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Abstract 
Coffee production has decreased due to environmental and management fac-
tors. The current plantations are old and unproductive, also due to the rust 
problem, caused by the fungus Hemileia vastatrix Berk & Br. Furthermore, the 
shade in the production systems has decreased with the consequent increase 
in soil erosion, in addition to the increase in agrochemicals. Currently, the 
planting of new varieties with resistance to the fungus is increasing. Further-
more, it has been shown that various biofertilized perennial crops in nursery 
favor their growth. In this study, the effect of applying two beneficial micro-
organisms, Rhizophagus intraradices and/or Azospirillum brasilense, to the 
planting of four varieties of Coffea arabica L. was evaluated. The coffee varie-
ties marseillase, geisha, sarchimor and costa rica 95 were established in bags 
with the following treatments: 1) control, 2) R. intraradices, 3) A. brasilense, 
4) R. intraradices + A. brasilense. Morphological and physiological yield com-
ponents were recorded 168 days after transplanting. Data was analyzed statis-
tically and differences between treatments were compared according to Tukey 
(p ≤ 0.05). The results indicate that individual or combined biofertilization of 
microorganisms favors dry matter allocation compared to the control and the 
same is differentially assigned to the stem and root. The Specific Leaf Area 
(SLA) also showed differential response between applications of the microor-
ganisms, in two varieties it increased when they were applied alone and in the 
others when they were applied together. 
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1. Introduction 

Coffea arabica L. is a strategic crop in Mexico because of its social and economic 
impact, and the varieties Typica, Bourbon, Red and yellow Caturra, Mundo No-
vo and Garnica [1] are traditionally grown in association with various timber 
species such as Cedrella odorata L. Tabebuia donnell-smithii Rose, or shade spe-
cies, Inga micheliana Harms and Cordia alliodora (Ruiz & Pav.) Oken [2] through 
agrochemical-based management. In general, established varieties are old and 
susceptible to rust Hemileia vastatrix Berk. & Broome and this situation has in-
creased the planting of new varieties with resistance to this fungus, such as Sar-
chimores, Geisha, Castillo, Marseillaise and Costa Rica 95 [3], which have been 
developed in the tropical region of America. In addition to the above, it has been 
demonstrated that in the initial stage of reproduction of Coffea arabica L., some 
microbiological resources of the soil favor its growth and reduce the time it re-
mains in the nursery. Endomycorrhizal fungi have been used in Coffea arabica L. 
var Oro azteca [4], C. canephora (P.) ex Froehner [5], Theobroma cacao [6], and 
also in co-inoculation with bacteria such as Azospirillum [7] [8] and that associ-
ation induces a positive effect on plant growth through the hyphae, can favor 
water uptake and nutrient transport to the plant, especially Phosphorus and the 
host plant provides carbons to the fungus [9]. This association allows reducing 
the use of synthetic chemical fertilizers and consequently contributes to mitigate 
environmental problems; in addition to favoring the increase of sustainable 
agriculture, food security is guaranteed and microbial diversity is maintained in the 
soil [10] [11]. The effects of microbial symbiosis and the host plant are generally 
expressed, with an increase in aerial and root biomass production [12], flowering 
[13], and yield. Biofertilizers are products based on a non-pathogenic microorgan-
ism that by inoculation can live associated or in symbiosis with the plant. These 
types of microorganisms help increase the supply, availability and physical ac-
cessibility of nutrients through various mechanisms of action and induce greater 
growth in the host plant [14]. However, in some cases these attributes are not ex-
pressed due to adverse effects of climatic conditions [15], in sustainable or 
low-input production systems, but their effective incidence depends also in the 
environmental and edaphic conditions, of the microorganism [16]. There is evi-
dence that some plant associations with endomycorrhizal fungi show ecological 
specificity [17], and host preference [18], either with different varieties of C. ara-
bica L. [19] or with mycorrhizal fungi applied to C. canephora (P.) ex Froehner 
[20]. With this background, the objective was to identify the influence of biofer-
tilizing Rhizophagus intraradices and/or Azospirillum brasilense on the growth 
of four varieties of Coffea arabica L. at the nursery stage. 
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2. Materials and Methods 
2.1. Location of Study Area 

The research was carried out in the 2021/2022 agricultural cycle at the “San José” 
farm (latitude 15˚46'39"N, longitude 92˚59'49"W altitude of 1100 m above sea 
level) La Concordia, Chiapas, México. 

2.2. Biological Material 

The seeds of the Marseillaise, Geisha, Sarchimor and Costa Rica-95 varieties 
were obtained from seedling certified by the National Seed Inspection and Certi-
fication System (SNICS) in the state of Veracruz, Mexico, and germinated in 
washed and solarized river sand for four days. The endomycorrhizal fungus 
Rhizophagus intraradices (Schenk et Sm) Walker et Schuessler, was reproduced 
in sterile soil in the root system of Brachiaria decumbens Stapf. At the time of 
packaging there were 40 spores per gram of soil plus propagules and the level of 
colonization in the root system of 95% (INIFAPMR Data indicated on the prod-
uct). Azospirillum brasilense Tarrand, Krieg et Döbereiner, was produced by the 
company Biofabrica Siglo XXI in Xochitepec, Morelos, México, under the trade 
name AzoFer Plus, having a concentration of 500 × 106 bacteria∙g−1 (Data indi-
cated on the product). 

2.3. Edaphoclimatic Conditions and Seed Germination 

In “San José” orchard there is a warm sub-humid climate with rains in summer 
with 2000 mm of precipitation and an average temperature of 24˚C [21]. The 
soil belongs to the Fluvisol group and the substrate was made with the soil plus 
50% washed river sand and it was solarized for 72 h with the following physi-
cal-chemical characteristics: Loam texture, 13% clay, 36% de silt and 51% sand 
(Bayoucus), 5.7% organic matter (Walkley-Black), 0.006 dsm−1 a 25˚C electric 
conductivity, pH 5.4 (1:2 H2O), N total (%) 0.24, P 27.3 (mg∙kg−1 Olsen), Fe2+ 
26.6 (mg∙kg−1), Mn2+ 8.6 (mg∙kg−1), Zn2+ 1.5 (mg∙kg−1), K+ int. 54.41 (mg∙kg−1), 
Ca2+ 14.9 (cmol∙kg−1) y Mg2+ 2.1 (cmol∙kg−1), Cu 1.04 (mg∙kg−1), S-SO4 31.5 
(mg∙kg−1) y CIC 16.5 (cmol∙Kg−1). 

2.4. Seed Biofertilization and Experiment Setup 

The seeds of the varieties for germination were moistened with carboxyme-
thyl cellulose and impregnated with the respective biofertilizer at 4% of the 
weight of the seed in styrofoam trays with daily irrigation. After 48 days, more 
than 90% presented cotyledon leaves or “butterfly stage” and were transplanted 
into 10 × 20 cm black polyethylene bags. At this time, 2.5 g of each bioferti-
lizer were added to the bottom of the hole. Four treatments were applied for 
each variety of coffee, 1) Control, 2) Rhizophagus intraradices, 3) Azospiril-
lum brasilense and 4) R. intraradices + A. brasilense. In each treatment there 
were five repetitions and they were distributed in a completely randomized 
design. 
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2.5. Morphological and Physiological Variables 

The morphological variables, plant height and number of leaves, and the physi-
ological components were recorded (leaf area, dry biomass of leaf, stem and 
root) at 168 days after sowing (das).The physiological components of the yield of 
the aerial and root part were weighed in a semi-analytical balance (Ohaus Ad-
venturer Pro, USA) after being dried in a forced-air oven at 60˚C - 75˚C to con-
stant weight. Leaf area (cm2) was obtained using a leaf area integrator (LI-COR, 
LI 3000ª, USA). Colonization percentage was quantified using the [22] tech-
nique. One hundred root segments 1.5 - 1.6 cm long were observed with an opt-
ical microscope with an oil immersion lens (100×). 

2.6. Statistical Analysis 

A completely randomized design was used, performing an ANOVA analysis of 
variance, using the SAS System for Windows Ver. 8.1 (1999-2000) [23], When 
the ANOVA was significant, the parameters were compared by Tukey test (p ≤ 
0.05) and the data were plotted using Sigma Plot version 11.0. 

3. Results 
3.1. Morphological Components 

The average height of plants in interaction with the microorganisms, alone or 
combined, increased 34% more, compared to the control in all varieties (p ≤ 
0.05) (Table 1). 

The tallest plants were the varieties Marseillaise, Geisha and Costa Rica 95 in 
interaction with A. brasilense biofertilization and when applied together with R.  

 
Table 1. Morphological and physiological yield components of four varieties of Coffea arabica L. biofer-
tilized with R. intraradices and/or A. brasilense in the nursery. 

 Control 
R.  

intraradices 
A. brasilense 

R. intraradices 
+ A. brasilense 

CV 
(%) 

Height (cm∙plant−1)      

Marseillaise 26.8 ± 1.0*c 41.0 ± 0.8b 43.9 ± 0.6a 39.1 ± 1.1b 4.9 

Geisha 33.1 ± 0.8b 37.6 ± 0.4ab 41.1 ± 1.9a 43.3 ± 1.8a 7.3 

Sarchimor 28.4 ± 1.2b 39.7 ± 0.9a 38.8 ± 0.9a 40.5 ± 1.0a 5.7 

Costa Rica 95 34.1 ± 0.7c 43.2 ± 0.7ab 40.7 ± 1.7b 46.2 ± 0.9a 5.4 

Number of leaves∙plant−1      

Marseillaise 6.2 ± 0.7b 9.5 ± 0.2a 7.7 ± 0.4ab 8.2 ± 0.4ab 13.0 

Geisha 6.5 ± 0.2b 8.2 ± 0.2ab 8.0 ± 0.5ab 8.5 ± 0.6a 12.1 

Sarchimor 7.2 ± 0.4a 7.2 ± 0.6a 8.0 ± 0.4a 7.2 ± 0.4a 13.5 

Costa Rica 95 8.2 ± 0.2c 10.2 ± 0.4a 8.7 ± 0.4bc 10.7 ± 0.4a 9.1 

*Values with the same letter within each factor and column are equal according to Tukey’s test at p ≤ 
0.05. CV = coefficient of variation (%). 
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intraradices. In the case of Sarchimor, this variable was also expressed with bio-
fertilization alone with R. intraradices. The most notable increase in the number 
of leaves was in the treatments biofertilized with R. intraradices and A. brasi-
lense alone or combined, and the lowest number in the control, except with the 
Sarchimor variety, which showed no difference in any treatment. 

3.2. Physiological Components 

A significant statistical difference (p ≤ 0.05) was found in the biomass allocation 
of the different yield components of the varieties with the microorganisms. The 
average leaf area of the four varieties biofertilized with R. intraradices increased 
64.2% in relation to the control. In the case of A. brasilense the increase represented 
57% and the highest value (66.5%) was reached when the two microorganisms 
were applied together (Table 2). 

 
Table 2. Physiological components of the yield of four varieties of Coffea arabica L. biofertilized with R. 
intraradices and/or A. brasilense in nursery. 

 Control 
R  

intraradices 
A.  

brasilense 
R. intraradices 
+ A. brasilense 

CV  
(%) 

Leaf area (cm2∙plant−1)      

Marseillaise 69.2 ± 0.7c 288.0 ± 17.4ab 244.5 ± 5.7b 295.8 ± 10.0a 9.4 

Geisha 70.9 ± 0.2c 245.5 ± 0.2a 201.4 ± 0.5b 258.0 ± 0.6a 6.8 

Sarchimor 107.5 ± 3.0b 251.0 ± 7.2a 243.8 ± 5.4a 259.4 ± 12.7a 9.4 

Costa Rica 95 154.8 ± 5.0d 339.4 ± 20.1b 244.8 ± 2.9c 390.1 ± 9.9a 8.2 

Leaf dry weight (g∙plant−1)      

Marseillaise 0.40 ± 0.0009c 1.37 ± 0.04a 1.14 ± 0.16b 1.10 ± 0.06b 8.7 

Geisha 0.55 ± 0.02b 1.25 ± 0.04a 1.12 ± 0.07a 1.17 ± 0.06a 10.6 

Sarchimor 0.42 ± 0.01b 0.82 ± 0.06a 0.86 ± 0.03a 0.98 ± 0.03a 10.9 

Costa Rica 95 0.50 ± 0.16c 1.13 ± 0.11ab 0.86 ± 0.04b 1.46 ± 0.13a 17.0 

Stem dry weight (g∙plant−1)     

Marseillaise 0.49 ± 0.03b 0.62 ± 0.04a 0.70 ± 0.02a 0.59 ± 0.03ab 9.4 

Geisha 0.24 ± 0.02c 0.59 ± 0.01b 0.75 ± 0.03a 0.55 ± 0.02b 9.8 

Sarchimor 0.14 ± 0.003b 0.35 ± 0.01a 0.41 ± 0.02a 0.38 ± 0.007a 9.0 

Costa Rica 95 0.55 ± 0.03b 0.70 ± 0.02a 0.40 ± 0.01c 0.59 ± 0.01b 7.7 

Root dry weight (g∙plant−1)      

Marsellesa 0.18 ± 0.01c 0.83 ± 0.02b 1.35 ± 0.02a 0.88 ± 0.02b 6.2 

Geisha 0.31 ± 0.01d 0.50 ± 0.01c 0.61 ± 0.009b 0.72 ± 0.02a 6.7 

Sarchimor 0.21 ± 0.006d 0.50 ± 0.01a 0.37 ± 0.01c 0.44 ± 0.01b 6.0 

Costa Rica 95 0.39 ± 0.008b 0.65 ± 0.02a 0.46 ± 0.02b 0.61 ± 0.02a 7.5 

*Values with the same letter within each factor and column are equal according to Tukey’s test at (p ≤ 
0.05). CV = coefficient of variation (%). 
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Among varieties, leaf area increased in Geisha and Sarchimor with R. intrara-
dices, but the most generalized response was with the interaction of the bioferti-
lization of the two microorganisms. In contrast, the Sarchimor variety showed a 
higher increase than the control when the microorganisms were included alone 
or in combination. The dry biomass of the leaf lamina was higher when the va-
rieties were biofertilized with R. intraradices alone (59.6%) and when included 
together with A. brasilense (60.6%) compared to the control. Biofertilization 
with A. brasilense alone induced a slight decrease (53.5%) in leaf lamina bio-
mass. On the other hand, the interaction between the microorganisms and the 
varieties showed contrasting changes. The Marseillaise variety showed an in-
crease in leaf biomass with R. intraradices and Geisha and Sarchimor showed no 
statistical difference between the microorganisms, but they showed changes 
compared with the control. Among varieties, the allocation of biomass to the leaf 
was lowest in the variety Marseillaise (41.5%) and highest in Sarchimor (52.7%). 
The differences in the percentage of dry biomass allocation to the stem between 
the varieties with the microorganisms, alone or combined, did not present con-
trasting changes, that is, with R. intraradices and A. brasilense, the average was 
37.5% in relation to the control, and when both microorganisms were applied 
together it was 32%. The average allocation of dry biomass to the stem of the va-
rieties Marseillaise, Geisha and Costa Rica 95 represented 25.8%, and the lowest 
allocation of 21.7% was with Sarchimor. Root biomass in the varieties in interac-
tion with the microorganisms increased on average 55% in relation to the con-
trol, and the highest average (60%) was when only A. brasilense was applied. 
Among varieties, Marseillaise induced greater root growth with A. brasilense, 
while Sarchimor and Costa Rica 95 did so with R. intraradices. In the case of 
Geisha, the highest value was presented with the co-inoculation of the two mi-
croorganisms. The aerial and root growth of Coffea arabica L. varieties showed 
significant variations between microorganisms and varieties (Figure 1). In all 
cases the aerial and root growth of the microorganisms in the varieties exceeded 
the control (p ≤ 0.05). 

The stem/root ratio presented the most contrasting changes with the Marseil-
laise variety in interaction with the microorganisms alone or in combination. 
There was a notable increase in root biomass with A. brasilense biofertilization, 
and the highest value in the stem was found when R. intraradices was applied. 
Geisha showed greater root growth with the microorganisms compared to the 
control, and in the stem, the biomass allocation was similar. The Sarchimor va-
riety showed a slight increase in root growth when R. intraradices was bioferti-
lized alone, and the greatest allocation of aerial biomass occurred with the double 
symbiosis. In contrast, the variety Costa Rica 95 induced similar root biomass 
allocation with and without the microorganisms and with greater induction of 
aerial growth when R. intraradices and the two microorganisms were applied 
together. When considering the specific leaf area (SLA) as a functional characte-
ristic to induce growth in the varieties with the interaction of microorganisms, 
the highest values were found with the biofertilization of microorganisms alone 
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(Figure 2). In the biofertilized treatments, SLA increased compared to the con-
trol. 

 

 
Figure 1. Root/shoot ratio of four varieties of Coffea arabica L. biofertilized with R. intrara-
dices and/or A. brasilense in the nursery. The values with five repetitions averages. 

 

 
Figure 2. Specific leaf area of four varieties of Coffea arabica L. biofertilized with R. intra-
radices and/or A. brasilense in a nursery. Values with averages of five replicates. 
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The Sarchimor and Costa Rica 95 varieties, showed higher SLA compared to 
Sarchimor and Marseillaise. The previous response suggests a greater capacity to 
acquire resources. When correlating the root colonization of R. intraradices and 
that of the native endomicorrhizal fungi present in the substrate with the SLA, 
greater growth was demonstrated in plants where R. intraradices and A. brasi-
lense were included alone or in combination (Figure 3). 

4. Discussion 

In the morphological components of yield, the increase in height of biofertilized 
plants reflects the benefits of the symbiosis of coffee varieties with microorgan-
isms. However, it was different among varieties, but with greater induction when 
including A. brasilense and the double symbiosis R. intraradices plus A. brasi-
lense. Other authors cite the increase in height in varieties of Coffea arabica L. 
var Garnica [24] and C. arabica L. cv. Caturra [25] with different native endo-
mycorrhizal fungi. The co-inoculation benefits of R intraradices and A. brasi-
lense have also been cited with height increasing capacity in Theobroma cacao L. 
[6] and in maize plants with other microorganisms besides Azospirillum, such as 
Trichoderma, Pseudomonas and the endomycorrhizal fungi Glomus mosseae 
and G. deserticola [26]. The differential response in plant height among varieties 
is attributed to intrinsic factors, such as the abundance and length of root hairs 
that in general determine nutrient and water uptake from the soil, and conse-
quently can be expressed in increased growth. Endomycorrhizal fungi favor nu-
trient acquisition through hyphae [27] and Azospirillum promotes root growth  

 

 
Figure 3. Relationship between root colonization and specific leaf area of four varieties of 
Coffea arabica L. biofertilized with R. intraradices and/or A. brasilense in the nursery. 
The values with five repetitions averages. 
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with the production of phytohormones such as auxins [28] that induce an in-
crease in root number and favor the transport of minerals and water [29]. In 
contrast, in a different species C. canephora (Pierre) ex Froehner, the benefit of 
biofertilization was expressed in greater plant height with the application of R. 
intraradices and A. brasilense separately [5]. The increase in leaf number with 
biofertilization of R. intraradices and A. brasilense separately and together was 
present in three varieties, except Sarchimor. This same result, more number of 
leaves, has been cited in other perennial crops, such as Theobroma cacao L and 
Coffea arabica L. var Oro Azteca [30] and in the case of Cedrela odorata L. it in-
creased by nine more leaves compared to the control [31]. In C. canephora (Pierre) 
ex Froehner the highest number of leaves is cited with biofertilization alone of A. 
brasilense [5]. The differential induction between coffee varieties and microor-
ganisms could be related to the root exudates of each plant and their capacity to 
favor the colonization of other microorganisms that affect root morphogenetic 
development in the host plant [32], and consequently improve its nutrition and 
growth induction. In our case, the increase in biomass accumulation in the 
treatment with the two microorganisms together indicates their functional affin-
ity with the plant and suggests that the host plant was able to supply sufficient 
carbon to the microorganisms. Of the physiological components of yield, the 
greater increase in leaf area when applying both microorganisms together in the 
coffee varieties suggests functional compatibility of the host plant with the mi-
croorganisms, even though the endomycorrhizal symbiosis lacks of taxonomic 
specificity [33], however, a certain preference seems to occur between the plant 
and the introduced microorganisms. Several studies have shown that co-inoculation 
of plants with fungi and bacteria induces synergistic effects in their interaction 
[34] [35], even though root colonization increases the demand for carbohydrates 
with the co-inoculation of more than one microorganism, and it has been esti-
mated that the plant in symbiosis with endomycorrhizal fungi transfers about 
20% of the total carbon assimilated [36]. In our case, the increase in biomass ac-
cumulation in the treatment with the two microorganisms together indicates 
their functional affinity with the plant and suggests that the host plant was able 
to supply sufficient carbon to the microorganisms. The benefits of mycorrhizal 
symbiosis in inducing greater leaf area in the host plant have also been found in 
species such as Tabebuia donnell-smithii Rose [37], Eucalyptus camaldulensis 
Dehnn [38] and Cedrela odorata L. [31]. The increase in differential dry matter 
accumulation in leaf biomass with biofertilization alone of R. intraradices con-
firms the improvement in nutrient uptake and overall plant productivity of the 
host plant [39]. They [40] point out the importance of mycorrhizal plants nutri-
tion and their improvement in photosynthesis, as a response to the increase of 
the external hyphae that allows exploring a greater volume of soil and extends 
the surface area of nutrient uptake [41]. Similar results are cited [42] when eva-
luating different endomycorrhizal fungi in the plant development of S. rebau-
diana Bertoni. The response of the varieties to biofertilization by separate mi-
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croorganisms for biomass allocation to the stem suggests differential allocation 
of photosynthates, furthermore, influenced by the modification of the microbial 
community of the rhizosphere as a consequence of root exudates [43]. This back-
ground proposes the contrasting functionality of microorganisms in interaction 
with plants [44], such as the response found with L. leucocephala [8], that sym-
biosis induces changes in its physiology [45]. In Coffea arabica L. var Oro azteca 
with R. intraradices increases stem biomass [4]. The lower dry matter allocation 
to the root system in the Marseillaise and Geisha varieties with R. intraradices is 
likely due to the substitution of root hair growth by fungal hyphal growth. It ap-
pears that the fungal hypha replaces root hairs and the plant transports more 
photosynthates to the aerial part for biomass production. This fact could be due 
to less allocation of carbohydrate, a product of photosynthesis, to the elaboration 
and maintenance of the root system, with a consequent benefit for aerial plant 
growth [38]. Similar results are cited with the biofertilization of R. intraradices 
in plants of Tabebuia donnell-smithii [46] and Theobroma cacao L [6]. In con-
trast, with the varieties Sarchimor and Costa Rica 95, the root system increased 
with R. intraradices biofertilization compared to the other treatments. This same 
effect was cited by [5], in C. canephora with the same endomycorrhizal fungus 
and [4] with C. arabica var Oro azteca. Root growth when A. brasilense was bio-
fertilized induced greater growth contrast in the root system of the Marseillaise 
variety. This is suggested as a response to the production of phytohormones by 
the bacterium [47] [48], such as indole acetic acid [47] [48] [49], cytokinins and 
gibberellins that induce more root hairs and consequently favor nutrient uptake 
[50]. In annual crops, A. brasilense also induces an increase in root biomass 
when applied in co-inoculation with endomycorrhizal fungi on Phaseolus vulga-
ris L. and Zea mays L. [15]. Regarding to the allocation of biomass to the stem 
and root, the differences indicate interaction between the plant and the micro-
organisms and this same effect is cited [51]. In the case of R. intraradices, the 
benefits in both aerial and root organs of plants are associated with nutrient and 
water transport [38]. The transport of nutrients and water to the plant increased 
because the hyphae are thinner than the roots and can access places where roots 
or root hairs do not normally penetrate, thus increasing their ability to explore a 
larger volume of soil for nutrient uptake [41] [52]. The increase in root/stem ra-
tio seems to be related to the modular growth of plants. According to [53], 
growth is regulated by genetic traits that vary only in a specific range of pheno-
typic plasticity. The expression of modular growth of the plant strata, physiolog-
ically holds the modules together and integrates a whole, with a typical exponen-
tial growth phase, followed by a period in which the rate of iteration of new 
modules and biomass accumulation declines until the maximum size is reached 
[54]. In general, biofertilization of Coffea arabica L. with R. intraradices and A. 
brasilense significantly increases dry matter allocation to the different yield 
components, compared to the control [55] [56], and in some isolates more of 
them are expressed, or when biofertilizing the plant with different fungi in con-
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sortium [25]. The lower growth induction of some plants can be attributed to 
certain environmental and soil conditions that may influence the results of bio-
mass induction. The endomycorrhizal fungi in one soil behave differently from 
those in other soils [57]. It is also highly influenced by several environmental 
factors including climate conditions, age and variety of host plant [58]. The spe-
cific leaf area (SLA) of the four varieties suggests differential response among 
varieties to the gradual increase in assimilatory tissue [59], in response to the 
transport of nutrients to the plant [60] due to the increase with the biofertiliza-
tion of microorganisms compared to the control, but in two of them, Geisha and 
Marseillaise, the lowest SLA was when the microorganisms were introduced 
separately, whereas in the varieties Costa Rica 95 and Sarchimor the increase was 
greater when they were biofertilized alone. The greater increase in SLA with R. 
intraradices biofertilization on Geisha and Sarchimor suggests the ability of the 
endomycorrhizal fungus in transporting phosphorus to the plant [61] [62], or to 
a differential induction response of the microorganisms in stimulating growth of 
yield components, or also, between differences in the way they are exploited 
[54]. The presence of root colonization in the control is due to the fact that sola-
rization does not destroy the spores contained in the substrate. The lower root 
colonization values in the control suggest a lack of compatibility of the native 
fungi with the varieties, which have different origins [63] [64] [65] even though, 
the symbiotic association between higher plants and mycorrhizae is commonly 
found in nature. In the A. brasilense case, root colonization by endomycorrhizal 
fungi was higher than the control and this effect could have been favored by root 
exudates. This may be due to the generation of specialized metabolites, such as 
flavonoids, which generate communication with other members of the phyto-
biome [66] such as endomycorrhizal fungi [67] and thus improve their acquisi-
tion of nutrients and water. In the case of flavonoids, they are considered sig-
naling compounds for endomycorrhizal fungi that can influence spore germina-
tion, hyphal growth, and root colonization [68]. The lower root colonization 
values in the control suggest a lack of compatibility of the native fungi with the 
varieties, which have different origins. However, symbiotic association between 
higher plants and mycorrhizae is commonly found in nature. 

5. Conclusion 

Biofertilization of the four C. arabica L. varieties in nursery with some of the in-
dividually biofertilized microorganisms and in co-inoculation, favored growth 
and dry matter allocation of morphological and physiological yield components 
compared to the control without biofertilization. The most contrasting changes 
in dry matter allocation in the four coffee varieties occurred at 56 and 84 ddt and 
the highest and most recurrent plant expression arose with the biofertilization of 
the two microorganisms. The aerial and root biomass of the varieties of Coffea 
arabica L. expressed differential response in interaction with the microorganisms 
alone or in co-inoculation. The most remarkable increase of SLA is when the 
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microorganisms are applied separately in two varieties and in the others with the 
co-inoculation. 
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