = ,                  (2) 

where u is the selected threshold value, ( )Pru x u k nζ = > = , k is the number of 
exceedances, and n is the number of observations. 

Modeling was performed using the evd package in R for GP distribution cal-
culations. Because we want to know how small the value will be as a strong El 
Niño event, we need to multiply the SOI data by –1 to put it in the framework of 
extremum statistics that considers the maximum. 

3. Results  
3.1. Niño3.4 Index 

The Niño3.4 index is shown in Figure 1. Figure 2 shows the wavelet power 
spectrum of the Niño3.4 index. For 1980-1990, a strong priority over four years 
was observed. 

Table 1 shows the results of the GP modeling on the Niño3.4 index. The 
model has the scale parameter, σ, and shape parameter, ξ. Because ξ is negative, 
the Niño3.4 index has a finite upper limit.  
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Figure 1. Plot of the Niño3.4 index.  

 

 

Figure 2. Wavelet power spectrum of the Niño3.4.  
 

Table 1. GP parameter estimates for the Niño3.4.  

 σ ξ 

Parameter estimate 1.02 –0.880 

Standard errors 0.213 0.196 

95% CI [0.599, 1.43] [–1.26, –0.496] 

 
Table 2 shows the predicted maximum return levels for the return periods of 

10, 20, 50, 100, 350, and 500 years and their respective 95% confidence intervals, 
CI. The 10-year return level was estimated to be 1.12, with 95% CI [1.04, 1.21]. 
The 100-year return level was estimated to be 2.13, with 95% CI [1.97, 2.30]. 
Another way to interpret the plot is to say that there is an approximately 1% 
chance (1/100) each year that the Niño3.4 index will exceed 2.13. There is an 
approximately 10% chance (1/10) each year that the Niño3.4 index will exceed 
1.12.  

Various diagnostic plots for the fitted GP distributions are shown in Figure 3. 
Straight lines and curves represent the estimated functions. Each point plot 
represents a realization value. The lines on both sides represent the 95% CI. The 
output provides little reason to doubt the validity of the GP model. Neither the 
probability plot nor the quantile plot doubts the validity of the fitted model: each 
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set of plotted points is near-linear. In the return level curve, the estimated curve 
is not linear because ξ is not close to zero. Finally, the corresponding density es-
timates are consistent with the data. Consequently, all four diagnostic plots 
support the fitted GP model. Because there were 39 exceedances of the threshold 
u = 1.5 in the complete set of 840 observations, the maximum likelihood esti-
mate of the exceedance probability was 0.0473. 

3.2. SOI 

The SOI is shown in Figure 4. Figure 5 shows the wavelet power spectrum of 
the SOI. For 1980-1990, a strong priority of four years was observed.  
 
Table 2. GP return level estimates for the Niño3.4.  

Return period 

(year) 
10 20 50 100 350 500 

Return level 2.41 2.52 2.59 2.62 2.64 2.65 

Standard  
errors 

0.0935 0.0621 0.0305 0.0186 0.0181 0.0193 

95% CI [2.22, 2.59] [2.40, 2.64] [2.53, 2.65] [2.58, 2.66] [2.61, 2.68] [2.61, 2.68] 

 

 

Figure 3. Diagnostic plots for threshold excess model fitted to the Niño3.4 during the pe-
riod 1950-2019.  
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Figure 4. The plot of the SOI.  
 

 

Figure 5. Wavelet power spectrum of the SOI.  
 

Table 3 shows the results of GP modeling on the SOI. ξ was close to zero 
(0.0402) and included zero as a confidence interval. Therefore, the SOI does not 
have a finite upper limit. Table 4 shows the predicted maximum return levels for 
the return periods of 10, 20, 50, 100, 350, and 500 years and their respective 95% 
CI. The 10-year return level was estimated to be –3.94, with 95% CI [–4.48, 
–3.41]. The 100-year return level was estimated to be –6.26, with 95% CI [–8.49, 
–4.03].  

The various diagnostic plots for the fitted GPD are shown in Figure 6. The 
output gives little reason to doubt the validity of the GP model. Neither the 
probability plot nor the quantile plot doubts the validity of the fitted model: each 
set of plotted points is near-linear. Furthermore, the estimated curve in the re-
turn level curve is linear because ξ is close to zero. Finally, the corresponding 
density estimate is consistent with the data. Consequently, all the four diagnostic 
plots supported the fitted GP model. Because there were 44 exceedances of the 
threshold u = 2.2 in the complete set of 804 observations, the maximum likelih-
ood estimate of the exceedance probability was 0.0548. 

4. Discussion 

The return level at each return period for Niño3.4 is shown in Figure 7. In the 
case of ξ < 0, for the Niño3.4, the plots deviated from a straight line and were 
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convex upward. According to the Niño3.4 index, the super El Niño was the larg-
est in the 2015/16, followed by the 1982/83, and 1997/98 El Niño events. In the 
2015/16 case, the amplitude and area of a negative horseshoe-shaped sea surface 
temperature (SST) anomaly in the Pacific Ocean were the smallest in the three 
cases, and a negative SST anomaly in the Philippine Sea was weaker than in the 
previous two cases (Shiozaki & Enomoto, 2020). The Niño3.4 index was 2.65 in 
the 2015/16 super El Niño, which is a phenomenon that occurs once every 500 
years, because the 500-year return level was 2.65 (Table 2). The Niño3.4 index 
was 2.51 in the 1982/83, and 1997/98 super El Niño, which is a phenomenon that 
occurs once every 20 years, as shown in Table 2. In response to global warming, 
the super El Niño events are becoming more likely to occur. 
 

 
Figure 6. Diagnostic plots for threshold excess model fitted to the SOI during the period 
1950-2019.  

 
Table 3. GP parameter estimates for the SOI.  

 σ ξ 

Parameter estimate 0.890 0.0402 

Standard errors 0.221 0.197 

95% CI [0.457, 1.32] [–0.347, 0.427] 
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Table 4. GP return level estimates for the SOI.  

Return period (year) 10 20 50 100 350 500 

Return level –3.94 –4.62 –5.54 –6.26 –7.61 –8.01 

Standard errors 0.273 0.411 0.748 1.14 2.14 2.50 

95% CI [–4.48, –3.41] [–5.42, –3.81] [–7.06, –4.07] [–8.49, –4.03] [–11.8, –3.41] [–12.9, –3.10] 

 

 
Figure 7. Return level plot for the Niño3.4 and SOI. 

 
Figure 7 also shows the return level for each return period for the SOI. It in-

creased significantly, which corresponded to have no upper limit in the case of ξ 
= 0. The ξ = 0 case exhibited a heavy-tailed distribution. In the ξ = 0 case, the 
upper limit is infinite, therefore there is a possibility that a significant risk will 
occur. According to the SOI, the super El Niño was the largest in the 1982/83, 
followed by the 1997/98, and 2015/16 cases. The SOI in the 2015/16 El Niño was 
large, because the Walker circulation was weakened in narrower zonal extent 
owing to the westernmost positive SST anomaly in the eastern Pacific Ocean 
than in the 1982/83, and 1997/98 El Niño (Shiozaki & Enomoto, 2020). The SOI 
was –3.6 in the 2015/16 super El Niño, which is a phenomenon that occurs once 
every 10 years, is shown in Table 2. The SOI were –6 and –4.4 in the 1982/83, 
and 1997/98 super El Niño, respectively, which is a phenomenon that occurs 
once every 100, and 20 years, as shown in Table 4.  

5. Conclusion 

We predicted the extreme values of the Niño3.4 index and SOI using the ex-
treme value theory. The main findings are summarized as follows: 

1) Various diagnostic plots for assessing the accuracy of the GP model fitted 
to the Niño3.4 index and SOI are shown, and all four diagnostic plots support 
the fitted GP model. Because the shape parameter of the Niño3.4 was negative, 
the Niño3.4 index had a finite upper limit. In contrast, that of the SOI was zero, 
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so the SOI did not have a finite upper limit, and there is a possibility that a sig-
nificant risk will occur. 

2) We predicted the maximum return level for the return periods of 10, 20, 50, 
100, 350, and 500 years along with their respective 95% confidence intervals. As 
a result, the 10-year and 100-year return levels for Niño3.4 were estimated to be 
2.41 and 2.62, with 95% CI [2.22, 2.59], and [2.58, 2.66], respectively.  

3) The Niño3.4 index was 2.65 in the 2015/16 super El Niño, which is a phe-
nomenon that occurs once every 500 years. The Niño3.4 index was 2.51 in the 
1982/83, and 1997/98 super El Niño, which is a phenomenon that occurs once 
every 20 years. Recently, a large super El Niño with small probability of occur-
rence has occurred. In response to global warming, super El Niño events are be-
coming more likely to occur.  

We want to make more accurate super El Niño predictions. 
4) The return level at each return period for the Niño3.4 deviated from the 

straight line and was convex upward, corresponding to having an upper limit in 
the case of ξ < 0. On the other hand, that of SOI increased cleanly, and it corres-
ponded to having no upper limit in the case of ξ = 0. 
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