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Abstract 
The main objective of this paper is to propose a new hybrid algorithm for 
solving the Bi objective green vehicle routing problem (BGVRP) from the Bi-
criterionAnt metaheuristic. The methodology used is subdivided as follows: 
first, we introduce data from the GVRP or instances from the literature. 
Second, we use the first cluster route second technique using the k-means al-
gorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pair-
wise Exchange) algorithm to each cluster obtained. And finally, we make a 
comparative analysis of the results obtained by the case study as well as in-
stances from the literature with some existing metaheuristics NSGA, SPEA, 
BicriterionAnt in order to see the performance of the new hybrid algorithm. 
The results show that the routes which minimize the total distance traveled 
by the vehicles are different from those which minimize the CO2 pollution, 
which can be understood by the fact that the objectives are conflicting. In this 
study, we also find that the optimal route reduces product CO2 by almost 
7.2% compared to the worst route. 
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1. Introduction 

Green transportation issues are increasingly showing interest from theoretical, 
political and social perspectives. Transport activity has a high rate of negative 
effects on the environment, due to pollutants and the greenhouse effect. The 
consequences of its emissions are climate change and health complications, rea-

How to cite this paper: Kayij, E.N., Ma-
kubikua, J.L. and Busili, J.D.K. (2023) New 
Hybrid Algorithm Based on BicriterionAnt 
for Solving Multiobjective Green Vehicle 
Routing Problem. American Journal of Op-
erations Research, 13, 33-52. 
https://doi.org/10.4236/ajor.2023.133003 
 
Received: March 20, 2023 
Accepted: May 13, 2023 
Published: May 16, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2023.133003
https://www.scirp.org/
https://doi.org/10.4236/ajor.2023.133003
http://creativecommons.org/licenses/by/4.0/


E. N. Kayij et al. 
 

 

DOI: 10.4236/ajor.2023.133003 34 American Journal of Operations Research 
 

sons why emissions from the transport sector must be reduced, the WHO re-
ports that diesel fumes create several diseases such as lung cancer (International 
Agency for Cancer Research, 2012). Nevertheless, scientific works that deal with 
GVRP with the objective of minimizing CO2 emissions are rare and new in the 
literature. 

Indeed, the combustion of fossil fuels in internal combustion engines produc-
es carbon dioxide CO2, the propagation of which in the atmosphere contributes 
to the greenhouse effect and global warming. It should be noted that one liter of 
fuel produces approximately 2.4 kg of CO2 during combustion, a value which 
depends on the type of fuel (petrol, diesel, natural gas ...) and its density. 

CO2 emissions are directly proportional to vehicle fuel consumption. [1] To 
quantify emissions, several calculation methods exist. Each method takes into 
account on average 6 to 14 different factors influencing the amount of GHG 
(Greenhouse Gas) emissions evaporated. 

The classic VRP neglects current environmental concerns and deals primarily 
with economic return. It is therefore important for policy makers to apply re-
strictive regulations to control greenhouse gas emissions. All of these concerns 
have drawn the attention of researchers to the Green Vehicle Routing Problem 
(GVRP) [2]. 

Some authors have proposed approaches and algorithms to solve the GVRP. 
In 2015 A. Moutaoukil et al. [3] worked on the minimization of CO2 emissions 
in distribution circuits with heterogeneous fleet, its strength lies in modeling a 
vehicle routing problem using a heterogeneous fleet, but one of the limits of this 
proposal lies in the high computation times which only allow small instances to 
be taken into account. N. Rezaie et al. [4] in 2019 studied a problem of routing 
green vehicles with time windows considering the heterogeneous fleet of vehicles: 
two metaheuristic algorithms. The comparison showed that the proposed algo-
rithms provide high-quality solutions with regard to objective functions. The 
paper has some limitations. First, it can be merely applied to products (or prob-
lems) that hard time windows are suitable for them, such as newspaper, meat, 
vegetable, etc. Second, the practitioners must have the knowledge to use the re-
sults of this paper in the real world. Júlio César Ferreira et al. [5] in 2021 pro-
posed for a two-objective green problem a New hybrid optimization algorithm 
CWNSGA-II and CWTSNSGA-II applied to the distribution of a newspaper, he 
has the advantage of having obtained superior results for case studies and litera-
ture instances, but the difficulty in selecting the best route from a utility function 
that is often not easy to set up. In 2021 Joydeep Dutta et al. [6] proposed a hybr-
id multi-objective evolutionary algorithm for open green vehicle routing prob-
lem through cluster primary-route secondary approach. This model suggests a 
solution based on the managers “decision makers” choice from a set of alterna-
tive solution. 

In this article, the GVRP has been studied, where a central repository provides 
the demand of customers using a heterogeneous fleet of vehicles. In addition, it 
was assumed that the rate of fuel consumption depends on the distance traveled 
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and the load of the vehicles as well as the type of vehicle used. 
To formulate the problem, a bi-objective model of combinatorial linear pro-

gramming has been proposed [7]. Thus, the model simultaneously minimizes 
the total transport costs and the CO2 emissions of the vehicles during a tour. In 
the literature, some authors have proven that even simple variants of VRP are 
NP-hard, like [8] [9], not to mention the more complex variant of GVRP studied 
in this article. 

In this paper, we make a hybridization of three heuristic approaches to solve 
the two-objective green vehicle routing problem. This new hybrid algorithm 
called BicriterionAntAPE is a general, globalizing, high-level hybridization that 
combines the strengths of each heuristic. The interaction between them is seen 
by the fact that the heuristics are launched one after the other, each taking the 
output produced by the previous one. In the literature, most authors use a ge-
netic algorithm to solve the VRP. After finding interesting individual routes, 
routes are then improved using the 2-opt method followed by the 3-opt [10]. 
What is new in this article, however, is that the solution found by BicriterionAnt 
is improved by APE, which is easier to apply instead of the usual r-opt type me-
thods. 

Generally the VRP is an NP-hard routing problem defined on a graph  
( ),G V E=  where V is a set of n nodes (customers) and E a set of m edges, con-

sisting of a fleet vehicle of capacity Q based in a depot node. Each edge ( ),i j  
has a traversal cost 0ijc ≥  and a demand 0iq ≥  from customer i as as shown 
in Figure 1. 

The objective function can be either: the minimization of the number of ve-
hicles used, the minimization of the total distance traveled by the vehicles, the  
 

 
Figure 1. Graphical presentation of the VRP. 
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minimization of the total duration of the routes, the minimization of the total 
cost of the routes (taking into account the costs of the vehicles, drivers, the mi-
nimization of penalties related to violation of constraints, particularly in the case 
of time windows, the maximization of gains generated by rounds the objectives 
of minimizing the number of vehicles and the total distance (or duration) of 
rounds are conflicting because the reduction in the number of vehicles most of-
ten leads to an increase in the total distance travelled.  

2. Position of the Problem 

Solving the multi-objective vehicle routing problem (MOVRP) by so-called exact 
methods presents many difficulties for medium and large-sized instances. Ant 
colony algorithms solve this type of problem in a reasonable time and provide 
good quality approximate solutions [11]. 

Ant colony-based algorithms were originally proposed in [12] [13] [14]. They 
have been successfully applied to several combinatorial problems like the travel-
ing salesman problem, quadratic assignment, vehicle routing, multidimensional 
knapsack, etc. We then extend this study to the case of multi-objective optimiza-
tion problems, where the choice of a phenomenal structure is even more difficult. 
We propose, in this work the resolution of a case study of the GVRP with two 
objectives to do this, it is essential to choose the appropriate phenomenal strate-
gy, hence the choice of the BicriterionAnt (ACO) algorithm proposed by Iredi et 
al. [15]. 

To calculate CO2 emissions, we used the method proposed by Zhang et al. [16]. 
We therefore assumed two fuel consumption rates. The first is for the vehicle 
when unloaded (empty load) and the second is for the same vehicle when loaded 
to its maximum capacity. Then, taking into account the load and the distance 
traveled by the vehicles, the CO2 emissions per each unit of distance will be de-
termined. 

3. Literature Review 

The vehicle routing problem was first introduced in the literature by Dantzig 
and Ramser in 1959 [17]. They work on a study dealing with the truck dispatch 
problem in a vehicle routing problem (VRP) with capabilities and specific con-
straints to serve groups of customers in different geographical locations from a 
central warehouse. These vehicles may or may not return to the central depot. 

As pointed out by Reimann [18], the VRP and all its variants form an impor-
tant problem in logistics and have been the subject of much research, such as re-
cently by [19] [20] [21]. When the vehicle belongs to the company, the vehicle 
must return to the central depot, we then speak of VRP closed; otherwise we 
speak of VRP Open. Sariklis and Powell [22] first introduced the term Open Ve-
hicle Route Problem (OVRP) this was followed by several published papers on 
OVRP problems using multiple methods/algorithms for their solution. Dutta, 
Barma, Kar [23] recently applied a modified version of Kruskal’s method and a 
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hybrid algorithm of genetic algorithms to solve OVRP. 
Gutierrez et al. [24] studied a new variant of VRP where time is a random va-

riable. Eshtehadi et al. [25] in turn have explored another facet of uncertainty in 
slotted VRP; they took demand and travel times as uncertain parameters, they 
discussed three approaches to analyze uncertainty: soft worst case, hard worst 
case and chance conditions. 

Kopper et al. [26] proposed a mathematical method to study heterogeneous 
GVRPs simply targeting CO2 emissions, in this paper, different types of vehicles 
were taken into account as well as the consumption rates of different types of fu-
els used, payload and mileage. 

Yang et al. [27] on the other hand proposed a multi-objective model to deal 
with GVRP; this mathematical model seeks to minimize operating costs and CO2 
emissions while maximizing the level of customer satisfaction, unlike Masmoudi 
et al. [28] they considered the fill function in the problem. However, they took 
into account a homogeneous fleet of vehicles. They first proposed a MILP (Mixed 
Integer Linear Problem) model of the problem, and then developed a two-step 
hybrid heuristic algorithm for a home care system where a patient may need the 
services of several specialists at the same time. 

4. Multi Objective Programming 

Most real world optimization problems are complex and one of the aspects con-
tributing to this complexity is their multi-objective nature Durillo et al. [29]. In 
optimization works, including multi-objective optimization, the emphasis is on 
finding the global optimum or Pareto front yielding the best possible values of 
the Deb et al. [30]. For others, multi-objective (or multi-criteria) optimization is 
a process aimed at systematically and simultaneously optimizing a collection of 
objective functions Marler et al. [31]. 

In general, a multi-objective optimization problem can be defined as: 

( ) ( ) ( ) ( )( )1 2min , , , mF x f x f x f x=   avec 2m ≥  

Under the constraints ( ) 0g x ≤  and ( ) 0h x =  where m is the number of 
functions to optimize, ( )1, , nx x x=   is the vector of decision variables,  
( ) ( ) ( ) ( )( )1 2, , , mF x f x f x f x=   is vector of the criteria to be optimized, ( )g x  

and ( )h x  represent respectively m inequality constraints and p equality con-
straints. This set of constraints delimits a restricted space of feasible solutions 
that one will note D. 

The image of a solution x in the criteria space is the point ( )1, , my y y=   
with ( ) , 1, ,i iy f x i m= =   and ( )Y F D=  representing the feasible points in 
the objective space. 

We impose on this set a partial order relation called dominance relation that 
we will define in the next point. 

4.1. Notion of Pareto Dominance 

A solution ( )1, , my y y=   dominates a solution ( )1, , mz z z=   if  
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{ }1, ,i m∀ ∈  , ( ) ( )i if y f z≤  and { }1, ,i m∃ ∈   ( ) ( )i if y f z< . 
If the solution y dominates the solution z it will be denoted y z . For any 

pair of solutions y and z one and only one of the following cases can occur: y 
dominates z or y is dominated by z or aigain y and z are equivalent in the sense 
of dominance. 

Equivalent solutions in the sense of dominance are called in what follows, 
equivalent solutions in the sense of Pareto or Pareto equivalent solutions or 
again, non-dominated solutions. 

4.2. Optimization by Ant Colonies for Multi-Objective Problems 

According to Dorigo et al. [32] ACO algorithms have several advantages in their 
applications in different, of which several discrete optimization problems are 
successful. The majority of these problems are NP-hard and the application of 
ACO algorithms has allowed finding good quality solutions in a reasonable time. 

Some variants of the first ACO algorithm named Ant System [12] based on 
the behavior of artificial ants such as the Max-Min Ant System, Ant Colony Sys-
tem, or Rank-Based Ant System algorithms have emerged, these extensions were 
implemented due to the fact that despite the encouraging results of Ant System, 
it was not competitive enough against state of the art algorithms, especially for 
large-scale problems (such as genetic algorithms). 

ACOs are part of combinatorial optimization techniques that have been de-
signed to solve multi-objective problems often having conflicting objectives. An 
overview of ACO algorithms allowing multi-objective problem solving is availa-
ble in Garcia-Martinez et al. [33]. These algorithms are gathered under the name 
of MOACO (Multiple Objective ACO). We can distinguish two families of MOACO 
algorithms: Pareto and Non-Pareto. MOACO algorithms based on a Pareto evalu-
ation method (Pareto-based MOACO) consist in generating solutions on the Pa-
reto front by applying the principles of Pareto-dominance. The best known al-
gorithms of this family are: CPACO [34], MOAQ [35], PACO-MO [36], Bicrite-
rionAnt [37], BicriterionMC [37] and ACO-bQAP [36]. 

4.3. Ant Colony Algorithm 

The ACO algorithm was proposed by Dorigo to choose the shortest path in the 
traveling salesman problem (TSP). It implements the use of ant trail phero-
mones when searching for the shortest path from their nest to the food source as 
shown in Figure 2. In this article the BicriterionAnt version particularly caught 
our attention to solve our problem of touring green vehicles with two objectives. 

We first present the initial algorithm Ant Colony System (ACS) which allows 
finding the shortest Hamiltonian cycle in a graph. 

4.4. Data and Rating 

● Let ( ),G V E=  be an undirected graph.  
● The finite set V of vertices represents customer.  
● The finite set ( ){ }, / ,E i j i j V= ∈  of edges linking the vertices together.  
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Figure 2. Overview of ACO. 

 
● ijd  represents the edge weights ( ),i j E∈  (the distance between vertex i 

and vertex j).  
● ( )kL u  gives the length of the circuit u representing the total distance tra-

veled during the tour by the ant k.  
● ( )ij tτ  is the value of the pheromone trail at time t on edge ( ),i j .  
● n V=  the total number of customer.  

● ( ) 1
ij

ij

t
d

η =  is the constant indicating the visibility of customer j from cus-

tomer i.  

4.5. Transition Choice 

Each ant has a memory that will be emptied once the cycle is over, allowing it to 
avoid returning to a customer already visited. An ant k found in customer i at 
time t chooses customer j as its destination according to two parameters: the vi-
sibility ijη  and the pheromone density ( )ij tτ  of the edge connecting it, de-
pending on the value of ( )k

ijp t .  

 ( )
( )( ) ( )

( )( ) ( )( )
if

i

ij ijk k
ij i

ij ijj N

t
p t j N

t

α β

α β

τ η

τ η
∈

⋅
= ∈

⋅∑
               (1) 

where ( )k
ijp t  is the probability that ant k chooses j from i. k

iN  is the set of 
unvisited neighbors of vertex i by ant k in the current cycle, α  and β  are 
parameters that control the importance that the ant gives to an edge (intensifica-
tion/diversification). 

4.6. Pheromone Update 

At the end of each cycle (each ant has traversed the n vertices that make up the 
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graph), the traces of the pheromones are updated according to the formula:  

 ( ) ( ) ( ) ( )1 1ij ij ijt t tτ ρ τ τ+ = − + ∆                     (2) 

where ρ  is an evaporation coefficient such that 0 1ρ< < . 
( )1 ρ−  is the evaporation of the pheromone. 

( ) ( )
1

m
k

ij ij
k

t tτ τ
=

∆ = ∆∑                         (3) 

represents the quantity of pheromones per unit length deposited on the edge 
( ),i j  by the kth ant between t and t n+ , it is given by: 

( ) ( )if the ant crosses edge , in its turn

0 otherwise

k
ij

Q k i j
t Lτ


∆ = 


 

with, kL : the length of the turn of the kth ant. 
Q: a constant positive number. 

5. Presentation of the BicriterionAnt algorithm 

The BicriterionAnt algorithm was proposed by Iredi et al. [15] especially to solve 
the bi-criteria vehicle routing problem. It uses two different pheromone trail 
structures, τ  and τ ′ , one for each criterion considered. 

At each generation, each of the m ants in the colony generates a solution to 
the problem. During the solution construction step, the ant chooses the next 
vertex j to visit relative to the probability ( )k

ijp t   

 ( )
( )( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( )
1 1

1 1
if

k k k k

k k k k

i

ij ij ij ijk k
ij i

ij ij ij ijj N

t t
p t j N

t t

αλ βλ α λ β λ

αλ βλ α λ β λ

τ η τ η

τ η τ η

− −

− −

∈

′ ′⋅ ⋅ ⋅
= ∈

′ ′⋅ ⋅ ⋅∑
  (4) 

for each m ants calculate the exchange rule λ  as follows:  

 1
1k

k
m

λ −
=

−
                             (5) 

Once all the ants have built up their solutions, the pheromone trails are eva-
porated by the usual ACO rule. Since there are two variables for pheromone in-
formation and heuristic information, the pheromone evaporation process is per-
formed using:  

 ( ) ( ) ( ) ( )
1

1 1
m

k
ij ij ij

k
t t tτ ρ τ τ

=

+ = − + ∆∑                   (6) 

( ) ( ) ( ) ( )
1

1 1
m

k
ij ij ij

k
t t tτ ρ τ τ

=

′ ′ ′+ = − + ∆∑                   (7) 

Then, each ant that has generated a solution in the Pareto front in the current 
cycle is allowed to update the two pheromone structures, τ  and τ ′ , by depo-
siting an amount equal to:  

 ( ) 1k
ij t

l
τ ′∆ =                             (8) 
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where l  is the number of ants that are updating the pheromone trails. The 
non-dominated solutions generated throughout the execution of the algorithm 
are put into an external set. 

 
Algorithm 1. BicriterionAnt Algorithm 

 

6. Adjacent Pairwise Exchange Algorithm (APE) 

APE is a local search heuristic, which allows obtaining achievable results in a 
reasonable period of time; it is used to bring an improvement in the quality of a 
given solution. The APE algorithm starts with a given admissible solution, the-
reafter, it will search in the vicinity of the current solution for any solution to 
improve the current configuration. At each step of the improvement procedure, 
the algorithm tests whether the exchange of two adjacent sums (cities) produces 
a feasible solution to improve the solution and the algorithm continues in this 
way until we can no longer improve. APE helps the BicriterionAnt algorithm to 
explore the search area more strongly in order to find other solutions.  

7. Algorithm k-Means 

Consider a total of n customers. The demand of each customer is known in ad-
vance. The n customers are geographically dispersed over a space, and whose 
position of a customer is represented by its coordinates ( ),i ix y  with 1, ,i n=  . 
The coordinate ( )0 0,x y  is gives the position of the central repository. Each 
customer must be served by one and only one vehicle. Each client belongs to a 
cluster. Customers who belong to the same cluster are served by the same vehicle, 
hence the total number of clusters is the total number of vehicles used. 

Consider that all n clients are grouped into m clusters and their requests are 

1 2, , , nd d d . 
The number of vehicles used (the number of clusters) can be obtained by:  

 
1

n
i

i

d
m

Cap=

= ∑                             (9) 

with Cap  the load capacity of the vehicle. 
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Consider that the Euclidean distance ijd  between any customers i of a cluster 
is symmetric, it can be determined by:  

 ( ) ( )2 2
ij i j i jd x x y y= − + −                   (10) 

where 1, ,i n=   and 1, ,j n=  . 
Let M be the assignment matrix, which represents which client is assigned to 

which cluster 1ijm =  if customer i is assigned to cluster j; 0 otherwise.  
Thus, the problem of assigning customers to different clusters can be formu-

lated mathematically as  

 
1 1

min
n m

ij ij
i j

d m
= =
∑∑                        (11) 

1
1, 1, 2, ,

m

ij
j

m i n
=

= =∑                     (12) 

1
, 1, 2, ,

n

ij ij
i

d m Cap j m
=

≤ =∑                   (13) 

It is therefore a minimization problem, which seeks to minimize the distance. 
Constraint (12) represents that each customer is assigned to a single cluster, and 
constraint (13) is the vehicle or cluster capacity constraint. 

The above problem of allocating customers to different clusters can be solved 
by any clustering method like k-means algorithm. This algorithm finds customer 
clusters based on customer locations and Euclidean distances to centroids. 
However, the classical k-means algorithm operates on randomness. The mod-
ified k-means algorithm works well in the context of VRP by imposing some 
specific constraints such as:  
● Instead of an arbitrary choice of the value of k, it is appropriate to choose the 

value of k as the number of vehicles using Equation (9).  
● It is better to start by choosing the centroid of the cluster as the depot so that 

all clients always come to the position closest to the depot.  
● It is better to focus first on customers with higher demands than others.  
● Instead of choosing customers randomly for different clusters initially, it is 

better to calculate the Euclidean distance of each centroid and then assign it 
to the nearest cluster.  

Figure 3 shows the structure of our hybrid algorithm BicriterionAntAPE. 

8. The Main Formulas for Calculating CO2 Emissions 

The main formulas for calculating CO2 emissions The Carbon Footprint makes 
it possible to estimate the impact of an activity on the environment. It was de-
veloped in 2004 by the ecological transition agency ADEME, which established 
that the emission factor for road freight transport is evaluated at 3.07 (kg 
CO2/tonnes.km). CO2 emission factors indicate the quantity of CO2 emitted 
during the combustion of a given fuel and for a unit of energy taken. 

Four ways to calculate the amount of CO2 emitted during a tour or service  
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Figure 3. Flowchart of the hybrid BicriterionAntAPE algorithm. 

 
according to different parameters such as energy consumption rate (TC), emis-
sion factor (EF), distance (d), vehicle capacity (CV) and the number of units 
transported in the vehicle (UT). One of them is the following: The energy source 
consumption is not known for the service in particular, and the means of trans-
port concerns several beneficiaries. On the one hand, it is necessary to estimate 
consumption using average consumption and the journey, and on the other 
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hand, to distribute the emissions among the beneficiaries. The calculation for-
mula is 

2CO
UTE TC d EF
CV

 = × ×  
 

                     (14) 

For this purpose, we assumed two fuel consumption rates. The first is for the 
vehicle of the type k when unloaded 0

kµ , and the second is for the same vehicle 
when loaded to its maximum capacity *

kµ  then, taking into account the type, 
load and distance traveled by the vehicles, the CO2 emissions per unit distance 
will be determined based on the equation: 

2

* 0
0

CO
k k

k k
k

E
R

µ µ
χ µ β
  −

= +     
                   (15) 

where χ : the CO2 emission rate, kR : is the maximum load capacity of a vehicle 
the type k and kβ : is the vehicle load. 

9. Description of the Problem 

Our problem consists of two objective functions. The first objective seeks to mi-
nimize the overall distance of the transport and the second is that of minimizing 
the CO2 emissions of each vehicle during a round. In fact, the most common de-
finition of VRP is the design of optimal routes by a fleet of homogeneous or he-
terogeneous vehicles located in one or more depots to serve a number of geo-
graphically dispersed customers with known demand. This general definition 
highlights a set of parameters that characterize VRP variants: Transport net-
works, customers and vehicle fleets. Additional constraints can be added to these 
three parameters.  

10. Formulation of the Selected Problem 

Following the brief description of the problem given above, we formulate the 
problem to be solved as follows: 

1
1 1 1

min
v n n

k
ij ij

k i j
f d x

= = =

= ∑∑∑                        (16) 

* 0
0

2 min k kk k
k ij ij ij

k K i V j V k

f x q d
R

µ µ
χ µ

∈ ∈ ∈

  −
= +     

∑∑∑              (17) 

{ }
1 0
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{ }, 0,1 , ,k k
ijx Z i j k∈ ∀                      (26) 

0 , ,k
ijq i j k≥ ∀                         (27) 

(18) Each client { }0i V∀ ∈ −  is visited once and once. (19) If vehicle k ar-
rives at customer j, it must leave. (20) and (21) Each must return to the depot at 
the end of their tour. (22) compliance with the maximum duration T of the trips. 
(23) Elimination of sub-tours to ensure route connectivity. (24) Ensures that 
each vehicle k could carry a load less than or equal to its maximum capacity 

( )kR . (25) Gets k
ijq  for a value greater than zero. (26) , 1k k

ijx z =  if the vehicle 

of type k visits j, and 0 otherwise . (27) k
ijy  flux of the arc ( ),i j  loaded in the 

vehicle of type k ensure that the flux variables are non-negative. 
To arrive at routes that produce the minimum of CO2 emissions, it is essential 

to build a matrix of CO2 emissions based on the estimate of CO2 emitted during 
the course of each ridge. In this paper, only diesel engines complying with the 
most recent standards in force are taken into account. For good service perfor-
mance, the constraint linked to the maximum duration is set at 5 hours for ve-
hicle rounds with an average speed of 55 km/h for urban areas. 

11. Analysis of Results 

To test the proposed algorithm on the instances in the literature, the Matlab 
R2021a software allowed us to do the coding, installed on a laptop with an Intel 
(R) Celeron (R) with a CPU@1.60 GHz processor and 8 GB of RAM, with a 
64-bit operating system. 

We applied our hybrid BicriterionAnt algorithm to solve some VRP instances 
from the literature such as Golden_4, Golden_8, Golden_7 proposed by Golden, 
Wasil, Kelly, and Chao (1998) and X-n167-k10, X-n106-k14, X-n143-k7 pro-
posed by Uchoa, Pecin, Pessoa, Poggi, Subramanian, and Vidal (2013). For 
NSGAII and SPEA2 the parameters used are: Iterations = 200, Population = 100, 
Crossover = 0.7, mutation = 0.3.  

Case Study 

Here we apply our BCAntAPE hybrid method to the problem of a dairy prod-
ucts company has a central depot and a range of uniform delivery vehicles with a 
maximum capacity of ten tonnes. The demands of its 15 customers are known; 
we consider the distances between symmetric customers and verify the triangu-
lar inequality, as shown in Table 1.  
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Table 1. Matrix of distance between customers. 

Customers C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

C0 0 684 308 194 502 730 354 696 742 1084 594 480 674 1016 868 1210 

C1  0 922 878 502 274 810 468 742 400 1278 1278 1130 1130 1552 754 

C2   0 114 650 878 502 844 890 1232 514 628 822 1164 560 1358 

C3    0 536 764 388 388 388 388 400 514 514 1050 670 1244 

C4     0 228 308 194 240 582 776 622 628 514 1050 708 

C5      0 536 194 468 354 1004 890 856 514 1278 480 

C6       0 342 388 730 468 354 320 662 742 742 

C7        0 274 388 810 696 662 320 1084 514 

C8         0 342 536 422 388 274 810 468 

C9          0 878 764 730 388 1152 354 

C10           0 114 308 650 274 844 

C11            0 194 536 388 730 

C12             0 342 422 536 

C13              0 764 194 

C14               0 798 

C15                0 

Demand (T)  1.3 0.8 1 1.5 0.7 2 1 1 1.4 1.2 0.8 1.6 1.2 0.9 1.7 

 
Table 2 gives the characteristics of the heavy duty vehicle (HDV) [38] used 

are: 
We tested the algorithms by varying the number of ants from 4, 3, and 2. We 

considered the following parameters as shown in Table 3. 
From the results obtained in Table 4 we see that a minimum CO2 pollution is 

not guaranteed for vehicles taking the shortest route. However, several common 
routes exist (i.e. the visit sequences are the same with different optimization 
goals). 

Table 5 shows the results obtained by NSGAII, SPEA2, BCAnt and BCAn-
tAPE for Golden_4, Golden_8, Golden_7, X-n167-k10, X-n106-k14 instances 
and X-n143-k7 relative to OF1 and OF2.  

12. Performance Measures 

Four metrics were used to evaluate the performance of the algorithms, in order 
to perform a comparative analysis between them. The metrics called M1, M2 and 
M3, taken from Zitzler et al. [39], refer respectively to the evaluation of the qual-
ity, the distribution and the extension of the Pareto front generated by the algo-
rithm. The fourth metric called Error was taken from Veldhuizen [40] and refers 
to the percentage of generated solutions that do not belong to the Pareto Front. 

In all cases, the Euclidean distance between two points is used as the distance 
metric, represented by ( ),d p q , and F is taken as the known Pareto front and  
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Table 2. The characteristics of HDV. 

Vehicle type Weight allowed in charge 0
kµ  *

kµ  χ  

HDV 6.1 - 10.9 158.3 228 0.37 

 
Table 3. Parameter description table. 

Parameters Value Description 

m 4 The number of ants 

α 1 Weight for pheromone level 

β 2 Weight for heuristics information 

ρ 0.2 Pheromone evaporation constant 

Iteration 100 Number of iterations 

 
Table 4. The statitics of differents algorithms. 

 BCAnt BCantAPE BCAnt BCAntAPE  

Vehicle FO1 (distance km) FO1 (distance km) FO2 (CO2 kg) FO2 (CO2 kg) Routing of BCAntAPE 

1 2304 2076 149710.005 148015.38 C0-C3-C4-C7-C1-C0 

2 3240 2396 162336.15 120048.58 C0-C2-C5-C8-C6-C0 

3 3104 3104 209834.505 1555522.04 C0-C10-C14-C9-C0 

4 4254 4136 71321.13 66651.075 C0-C11-C13-C12-C15-C0 

Vehicle FO1 (distance km) FO1 (distance km) FO2 (CO2 kg) FO2 (CO2 kg) Routing of BCAntAPE 

1 2671 2556 13217.013 128065.185 C0-C3-C11-C8-C7-C5-C1-C0 

2 2815 2648 152418.62 113674.73 C0-C2-C10-C14-C12-C4-C0 

3 2723 2644 145285.38 132674.73 C0-C6-C9-C13-C15-C0 

Vehicle FO1 (distance km) FO1 (distance km) FO2 (CO2 kg) FO2 (CO2 kg) Routing of BCAntAPE 

1 3232 3104 1652673.04 1646328.04 C0-C3-C6-C11-C8-C13-C7-C5-C1-C0 

2 3353 3216 171632.67 162548.21 C0-C2-C14-C9-C15-C4-C10-C12-C0 

 
Table 5. The summary results of all the instances using BCAnt, BCAntAPE, SPEA2 and NSGAII. 

Instances 
NSGAII SPEA2 BCAnt BCAntAPE 

OF1 OF2 OF1 OF2 OF1 OF2 OF1 OF2 

Golden_4 27097.16754 119764.4792 27097.16754 118890.9402 27097.16754 119782.4792 27097.16754 119764.4792 

Golden_8 23879.4183 95480.83447 21041.22128 95761.19385 23321.457 95726.22317 22569.2146 95630.24572 

Golden_7 18374.11365 83629.33618 18374.1134 83750.15161 18374.11223 836781.5627 18374.11223 83688.14435 

X-n167-k10 32556.9148 140975.5684 33324.19141 137458.2764 33231.5273 1416751.7728 33416.7252 1412253.7827 

X-n106-k14 20541.2675 100020.9248 20634.89783 99885.63232 20237.8126 102223.1417 20532.4841 102312.1235 

X-n143-k7 24716.95654 106803.8545 24721.11817 106771.5068 24735.21742 106824.2518 24718.23783 106815.2213 

 
F ′  as the Pareto front generated by the algorithms. The four measures used are 
defined below.  
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 ( ) ( ){ }1
1 min , :

p F
M F d p p p F

F ′∈

= ∈∑                (28) 

The metric M2 uses a set ( ){ }: ,W q F d p q δ′= ∈ > , given a problem depen-
dent distance value δ  and is calculated as follows: 

( )2
1

1 p F
M F W

F ′∈

=
− ∑                      (29) 

The M3 metric calculates the extension of the generated Pareto front accord-
ing to: 

( ) ( ){ }3
1

max , : ,
b

i i
i

M F d p q p q F
=

′ ′= ∈∑              (30) 

The error metric is calculated as follows: 

1
F
i in

E
F

′

==
′

∑                         (31) 

where in  takes the value 0 if the ith solution of F ′  belongs to F, 1 otherwise. 
The metrics M1, M2 and M3 have been normalized with respect to their maxi-

mum value; in this way the results obtained represent percentages which are 
used to compare the various algorithms in the set of test problems. 

For the metric M2, the value of δ  was used as ten percent of the distance 
between the point with the best evaluation in the first objective and the point 
with the best evaluation in the second objective of the front F, so δ  represents 
ten percent of the distance between the extreme points of F for each particular 
problem. 

In the used instances of the VRP problems, the BCAntAPE and NSGAII ob-
tain better results than SPEA2 and BCAnt. As shown in Table 6, BCAntAPE for 
M2 has the second best average relative distance to the Pareto edge, metric M3, it 
gives the best result regarding the average of the Pareto edges closer to the op-
timal than the other algorithms. We see that BCAntAPE produced the best result 
for the M1 metric. Finally, he obtained the second best result in relation to the 
metric E. 

From what precedes the algorithm proposed in this paper, the BCAntAPE has 
been shown to be as competitive as the other algorithms retained such as NSGAII, 
SPEA2 and BCAnt. 

 
Table 6. Results of the different metrics. 

Metrics 
Algorithms 

BCAnt BCAntAPE NSGAII SPEA2 

M1 0.2539 0.1577 0.1354 0.1603 

M2 0.5112 0.5196 0.5864 0.5785 

M3 0.6908 0.6273 0.6586 0.7576 

E 0.6908 0. 9858 0.9476 0.9515 
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13. Practical Perspectives 

Through the above analyzes, several findings from this research have direct ma-
nagerial insights into the delivery problem. The results show that the routes 
which minimize the total distance traveled by the vehicles are different from 
those which minimize the CO2 pollution; this can be understood by the fact that 
the objectives are conflicting. 

In this study we also found that the optimal route reduces product CO2 by 
almost 7.2% compared to the worst route. Thus, taking road traffic congestion 
factors into account is an important way to reduce logistics costs and CO2 emis-
sions. 

14. Conclusions 

This article studied the multiobjective problem of routing green vehicles. The 
objective of the proposed model is not only to minimize the total distance tra-
veled by the vehicles of the fleet but also to take into account the carbon emis-
sions of the latter while satisfying the demands of each customer, in addition to 
that we assumed two fuel consumption rates. The first is for the vehicle of type k 
when unloaded, and the second is for the same vehicle when loaded to its max-
imum capacity. 

Depending on the characteristics of the selected model, a hybrid metaheuristic 
has been proposed. This hybrid metaheuristic is based on an extension of the ant 
colony algorithm BicriterionAnt and an APE improvement heuristic has been 
associated in order to solve the selected problem. 

A case study on a fuel delivery problem was processed to find vehicle routes 
that pollute less CO2 and minimize the total distance travelled. 

The application of the new BicriterionAntAPE hybrid algorithm is strongly 
limited to the two-objective problem only and using a single colony for both 
pheromone structures limits intense exploration of the search area. 

Future research might focus on uncertainties for different parameters like 
travel time, service time, operating costs, etc. 
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