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Abstract 
As computers have become faster at performing computations over the dec-
ades, algorithms to play games have also become more efficient. This research 
paper seeks to see how the performance of the Minimax search evolves on in-
creasing Connect-4 grid sizes. The objective of this study is to evaluate the ef-
fectiveness of the Minimax search algorithm in making optimal moves under 
different circumstances and to understand how well the algorithm scales. To 
answer this question we tested and analyzed the algorithm several times on 
different grid sizes with a time limit to see its performance as the complexity 
increases, we also looked for the average search depth for each grid size. The 
obtained results show that despite larger grid sizes, the Minimax search algo-
rithm stays relatively consistent in terms of performance. 
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1. Introduction 

Search algorithms for playing or even solving board games have been used and 
developed since the invention of computers. Many board games are complex 
and decisive problems where an action in the present has subsequent outcomes 
when the game ends in victory or defeat. Because these board games have so 
many outcomes, it is very difficult for humans to visualize and master the game 
in a short time [1]. Search algorithms are an important part of game algorithms 
and are often used in combination with other AI techniques to create powerful 
and efficient game programs such as Stockfish, which is the most powerful chess 
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engine at the time of this writing. For simpler games like Tic-Tac-Toe, a com-
puter can easily search for all future possibilities and still be able to make the 
best move. However, for most games like chess or go1, the state space is far too 
large to be traversed by brute force, and the question of playing these games then 
becomes how to play them efficiently while respecting the restrictions on search 
time [2], and for this research paper, we will see how that applies to Connect-4. 
Connect-4 has been chosen because it has moderate complexity and increasing 
its grid size can greatly affect how an algorithm performs. Knowing this we will 
see how an increasing grid size correlates with the performance of the Minimax 
search algorithm. We will first understand how Connect-4 works in the context 
of game theory, then we will see how the Minimax search algorithm and its dif-
ferent optimizations are used to make it more performant, and finally, we will 
analyze and discuss the results of our experiments. 

2. Related Works 

A notable work related to this research paper is “Research on Different Heuris-
tics for Minimax Algorithm Insight from Connect-4 Game” by Xiyu Kang, Yiqi 
Wang, and Yanrui Hu [3] in which they go into depth about how the Minimax 
search algorithm works in Connect-4 and the use of different heuristic functions 
to improve the algorithm. Another research paper that goes into depth about the 
Minimax search algorithm is “Alpha-Beta Pruning in Mini-Max Algorithm-An 
Optimized Approach for a Connect-4 Game” by Rijul Nasa, Rishabh Didwania, 
Shubhranil Maji, and Vipul Kumar4 [4] where they evaluated to what extent 
Alpha-Beta pruning, which we will use in this research paper, increases the per-
formance of a Minimax search algorithm in Connect-4. There have also been 
similar research papers comparing Minimax to other search algorithms such as 
“Solving Connect 4 Using Optimized Minimax and Monte Carlo Tree Search” 
by Kavita Sheoran et al. [1] where they compared the Minimax algorithm and 
Monte Carlo Tree Search that both have different approaches to finding optimal 
moves in zero-sum games. 

3. Theoretical Context 
3.1. Connect-4 

Connect-4 is presented in the form of a game board, with 7 columns and 6 rows 
where chips of different colors are stacked. Two players compete with the objec-
tive of aligning 4 chips of the same color, horizontally, vertically, or diagonally as 
in Tic-Tac-Toe [5]. Each player slides his or her token in succession so that the 
game is a zero-sum game, which is a term used in game theory in which one 
person’s gain is equivalent to another’s loss. The Connect-4 game grid can be 
represented as a matrix and the chips can be represented by different values, 
such as 0 being an empty slot, 1 being the first player and 2 being the second 

 

 

1Go is an abstract strategy board game for two players in which the goal is to surround more territo-
ry than the opponent. The game was invented in China over 2500 years ago and is believed to be the 
oldest board game still played today. 
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player (see Figure 1). This matrix representation of the Connect-4 grid with a 
2D table allows the computer to easily play moves, analyze the grid and check 
for winning moves. 

About 4.5 trillion board configurations are possible for Puisssance 4, which 
classifies it as a moderate complexity game [1]. When we will need to increase 
the size of the grid for the experiment, we will choose dimensions of ( )1n n+ ×  
with n being an even number to have odd numbers of columns and even num-
bers of rows which refers to the Connect-4 fundamentals where there is a central 
column. 

 

 
Figure 1. Matrix representation of a Connect-4 game where player 2 won by aligning four 
“2” diagonally. 

3.2. Minimax Search 

Let’s start by explaining the Minimax search algorithm because it is the simpler 
of the two algorithms in this experiment. The Minimax search algorithm is a 
backtracking algorithm2 used in decision making, game theory, and artificial in-
telligence (AI). It is used to find the optimal move for a player, assuming that the 
opponent also plays optimally [6]. Its name comes from its objective to minim-
ize the opponent’s score while maximizing our own score with each move made 
[7] because our opponent will constantly try to minimize our chances and we 
will constantly try to maximize our chances, which brings us back to the ze-
ro-sum nature of Connect-4 in which one’s gain is always the opponent’s loss 
and vice versa. Minimax can be represented by a game tree where each node 
represents the value of a game state starting from the root node (level 0) which is 
the initial game state, branching into “child” nodes (level 1) which will branch 
into “grandchild” nodes (level 2) and so on until reaching a terminal state [8] 
(see Figure 2). Knowing that a standard Connect-4 set can have up to 4.5 trillion 
combinations, branching all the nodes in a Minimax search algorithm would be 
an impossible task for modern machines to compute in a reasonable time (see 
Table 1). For this reason, we must limit our search depth level. In theory, the 
greater the search depth, the more knowledge the Minimax search algorithm has 
to find the best move. With this information, we need to have a search depth 
that is not so large that it takes too long to compute, but not so small that the 
search algorithm has very little information. 

In Figure 2 below, we can see that the minimizing nodes took the smallest  

 

 

2A backtracking algorithm is a problem-solving algorithm that uses a brute force approach to find 
the desired result. 
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Figure 2. Tree representation of a Minimax algorithm where the circle represents the player 
who maximizes and the square the one who minimizes. 
 
Table 1. Number of legal Connect-4 positions after n depth levels. 

Search depth Number of legal positions 

n B 

0 1 

1 7 

2 49 

3 238 

4 1120 

5 4263 

6 16,422 

7 54,859 

8 184,275 

 
values among their children, 4 and 1 respectively, and that the maximizing node 
(squares) at the top which is also the root node (circle) took the largest value 
among its two children, in this case, it chose 4. We see that the Minimax search 
tree is a recursive algorithm in the sense that the maximizing player calls the mi-
nimizing player, and the minimizing player calls the maximizing player, this as-
sumes that both players will always play the most advantageous move when it is 
their turn. The conditions for exiting the recursive loop are: if we reach a node 
where someone has won; if the two players have tied; or if we have reached a 
predetermined depth limit [8]. 

The time complexity of a Minimax search algorithm is ( )mb  where b is the 
branching factor or the number of legal moves at each point and m is the maxi-
mum depth of the tree. This time complexity is moderate for a typical 7 × 6 grid, 
but as the grid size increases, the effects of time complexity become clearer as the 
maximum depth of increasing grid sizes is larger and the branching factor also 
becomes larger. To alleviate this problem, we will need to significantly reduce 
the number of nodes to be searched, and fortunately, there is an optimization of 
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the Minimax search algorithm called Alpha-Beta pruning that we will discuss in 
the next subsection. 

3.2.1. Alpha-Beta Pruning 
Alpha-beta pruning is an optimization of the Minimax search algorithm. Before 
we dive into the alpha-beta pruning algorithm, let’s define what “pruning” 
means in alpha-beta pruning. The word “pruning” means cutting off branches 
and leaves. Thus, alpha-beta pruning is nothing more than pruning unnecessary 
branches in decision trees [9], in this case, pruning unnecessary branches in a 
Minimax search algorithm. As we said in the Minimax section, the search tree 
becomes extremely complex as the search depth increases, some unnecessary 
branches in this tree add to the complexity of the search algorithm. Alpha-beta 
pruning removes these branches, saving the computer from examining the entire 
tree [9]. In order to know which branches of the search algorithm to prune, we 
need two threshold parameters: α (alpha) and β (beta). These values represent 
the worst-case scenario for each player. The value of α is initially set to -∞ and 
will be updated to the highest value each time it is the maximizing player’s turn 
and the value of β is initially set to ∞ and will be updated to the lowest value 
each time it is the minimizer’s turn. The condition for pruning a branch or a 
subtree3 is when α β≥ , because all the higher values that α can have in the 
sub-tree of the maximizing player will be useless because the minimizing player 
has already found a move that would be more advantageous for him, it also 
works in the other way, all the lower values that β can have in the sub-tree of the 
minimizing player will be useless because the maximizing player has already 
found a move that would be more advantageous for him. It is important to note 
that the values of α and β are passed on during the backtracking because the Mi-
nimax search algorithm uses the depth search to traverse the tree (see Figure 3). 

In Figure 3, we can see that this is the same Minimax search tree that we had 
in the previous section, but this time the second node of the minimizer has cho-
sen 3 instead of 1, pruning the other two nodes because even though the mini-
mizer is finding values less than 3, the maximizer has already found a value 4  

 

 
Figure 3. Same Minimax search tree in Figure 2 but with Alpha-beta pruning imple-
mented and two nodes that have been pruned. 

 

 

3A subtree is a subset of a larger tree containing branches. 
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that is greater than 3, so an additional search in the minimizer’s path would be a 
waste of time. 

The amount of branches pruned by alpha-beta pruning depends on the order 
of the values. The worst order occurs when the best values for the maximizing 
and minimizing player are at the end, which means that the best values are on 
the right side of the tree, because of this Minimax with αβ pruning4 behaves like 
a normal Minimax search algorithm by searching all nodes, where the time 
complexity is ( )mb . The ideal order, which means that the best values are al-
ways the first ones to appear on the left side of the tree, in this optimal case, Mi-
nimax with αβ pruning will have a time complexity of ( )2mb . The reason it is 

( )2mb  in an ideal order scenario is that essentially all the values of the first 
player must be examined to find the best one, but for each, only the second 
player’s best move is necessary to refute all but the first (and best) move of the 
player [10], in other words, Minimax with αβ pruning will skip every other level. 
In almost all Minimax search trees with αβ pruning, the order of the values will 
be neither the worst nor the ideal but somewhere in the middle (see Table 2). 
We could order the movements (values) to be ideal using various heuristic func-
tions, but that is beyond the scope of this research paper. 

We can see in Table 2 the Minimax search algorithm with αβ pruning, even 
without ideal order, traverses far fewer nodes than a standard Minimax search 
algorithm as the depth level (ply) increases in Connect-4. With this information, 
we can assume that for the same number of nodes traversed, the Minimax with 
αβ can go into a much larger depth level than the normal Minimax. 

 
Table 2. Table of the number of nodes traversed at different search depths (ply) for Mi-
nimax and Minimax αβ at Connect-4 (Source: Nasa, Rijul et Didwania, Rishabh et Maji, 
Shubhranil et Kumar, Vipul, 2018. [4]) 

 Minimax Minimax + αβ 

ply 1 (easy) 7 7 

ply 4 (medium) 2799 477 

ply 8 (difficult) 5,847,005 71,773 

3.2.2. Evaluation Function 
In the Minimax section and the alpha-beta pruning subsection, the search trees 
had values in which these algorithms worked to have a result, but where do we 
actually get these values in a Connect-4 game? To deal with these values, we 
need an evaluation function that evaluates the state of a set5 after a player’s move 
and assigns it an appropriate value that the maximizing and minimizing players 
can use to find the best moves. Essentially, each node in the search tree is the 
value of a different board state. 

The evaluation functions are game specific and can be tuned. For this experi-
ment, we will use a simple Connect-4 evaluation function. This evaluation func-

 

 

4Shorter expression for alpha-beta pruning. 
5A board state is a board configuration of different moves/movements. 
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tion assigns a weight to all groups of chips6 depending on how many chips are 
lined up in a group, for each player. The value that will be returned by the evalu-
ation function is the sum of all weights of the maximizing player minus the sum 
of all weights of the minimizing player (see Equation (1.1)).  

0 0
Eval

n n

i i
i i

w w
′

= =

= −∑ ∑                         (1.1) 

- n = number of token groups for the player who maximizes 
- n' = number of groups of chips for the player who minimizes 
- i = the index of a group of chips 
- w = weight assigned to a group of tokens (see Table 3) 

The reason these weights were chosen is to emphasize the groups of chips that 
have more aligned chips. As we see in Table 3, for two lined-up chips we give it 
a score of only 1, but for three lined-up chips, we give it a score of 10 because it 
may be one chip away from winning, and finally for four lined up chips we give 
it a score of 1000 because it is a winning state which is the only thing that mat-
ters to us. Having weights for a higher number of lined-up chips would be use-
less because the number of lined-up chips needed to win is only four. 

 
Table 3. Associated weight for each number of aligned chips. 

Number of tokens lined up Weight (w) 

2 1 

3 10 

4 1000 

4. Methdology of the Experiment 

For the experiment, I tested the Minimax search algorithm with Alpha-Beta 
pruning against a greedy agent7 100 times (50 times as the first player, 50 times 
as the second player to give each player the chance of having the first move) with 
a time limit of 1 second, for a 7 × 6 board, 9 × 8 board, 11 × 10 board, and a 13 × 
12 board. These board sizes have been chosen because like we said previously, 
we will choose dimensions of ( )1n n+ ×  with n being an even number to have 
odd numbers of columns and even numbers of rows which ties back to the 
Connect-4 fundamentals. This experiment has been conducted with the usage of 
the Kaggle Connect-X [11] module which helps us run our algorithms without 
the need to adapt them for each grid size. For our win rate metric, we will con-
sider a win as 1 point, a draw as 0.5 points, and a loss as 0 points. We will also 
calculate the average search depth of our algorithm to see if there is any correla-
tion between the search depth and the size of our grids. We used the Kaggle 
kernel to conduct the experiments so the processor used is an Intel(R) Xeon(R) 

 

 

6A group of chips consists of two or more chips of the same color that are lined up vertically, horizon-
tally, or diagonally. 
7An agent that will always take the winning move if available, the agent will also observe if the other 
opponent can win of the next move and block accordingly. 

https://doi.org/10.4236/am.2023.146025


A. W. Touré 
 

 

DOI: 10.4236/am.2023.146025 426 Applied Mathematics 
 

CPU @ 2.30 GHz with 4 GB of RAM. 

5. Results of the Experiment 
Results Analysis 

In Table 4 and Figure 4 we can immediately see that as the grid size increases, 
the overall win rate and average search depth decrease too, this can be explained 
by the state space increasing when we have bigger grid sizes. Indeed, the more 
possibilities we have the longer the search will need to be to find the most op-
timal move. We can also see in Table 4 that the win rate % when playing first is 
slightly above the win rate % when playing second because the Minimax search 
algorithm tends to always choose the middle column because the middle is con-
nected to a higher proportion of possible winning spaces. Contrary to our ex-
pectations, the win rate at each grid size isn’t decreasing at much as we thought so 
we can conclude that the Minimax + αβ search is entirely scalable. We can also 
see in Table 4 that the highest search depth achieved at the 7 × 6 is very big (21) 
compared to its successors and that it can be due to a lower state space in the 
endgames where there aren’t many possible moves left for both players because 
the branching factor is quite low making it easy to search deeper. 
 
Table 4. Minimax + αβ results table. 

Grid 
size 

Winrate % as 
first player 

Winrate % as 
second player 

Overall win 
rate % 

Average 
search depth 

Highest search 
depth reached 

7 × 6 100% 100% 100% 2.69 21 

9 × 8 100% 98% 99% 2.02 6 

11 × 10 96% 93% 94.5% 1.81 3 

13 × 12 94% 92% 93% 1.50 2 

 

 
Figure 4. Graphs of the overall win rate and average search depth for each grid size. 

6. Conclusion and Further Research 

In this research paper, we compared how the performance of the Minimax 
search algorithm performance with increasing grid sizes, we then found out how 
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the performance of the algorithm is related to how deep the search can be. To 
conclude, we can say that the Minimax search algorithm is efficient at playing 
Connect-4 with increasing grid sizes because it has a relatively stable win rate 
with each grid size. We saw that the Minimax search also has a lower search 
depth average as the grid size increases, slightly impacting its performance as we 
can see in the graphs of Figure 4. This study was limited as we had limited 
computational power and couldn’t do tests with bigger grid sizes as it would be 
very time-consuming because larger grid sizes tend to have really long games. 
This experiment was only testing the Minimax search algorithm versus a greedy 
agent, but testing it against other agents/algorithms might be more indicative of 
how performant the algorithm truly is. It would also be interesting to integrate 
reinforcement learning techniques as it could help the search algorithm get more 
efficient with each game it plays. There are also many heuristic functions we can 
integrate with Minimax which may help search for optimal moves faster in con-
junction with Alpha-Beta pruning. Overall Minimax Search is a simple yet very 
effective algorithm used in many board games and particularly excels at Con-
nect-4 because of its moderate complexity. 
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