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Abstract: Magnetic flux leakage technique is used commonly to detect and characterize defects in oil trans-
mission pipeline. A novel approach is presented for training a Hopfield neural network for the 3 three-dimen-
sional characterization of defects from magnetic flux leakage (MFL) signals. To improve the storage capacity, 
an original Hopfield neural network is modified by adding additional positive self-feedbacks. The robust-2 
pseudo-inverse learning rule is employed to training the modified network. The results indicate that signifi-
cant advantages over original neural network based defect characterization schemes could be obtained, in that 
the correction percent of the predicted defect profile can be controlled by the parameter of the network. The 
performances of the proposed method are evaluated by extensive computer simulation and the simulation re-
sults confirm the validity of the approach. 

Keywords: magnetic flux leakage; modified hopfield network; defect characterization; pseudo-inverse  
learning rule 

 

1 Introduction 

Magnetic flux leakage testing (MFLT) method is 

one type of electromagnetic nondestructive evaluation 

(NDE) technique which is widely used in the testing the 

integrity of ferrous steel plates and pipes. A generic 

MFLT system consists of oppositely polarized permanent 

magnet poles or DC excitation coils to magnetize to 

saturation the object under inspection. Defects and in 

homogeneities in the test object cause the magnetic flux 

to “leak out”. The leakage flux is measured using an ap-

propriate set of sensors such as Hall element or coils [1–3]. 

Figure 1 shows a sketch of coils MFLT system typically 

used in the inspection of steel pipe.  

As the MFL system scans the pipe, information 

from the Hall sensor’s is recorded together with the exact 

location where the sensor reading was taken. The sensors’ 

 
Figure 1. Configuration of the MFL testing equipment 

signals will be processed to determine the type of defect 

interms of its width, length and depth.  

The pattern of the signal’s signals is strictly con-

nected to the type of defect presented by the examined 

structure. It is possible to define a class of curves for 

each single type of defect. In order to identify and esti-

mate accurately sorts and sizes of defects, various shapes 

of defects, as for instance notch, grooving and crack have 

to be tested. The tested data of the defects represent the 

pattern of the induced voltage versus the time. Figure 2 

shows the measured signal curve of notch, which con-

tains 1000 tested data. 

The typical curve of crack and grooving are shown 

in Figure 3 and Figure 4 respectively. It is notable that 

the signals are corrupted by noise which is caused by  

 
Figure 2. Signal of notch 
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Figure 3. Signal of crack 

 
Figure 4. Signal of grooving 

disturbance and measure error . 

Given any of the measured curves, as for example, a 

curve got from the test affected seriously by noise or 

corrupted heavily; we wish to associate it to one of the 

measured curves corresponding to the different perform-

ing automatic defect identification. It is necessary to 

construct a logical structure that is able to memorize a 

number of tested data of various classes of defects and to 

record the stored information. When a curve that is simi-

lar to one of the memorized curves is input to the struc-

ture, it always outputs the corresponding curve, hence 

determine out the shape of the defect the input curve 

represents. Artificial Neural Networks (ANN) are proven 

particularly to be the most suitable selection for this 

problem [4,5]. 

Due to the auto-associative memory feature, the 

Hopfield ANN can associate an input pattern to one of 

the stored pattern which is characterized by some prox-

imity properties induced by the used matrix. Considering 

the performance efficiency and RAM cost [6], a binary 

Hopfield ANN is used here. 

2 Auto-Associative Function of Hopfield 
Network  

2.1 Auto-Associative Memory 

Just like human memory, an auto-associative neural 

network is able to associate an output vectorY to a cer-

tain input vector X quickly [11]. If the network is struc-

tured suitably, it should associate the right output Y  

even if the input is corrupted heavily by noise. The 

information which is necessary for a right associative 

process should be stored in the network in advance. In 

the other words, all the possible output  the network 

would to recall has to be contained in the network in term 

of the CAM manner. After a set of memory patterns are 

learned by the network, a presentation of a noisy input 

causes the network to recall a memorized pattern in a 

successful retrieval. 

X

Y

An associative network has to be able to associate 

an output Y  that is similar to an input X , even the X  

is not complete or just a little similar to theY . For a 

vague input X , the network can also associate a clear 

output Y . If an associative network has capacity , 

that means it can recall  output 

m
m Y  corresponding to 

different input X ,  

�YYYY m,, 21 ,     (1) mXXXX ,, 21

There is an analogy between an associative memory 
and a hyper-surface in a -dimensional space which has 

minima corresponding to the output 

n
m Y . The surface 
represents the network energy, where the energy is the 
current network state and the m minima are stable states 
of energy, called an attractor. Exceeding the definite ca-
pacity of the network for the stored m Y will result in 
undesirable minima for the energy surface or incorrect 
associative process which gives a wrong output. In fact 
an associative network is able to recall the desired out-
put XY   starting from an input: 

nXX '                (2) 

Only if n is rather small. Otherwise, the network 
possibly converges to a wrong attractor . According to 

[6], a binary Hopfield network can be used to construct a 
auto-associative network. In this case, the similarity be-
tween two input 

'Y

X  and 'X  is measured by the Ham-
ming distance: 

xxH
j

jj  ' ,           (3) nj ,2,1

The network is able to perform correct association 
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starting from a noisy input only if the Hamming distance 

H meets a preset criterion. A large value of H may cause 

in a failure associative process that is should be avoided 

in practice. 

2.2 Hopfield Neural Network 

The Hopfield ANN was invented by J.J.Hopfield in 

1982[7,8].Since Hopfield and Tank’s works, This kind of 

network has been widely used for the content address 

memory(CAM) implementations and, more interestingly, 

has attracted a lot of interests duo to its advantage over 

other approaches for solving optimization problems[9,10]. 

 

Figure 5. Original Hopfield neural network 

As shown in Figure 5, the original Hopfield ANN is 

composed of highly interconnected nonlinear processing 

elements, so called “neurons”. The output of each neuron 

is fed back to all the other neurons via weights denoted 

. The weights (connection strengths) matrix are 

symmetric with zero diagonal elements (i.e.,
ijW

jiij WW  , 

) ,the information flows in both directions and a 

neuron is not self-connected.  Each neuron outputs a 

nonlinearly transform version of the weighted summation 

of the neurons that are interconnected to it. The nonlinear 

transformation is defined by a hard limiting nonlinear 

function. A binary Hopfield network consists of N neu-

rons that have two states: firing and quiescent, or,

0iiW

1is , 

where . Each neuron receives signals from 

its neighboring neurons, and the signals are transmitted 

through synaptic weights  formed from the bipolar 

memory vectors , to be stored 

in the system. The weights matrix W is computed using 

the Hebbian rule: 

N,2,1

,Ta

i

ijW

1,1 N .,2,1, MaTa 





M

a
Naa MITT

N
W

1

' )(
1

            (4) 

where is the NI NN  identity matrix. The neuron then 

either fires if the total input exceeds a threshold, or re-

mains quiescent otherwise. At the time step , neuron 

receives the inputs from other neurons and output: 

t
i





n

ijj
ijiji tsWtv

,1

)()(            (5) 

where the element  is the symmetric interconnection 

strength from neuron j to neuron i,

ijW

i is the offset of the 

neuron i. The iterative recall of the network is randomly 

and asynchronously processed by 

))(sgn()1( tvts ii              (6) 

where xsign 1)(  for  0x
and �xsign 1)(  otherwise, until the stable state is 

reached. 

2.3 Modified Hopfield Networks 

In order to improve the storage capacity and error 

correcting capability, we present a modified Hopfield 

neural network architecture [10]. In this architecture, addi-

tional positive self-feedbacks are added to the original 

Hopfield networks. So, the Equation (5) is modified as 

follows: 





n

j
ijiji tsWtv

1

)()(            (7) 

where all the elements are the same as the mentioned 

above except for the weights matrix W including posi-

tive diagonal element. It is proved that the modified 

Hopfield neural network architecture converges like the 

conventional Hopfield neural network according to Yong 

Li [10]. 

The weights matrix W can be calculated by means 

of the robust-2 pseudo-inverse learning rule [12,13], which 

is with more recall accuracy for noisy vector inputs than 

the standard pseudo-inverse learning rule. According to 
[13], we can produce a memory matrix which yields a de-

sired output recollection vector when multiplied by a 

stored vector, or a noisy version of the vector. Supposing 

the input pattern vector and output pattern vector , 

for
ax ay

Pa ,1 , form an associated/recollection pair. De-

fining matrices )( PNX  and with P key and 

recollection vector as their column, we desire weights 

matrix 

)( PKY 

)(KW N satisfying .Hence, the W is 

given by: 
WXY 
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  YXXXXYW TT 1)(         (8) 

where X is the standard pseudo-inverse of X , which 

minimizes 

2

1 MXYJ                (9) 

For inputs that are key vectors with additive inde-

pendent identically distributed noise, an optimal associa-

tive processor (AP) had been found by minimizing the 

criterion function with respect to W 

2

2 )( NXWYJ           (10) 

where is an noise matrix. The solution is  )( PNN 

12 )(  IPXXYXW n
TT         (11) 

where  is the input noise level specified during syn-

thesis, and the matrix inverse always exists as long as 

is not equal to zero. It is proven that this robust-2 

pseudo-inverse robust AP improves performance for a 

wide range of input noise strength (both less than and 

larger than the  used in synthesis).  

2
n

2
n

2
n

After the weights have been calculated, starting 

from an input curve prototype, the network evolves to a 

minimum energy stable state corresponding to the proto-

type associated to that input. When the association proc-

ess converges to the correct result, the input curve is 

classified correctly, thus identified successfully. 

3 Data Processing and Simulation Results 

As mentioned above, the modified Hopfield neural 

networks contains two-state neurons whose value assume 

-1(off) or+1(on), thus both training and test signals must 

be suitable stored using bipolar arrays. The available 

training set curves should transform into the suitable 

format which is consistent with the input of identifier. 

We need to represent the training set data in bipolar vec-

tor -1 and +1. We represent each curve as a -element 

linear vector. Considering the simulation efficiency, the 

neurons of the Hopfield network must be limited .It is 

necessary to reduce the data of training set curves with-

out loss useful information too much. Both the dimen-

sionality reduction and values quantization are taken to 

keep fairly limited the number of neurons and to obtain a 

suitable representation of the data. The size of the avail-

assume interesting values (maxima, minima) and by up-

per-sampling them within the window, which is with 

length of nx  and width of ny and contains the impor-

tant data escribing the defect on this curve. 

The nx means a predefined step number of sample, ny  

is a predefined number of levels. In the same window, 

we define a matrix whose column number equals the 

samples number nx  and row number equals quantiza-

tion levels numb ny . The entries of each column 

vector equal -1 excep here the curve intercrosses the 

grid(value=+1).Finally these column vectors are stacked 

to give only one column vector of dimension nynx *  

represent pattern of the curve. As shown in Figure 6

n

able curve is reduced by defining a window where they 

 d

er 

t w

 

 
assFi  6. Up sam qu on of a curve of nogure per- pling and antizati tch cl  

the curve of a notch defect is upper-sampled and quan-

tized in the window, which is with 20nx and 

8ny respectively. It is noted that the val re-

e curve crossing with the grid. The other entries 

of each column vector are equal to -1 that is represented 

by blank in the Figure 6 for seeing clearly. The curve is 

then denoted by a column vector with 160 elements con-

taining only bipolar value of -1 and +1. 

In practical test, we obtain a “large

ue +1 r

ac

ep

 signal 

k

sen

r” MFLT

in 

tw

ts th

the case that the width or the depth of defect is very 

large. As shown in Figure 2, the signal of a notch class is 

so wide that we have to select a larger value of nx  to 

describe completely the notch than that of the cr  in 

Figure 3. In addition, the amplitude values of signal 

which are associated with the value of ny change dis-

tinctly with depth of defect [1] .For giving ntion to the 

signals of different dimension of defects, two methods 

are taken and compared .we first make an invariable 

window with length of 600and width of 1 for all of 

curves. In this case, we change sample nx from 25 to 

100 with skip of 25, and levels ny  from  to 20 with 

skip of 5, thus the neurons of ne ork change from 250 

to 2000. Second, we make the size of window changing 

atte

 10
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ts of correct classific tion percentage 

Tes 
ons 

ct 
association 

with the curves. For example, we set the length and 

width of window to be 500 and 0.35 when we deal with 

the curve shown in Figure 3. For the curve of Figure 2, 

the values are set to be 80 and 0.1 correspondingly. Then 

we change the values of nx and ny  as the case 1, as 

shown in Table 1. 

Table 1. Resul a

neur
ItD 

Window Sample Level 
Corre

size nx ny 
percentage 

A1 25  10 250 28512.8

A2 50 10 500 22.6 

A3 75 10 750 30.8 

A4 100 10 1000 38.7 

A5 25 15 325 15.3 

A6 50 15 750 26.4 

A7 75 15 1125 38.8 

A8 100 15 1500 46.2 

A9 25 20 500 25.6 

A10 

invariable 

50 20 1000 45.7 

A11 75 20 1500 59.7 

A12 100 20 2000 76.8 

B1 25 10 250 16.9 

B2 50 10 500 30.8 

B3 75 10 750 45.2 

B4 100 10 1000 62.6 

B5 25 15 325 22.6 

B6 50 15 750 42.8 

B7 75 15 1125 65.8 

B8 100 15 1500 86.6 

B9 25 20 500 26.1 

B10 

variable 

50 20 1000 55.6 

B11 75 20 1500 78.8 

B12 100 20 2000 85.3 

The MFL signals were eans of D 

finit

obtained by m  a 3-

e element model [1], and include crack, notch, and 

grooving shapes of defects with varying widths and 

depths. 300 MFL simulated signals and 300 its randomly 

noisy version were used to train the neural networks [14]. 

In our simulation any input test-set pattern evokes an 

evolution of the internal state on the network towards a 

minimum Hamming distance state corresponding to one 

of the stored pattern. Sometimes the result of a test is 

incorrect due to the coarse approximation provided by 

the chosen set of size-reduction parameters. Correct 

identification percentage for the performed experiments 

based on various size-reduction parameters is shown in 

Table 1. It is known that the case 2(B8) with 100nx  

and 15ny  is the best selection. The number o  

that tored in the networks is 520600*866.0

f signals 

can be s  . 

Thus, the memory capacity is about0  

number of neurons in the networks, w  is eater than 

that of original Hopfield networks. In practical projects, 

we have taken the parameters of the case to obtain well 

solution.  

4 Conclus

N3. , N being the

hich  gr

ons 

ented a modified Hopfield neural net-

wor

modified Hopfield network have higher 

mem

ercentage usually in-

crea
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