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ABSTRACT 

Many medical diagnosis applications are characterized by datasets that contain under-represented classes due to the 
fact that the disease is much rarer than the normal case. In such a situation classifiers such as decision trees and Naïve 
Bayesian that generalize over the data are not the proper choice as classification methods. Case-based classifiers that 
can work on the samples seen so far are more appropriate for such a task. We propose to calculate the contingency 
table and class specific evaluation measures despite the overall accuracy for evaluation purposes of classifiers for these 
specific data characteristics. We evaluate the different options of our case-based classifier and compare the perform-
ance to decision trees and Naïve Bayesian. Finally, we give an outlook for further work. 
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1. Introduction 

Many medical diagnosis applications are characterized 
by datasets that contain under-represented classes due to 
the fact that the disease is much rarer than the normal 
case. In such a situation classifiers such as decision trees 
and Naïve Bayesian that generalize over the data are not 
the proper choice as classification methods. Decision 
trees tend to over-generalize the class with the most ex-
amples while Naïve Bayesian requires enough data for 
the estimation of the class-conditional probabilities. 
Case-based classifiers that can work on the samples seen 
so far are more appropriate for such a task. 

A case-based classifier classifies a new sample by 
finding similar cases in the case base based on a proper 
similarity measure. A good coverage of the casebase, the 
right case description and the proper similarity are the 
essential functions that enable a case-based classifier to 
perform well. 

In this work we studied the behavior of a case-based 
classifier based on different medical datasets with dif-
ferent characteristics from the UCI repository [1]. We 
chose datasets where one or more classes were heavily 
under-represented compared to the other classes as well 
as datasets having more or less equally distributed sam-
ples for the classes for comparison purposes. 

The case-based classifier has several options for im-
proving its performance that can be chosen independ-
ently or in combination. Currently available options in 
our case-based classifier are: k-value for the closest 
cases; feature subset selection (FS); feature weight 
learning (FW); and prototype selection (PS). To con-
clusively determine which combination of options is 
best for the current problem is non-obvious and time- 
consuming and we hope to develop with our study a 
methodology that assists a user in designing and refin-
ing our case-based classifiers. We observe the influ-
ence of the different options of a case-based classifier 
and report the results in this paper. Our study is an 
on-going study; we also intend to investigate other op-
tions in casebase maintenance. 

The aim of this work is to provide the user with a 
methodology for best applying our case-based classifier 
and for evaluating the classifier particularly in situations 
where there is under-representation of specific classes. In 
Section 2 we describe our case-based classifier named 
ProtoClass while Section 3 describes the evaluation 
strategy. The datasets are described in Section 4. Results 
are reported in Section 5 and a discussion on the results 
is given in Section 6. Finally, we summarize our work 
and give an outlook of further work in Section 7. 
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2. Case-Based Classifiers 

A case-based classifier classifies a sample according to 
the cases in a case base and selects the most similar case 
as output of the classifier. A proper similarity measure is 
necessary to perform this task but in most applications no 
a-priori knowledge is available that suggests the right 
similarity measure. The method of choice for selecting 
the proper similarity measure is therefore to apply a sub-
set of the numerous statistically derived similarity meas-
ures to the problem and to select the one that performs 
best according to a quality measure such as the classifi-
cation accuracy. The other choice is to automatically 
build the similarity metric by learning the right attributes 
and attribute weights. We chose the latter as one option 
to improve the performance of our classifier. 

When people collect samples to construct a dataset for 
a case-based classifier it is useful to select prototypical 
examples from the samples. Therefore, a function is 
needed to perform prototype selection and to reduce the 
number of examples used for classification. This results 
in better generalization and a more noise tolerant classi-
fier. An expert is also able to select prototypes manually. 
However, this can result in bias and possibly duplicates 
of prototypes and may therefore cause inefficiencies. 
Therefore, a function to assess a collection of prototypes 
and identify redundancy is useful. 

Finally, an important variable in a case-based classifier 
is the value used to determine the number of closest 
cases and the final class label. 

Consequently, the design-options available for impro- 
ving the performance of the classifier are prototype se-
lection, feature-subset selection, feature weight learning 
and the ‘k’ value of the closest cases (see Figure 1). 

We choose a decremental redundancy-reduction algo-
rithm proposed by Chang [2] that deletes prototypes as 
long as the classification accuracy does not decrease. The 
feature-subset selection is based on the wrapper approach 
[3] and an empirical feature-weight learning method [4] 
is used. Cross validation is used to estimate the classifi-
cation accuracy. A detailed description of our classifier 
ProtoClass is given in [6. The prototype selection, the 
feature selection, and the feature weighting steps are 
performed independently or in combination with each 
other in order to assess the influence these functions have 
on the performance of the classifier. The steps are per-
formed during each run of the cross-validation process. 
The classifier schema shown in Figure 1 is divided into 
the design phase (Learning Unit) and the normal classi-
fication phase (Classification Unit). The classification 
phase starts after we have evaluated the classifier and 
determined the right features, feature weights, the value 
for ‘k’ and the cases. 

Our classifier has a flat case base instead of a hierar-
chical one; this makes it easier to conduct the evalua-
tions. 

2.1 Classification Rule 

This rule [5] classifies x in the category of its closest case. 
More precisely, we call xnx1,x2,…,xi,…xn a closest 
case to x if   min , ,i nd x x d x x , where i=1,2,…,n. 

The rule classifies x into category Cn, where nx  is 

the closest case to x and nx  belongs to class Cn. 

In the case of the k-closest cases we require k-samples 
of the same class to fulfill the decision rule. As a distance 
measure we use the Euclidean distance. 
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Figure 1. Case-based classifier   

Copyright © 2010 SciRes                                                                                 JSEA 



Evaluation of Feature Subset Selection, Feature Weighting, and Prototype Selection for Biomedical Applications 41 

 
2.2 Prototype Selection by Chang’s Algorithm 

For the selection of the right number of prototypes we 
used Chang’s algorithm [2] The outline of the algorithm 
can be described as follows: Suppose the set T is given as 
T={t1,…,ti,…,tm} with ti as the i-th initial prototype. The 
principle of the algorithm is as follows: We start with 
every point in T as a prototype. We then successively 
merge any two closest prototypes t1 and t2 of the same 
class to a new prototype t, if merging will not downgrade 
the classification of the patterns in T. The new prototype 
t may simply be the average vector of t1 and t2. We con-
tinue the merging process until the number of incorrect 
classifications of the pattern in T starts to increase. 

Roughly, the algorithm can be stated as follows: Given 
a training set T, the initial prototypes are just the points 
of T. At any stage the prototypes belong to one of two 
sets-set A or set B. Initially, A is empty and B is equal to 
T. We start with an arbitrary point in B and initially as-
sign it to A. Find a point p in A and a point q in B, such 
that the distance between p and q is the shortest among 
all distances between points of A and B. Try to merge p 
and q. That is, if p and q are of the same class, compute a 
vector p* in terms of p and q. If replacing p and q by p* 
does not decrease the recognition rate for T, merging is 
successful. In this case, delete p and q from A and B, re-
spectively, and put p* into A, and repeat the procedure 
once again. In case that p and q cannot be merged, i.e. if 
either p or q are not of the same class or merging is un-
successful, move q from B to A, and repeat the procedure. 
When B empty, repeat the whole procedure by letting B 
be the final A obtained from the previous cycle, and by 
resetting A to be the empty set. This process stops when 
no new merged prototypes are obtained. The final proto-
types in A are then used in the classifier. 

2.3 Feature-Subset Selection and Feature 
Weighting 

The wrapper approach [3] is used for selecting a feature 
subset from the whole set of features and for feature 
weighting. This approach conducts a search for a good 
feature subset by using the k-NN classifier itself as an 
evaluation function. By doing so the specific behavior of 
the classification methods is taken into account. The 
leave-one-out cross-validation method is used for esti-
mating the classification accuracy. Cross-validation is 
especially suitable for small data set. The best-first 
search strategy is used for the search over the state space 
of possible feature combination. The algorithm termi-
nates if no improved accuracy over the last k search 
states is found. 

The feature combination that gave the best classifica-
tion accuracy is the remaining feature subset. We then try 
to further improve our classifier by applying a feature- 
weighting tuning-technique in order to get real weights 
for the binary weights. 

The weights of each feature wi are changed by a con-
stant value, : wi:=wi±. If the new weight causes an 
improvement of the classification accuracy, then the 
weight will be updated accordingly; otherwise, the 
weight will remain as is. After the last weight has been 
tested, the constant  will be divided into half and the 
procedure repeated. The process terminates if the differ-
ence between the classification accuracy of two interac-
tions is less than a predefined threshold. 

3. Classifier Construction and Evaluation 

Since we are dealing with small sample sets that may 
sometimes only have two samples in a class we choose 
leave one-out to estimate the error rate. We calculate the 
average accuracy and the contingency table (see Table 1) 
showing the distribution of the class-correct classified 
samples as well as the distribution of the samples classi-
fied in one of the other classes. From this table we can 
derive a set of more specific performance measures that 
had already demonstrated their advantages in the com-
parison of neural nets and decision trees [3] such as the 
classification quality (also called the sensitivity and 
specificity in the two-class problem). 

The true class distribution within the data set and the 
class distribution after the samples have been classified as 
well as the marginal distribution cij are recorded in the 
fields of the table. The main diagonal is the number of cor-
rectly classified samples. From this table, we can calculate 
parameters that describe the quality of the classifier. 

The correctness or accuracy p (Equation 1) is the 
number of correctly classified samples relative to the 
number of samples. This measure is the opposite to the 
error rate. 










m

i

m

j ij
c

m

i ii
c

p

1 1

1                  (1) 

The class specific quality pki (Equation 2) is the num-
ber of correctly classified samples for one class i relative 
to all samples of class i and the classification quality pti 
(Equation 3) is the number of correctly classified sam- 
ples of class i relative to the number of correctly and 
falsely classified samples into class i: 

 
Table 1. Contingency table 

True Class Label (assigned by expert) 

 1 i … m pki 
1 c11 ... ... c1m  
i ... cii ... ...  

… ... ... ... ...  
m cm1 ... ... cmm  

Assigned 
Class Label

(by Classifier)

pti      
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These measures allow us to study the behavior of a 
classifier according to a particular class. The overall error 
rate of a classifier may look good but we may find it un-
acceptable when examining the classification quality pti 
for a particular class. 

We also calculate the reduction rate, that is, the num-
ber of samples removed from the dataset versus the 
number of samples in the case base. 

The classifier provides several options, prototype- se-
lection, feature subset selection, and feature weighting, 
which can be chosen combinatorially. We therefore per-
formed the tests on each of these combinations in order 
to understand which function must be used for which 
data characteristics. Table 2 lists the various combina-
tions. 

4. Datasets and Methods for Comparison 

A variety of datasets were chosen from the UCI reposi-
tory [1]. The IRIS and E.coli datasets are presented here 
as representative of the different characteristics of the 
datasets. Space constraints prevent the presentation of 
other evaluations in this paper. 

The well-known, standard IRIS Plant dataset consists 
of sepal and petal measurements from specimens of IRIS 
plants and aims to classify them into one of three species. 
The dataset consists of 3 equally distributed classes of 50 
samples each with 4 numerical features. One species 
(setosa) is linearly separable from the other two, which 
are not linearly separable from each other. This is a sim-
ple and frequently applied dataset within the field of pat-
tern recognition. 

The E. coli dataset aims to predict the cellular local-
ization sites of proteins from a number of signal and 
laboratory measurements. The dataset consists of 336 
instances with 7 numerical features and belonging to 8 
classes. The distribution of the samples per class is 

 

Table 2. Combinations of classifier options for testing 

Test 
Feature Subset 

Selection 
Feature 

Weighting 
Prototype 
Selection 

1 1   

2  1  

3   1 

4 1 2 3 

5 2 3 1 

 
highly disparate (143/77/2/2/35/20/5/52). 

The Wisconsin Breast Cancer dataset consists of visual 
information from scans and provides a classification 
problem of predicting the class of the cancer as either 
benign or malignant. There are 699 instances in the data-
set with a distribution of 458/241 and 9 numerical fea-
tures. 

For each dataset we compare the overall accuracy 
generated from: 

1) Naïve Bayesian, implemented in Matlab; 
2) C4.5 decision tree induction, implemented in DE-

CISION MASTER [12]; 
3) k-Nearest Neighbor (k-NN) classifier, implemented 

in Weka [11] with the settings “weka.classifiers.lazy.IBk 
-K k-W 0-A” weka.core.neighboursearch. LinearNN-
Search-A weka.core.EuclideanDistance” and the k- 
Nearest Neighbor (k-NN) classifier implemented in Mat-
lab (Euclidean distance, vote by majority rule). 

4) case-based classifier, implemented in ProtoClass 
(described in Section 2) without normalization of features. 

Where appropriate, the k values were set as 1, 3 and 7 
and leave-one-out cross-validation was used as the eva- 
luation method. We refer to the different “implementa-
tions” of each of these approaches since the decisions 
made during implementation can cause slightly different 
results even with equivalent algorithms. 

5. Results 

The results for the IRIS dataset are reported in Tables 4-6. 
Table 4 shows the results for Naïve Bayes, decision tree 
induction, k-NN classifier done with Weka implementa-
tion and the result for the combinatorial tests described in 
Table 2 with ProtoClass. As expected, decision tree in-
duction performs well since the data set has an equal data 
distribution but not as well as Naïve Bayes. 

Table 3. Dataset characteristics and class distribution 

 
No. 

Samples 
No. 

Features 
No. 

Classes
Class Distribution 

setosa versicolor virginica 
IRIS 150 4 3 

50 50 50 
cp im imL imS imU om omL pp 

E.Coli 336 7 8 
143 77 2 2 35 20 5 52 

benign malignant 
Wisconsin 699 9 2 

458 241 
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Table 4. Overall accuracy for IRIS dataset using leave-one-out 

k Naïve 
Bayes 

Deci-
sion 
Tree 

kNN Proto-
Class 

Feature 
Subset 

Feature 
Weighting 

Prototype 
Selection 

FS+ 
FW+ 
PS 

PS+ 
FS+ 
FW 

1 95.33 96.33 95.33 96.00 X X 96.00 96.00 96.33 
3 na na 95.33 96.00 96.33 96.33 96.00 96.33 96.00 
7 na na 96.33 96.67 X 96.00 96.00 96.33 96.00 

 
Table 5. Contingency table for k=1,3,7 for the IRIS dataset and protoclass 

IRIS setosa versicolor Virginica 

k 1 3 7 1 3 7 1 3 7 

setosa 50 50 50 0 0 0 0 0 0 

versicolor 0 0 0 47 47 46 3 3 4 

virginica 0 0 0 3 3 1 47 47 49 

Classification quality 100 100 100 94 94 97.87 94 94 92.45 

Class specific quality 100 100 100 94 94 92 94 94 98 

 
Table 6. Class distribution and percentage reduction rate of 
IRIS dataset after prototype selection 

 
Iris- 

sertosa 
Iris- 

versicolor 
Iris- 

virginica 
Reduction 
Rate in % 

orig 50 50 50 0.00 

k=1 50 49 50 0.67 

k=3 50 49 50 0.67 

k=7 50 48 50 1.33 

 

In general we can say that the accuracy does not sig-
nificantly improve when using feature subset selection, 
feature weighting and prototype selection with Proto-
Class. In case of k=1 and k=7 the feature subset remains 
the initial feature set. This is marked in Table 4 by an 
“X” indicating that no changes were made in the design 
phase and the accuracy is the same as for the initial clas-
sifier. This is not surprising since the data base contains  

Table 7. Overall accuracy for E. coli dataset using leave-one-out 

k 
Naïve 
Bayes 

Decision 
Tree 

Weka Near-
est 

Neighbour 

Matlab 
knn 

ProtoClass 
Feature 
Subset 

(FS) 

Feature 
Weighting 

(FW) 

Prototype 
Selection 

(PS) 

FS+FW+ 
PS 

PS+FS+ 
FW 

1 86.01 66.37 80.95 80.06 81.25 80.95 83.04 80.65 82.44 80.95 
3 na na 83.93 84.26 84.23 85.12 84.23 82.74 83.93 82.74 
7 na na 86.40 86.31 87.20 87.20 86.31 86.61 85.42 86.61 

 
Table 8. Combined contingency table for k=1,3,7 for the E. coli dataset and protoClass 

 cp im imL imS imU Om omL pp 

k 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 

cp 133 139 140 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4 3 

im 3 4 3 56 60 60 1 0 0 1 0 0 15 12 11 0 0 0 0 0 0 1 0 3 

imL 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

imS 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 

imU 1 1 1 15 16 12 0 0 0 0 0 0 19 17 22 0 1 0 0 0 0 0 0 0 

om 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 16 17 17 0 1 1 3 2 2 

omL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 0 0 0 

pp 5 4 4 1 1 1 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 44 45 47

pki 93.66 93.92 94.59 72.73 76.92 81.08 0.00 0 0 0.00 0 0 52.78 56.67 64.71 88.89 85.00 100.00 83.33 71.43 71.43 80.00 86.54 83.93

pti 93.01 97.20 97.90 72.73 78.95 77.92 0.00 0.00 0.00 0.00 0.00 0.00 54.29 48.57 62.86 80.00 85.00 85.00 100.00 100.00 100.00 84.62 86.54 90.38

 
only 4 features which are more or less well-distinguished. 
In case of k=3 a decrease in accuracy is observed al-
though the stopping criteria for the methods for feature 
subset selection and feature weighting require the overall 

accuracy not to decrease. This accuracy is calculated 
within the loop of the cross validation cycle on the de-
sign data set and afterwards the single left out sample is 
classified against the new learnt classifier to calculate the  
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Table 9. Learnt weights for E. coli dataset 

k f1 f2 f3 f4 f5 f6 f7 

1 0.5 1 1 1 0.75 1.5 1
3 1.5 0 1 1 1 1 1
7 0.75 0.5 1 1 1 1 1

 

final overall accuracy. Prototype selection where k=7 
demonstrates the same behavior. This shows that the true 
accuracy must be calculated based on cross validation 
and not simply based on the design data set.  

We expected that feature subset selection and feature  

Table 10. Class distribution and percentage reduction rate of E. coli dataset after prototype selection 

 cp im imL imS imU om omL pp Reduction 
rate in % 

orig 143 77 2 2 35 20 5 52 0.00 

k=1 140 73 2 2 34 20 5 49 3.27 

k=3 142 72 2 2 31 20 5 52 2.97 

k=7 142 76 2 2 32 20 5 50 2.08 

 
weighting would change the similarity matrix and there-
fore we believed that prototype selection should be done 
afterwards. As shown in the Table 4 in case of k=3 we do 
not achieve any improvement in accuracy when running 
PS after the feature options. However, when conducting 
PS before FS and FW, we see that FS and FW do not 
have any further influence on the accuracy. When com-
bining FS/FW/PS, the final accuracy was often the same 
as the accuracy of the first function applied. Therefore, 
prototype selection prior to feature subset selection or 
feature weighting seems to provide a better result. 

The contingency table in Table 5 provides a better un-
derstanding in respect to what is happening during clas-
sification. The table shows which samples are misclassi-
fied according to what class. In case of k=1 and k=3 the 
misclassification is more equitably distributed over the 
classes. If we prefer to accurately classify one class we 
might prefer k=7 since it can better classify class “vir-
ginica”. The domain determines what requirements are 
expected from the system.  

Table 6 shows the remaining sample distribution ac-
cording to the class after prototype selection. We can see 
that there are two or three samples merged for class “ver-
sicolor”. The reduction of the number of samples is small 
(less than 1.4% reduction rate) but this behavior fits our 
expectations when considering the original data set. It is 
well known that the IRIS dataset is a pre-cleaned dataset. 

Table 7 lists the overall accuracies for the different 
approaches using the E. coli dataset. Naïve Bayesian 

shows the best overall accuracy while decision tree in-
duction exhibits the worst one. The result for Naïve 
Bayesian is somewhat curious since we have found that 
the Bayesian scenario is not suitable for this data set. The 
true class conditional distribution cannot be estimated for 
the classes with small sample number. Therefore, we 
consider this classifier not to be applicable to such a data 
set. That it shows such a good accuracy might be due to 
the fact that the classifier can classify excellently the 
classes with large sample number (e.g., cp, im, pp) and 
the misclassification of samples from classes with a 
small number do not have a big impact on the overall 
accuracy. Although previous evaluations have used this 
data to demonstrate the performance of their classifier on 
the overall accuracy (for example in [11,12]) we suggest 
that this number does not necessarily reflect the true per-
formance of the classifier. It is essential to examine the 
data characteristics and the class-specific classification 
quality when judging the performance of the classifier. 

As in the former test, the k-NN classifier of Weka does 
not perform as well as the ProtoClass classifier. The 
same is true for the knn-classifier implemented in Matlab. 
The best accuracy is found surprisingly for k=7 but the 
contingency table (Table 8) confirms again that the 
classes with small sample number seem to have low im-
pact on overall accuracy.  

Feature subset selection works on the E. coli dataset. 
One or two features drop out but the same observations 
as of the IRIS data set are also true here. We can see an

Table 11. Contigency table for E. coli dataset and Naïve Bayes Classifier 

 cp im imL imS imU om omL pp 
cp 138 1 0 0 0 0 0 4 
im 3 58 0 0 14 0 0 2 
imL 0 1 0 0 0 0 1 0 
imS 0 0 0 0 1 0 0 1 
imU 1 12 0 0 22 0 0 0 
om 0 0 0 0 0 19 0 1 
omL 0 0 0 0 0 1 4 0 
pp 2 2 0 0 0 0 0 48 
pti*100 95,38 78,38 0 0 59,46 95 80 85,71 
pki*100 96,5 75,32 0 0 62,86 95 80 92,31 
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Table 12. Contigency table for E. coli dataset and Matlab knn Classifier 

TOT

k 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7

cp 133 139 140 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 4 3 14

im 3 4 3 56 60 60 1 0 0 1 0 0 15 12 11 0 0 0 0 0 0 1 0 3 7

imL 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

imS 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

imU 1 1 1 15 16 12 0 0 0 0 0 0 19 17 22 0 1 0 0 0 0 0 0 0 3

om 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 16 17 17 0 1 1 3 2 2 2

omL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 0 0 0

pp 5 4 4 1 1 1 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 44 45 47 5

pti 0,94 0,94 0,95 0,73 0,77 0,81 0,00 0,00 0,00 0,00 0,00 0,00 0,53 0,57 0,65 0,89 0,85 1,00 0,83 0,71 0,71 0,80 0,87 0,84

pki 0,93 0,97 0,98 0,73 0,78 0,78 0,00 0,00 0,00 0,00 0,00 0,00 0,54 0,49 0,63 0,80 0,85 0,85 1,00 1,00 1,00 0,85 0,87 0,90
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Figure 2. Classification quality for the best results for Naïve Bayes, Math knn, and Protoclass 
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Figure 3. Class specific quality for the best results for Naïve Bayes, Math knn, and Protoclass 

 
increase as well as a decrease of the accuracy. This 
means that only the accuracy estimated with cross-valid- 
ation provides the best indication of the performance of 
feature subset selection. Feature weighting works only in 
case of k=1 (see Table 9) where an improvement of 
1.79% in accuracy is observed.  

The contingency Table (Table 8) confirms our hy-
pothesis that only the classes with many samples are well 
classified. In the case of classes with a very low number 
of samples (e.g., imL and imS) the error rate is 100% for 
the class. For these classes we have no coverage [8] of 
the class solutions space. The reduction rate on the sam-

ples after PS (Table 10) confirms again this observation. 
Some samples of the classes with high number of sam-
ples are merged but the classes with low sample numbers 
remain constant. 

Table 11 and Table 12 show the contigency table for 
the Naïve Bayes Classifier and the Matlab knn. Based on 
this results we calculated the class specific quality and 
the classification quality summarized for all classifiers in 
Table 13 and Table 14. We can see that each class is han-
dle very differently by each classifier. Without any 
a-priori knowledge about the importance of a class it is 
hard to decide which classifier to prefer. Not surprising  
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Table 13. Classification quality for the best results for Naïve Bayes, Matlab knn, and Protoclass 

 
 
 
 
 
 
 
 
 
 
 
 

Table 14. Class specific quality for the best results for Naïve Bayes, Matlab knn, and Protoclass 

cp im imL imS imU om omL pp Class  
Specific  
Quality 

143 77 2 2 35 20 5 52 

Number  
of Outperform 

Naive Bayes 96,50 75,32 0,00 0,00 62,86 95,00 80,00 92,31 2 

Math knn 1 93,01 72,73 0,00 0,00 54,29 80,00 100,00 84,62 1 

Math knn 3 97,20 77,92 0,00 0,00 48,57 85,00 100,00 86,54 1 

Math knn 7 97,90 77,92 0,00 0,00 62,86 85,00 100,00 90,38 2 

Proto k 1 94,41 80,52 0,00 0,00 54,29 75,00 100,00 84,62 2 

Proto k 3 95,10 77,92 0,00 0,00 65,71 80,00 100,00 88,46 1 

Proto k 7 97,90 79,22 0,00 0,00 68,57 80,00 100,00 90,38 3 

 
Table 15. Overall accuracy for wisconsin dataset using leave-one-out 

k 
Naïve 
Bayes 

Decision 
Tree 

Weka 
Nearest 

Neighbour 

Matlab 
Nearest 

Neighbour
ProtoClass

Feature 
Subset 

(FS) 

Feature 
Weighting 

(FW) 

Prototype 
Selection 

(PS) 

Feature Subset& 
Feature&Feature 

Weighting 

1 96.14 95.28 95.56 95.71 94.42 95.14 94.71 95,75 96.48 

3 na na 96.42 96.57 95.99 96.42 95.99 na  

7 na na 96.85 97.00 96.85 96.85 97.14 na  

 
none of the classifier reach any sample for the low rep-
resented classes imL and imS in the cross validation 
mode. The Naïve Bayes classifier can handle in some 
cases low represented classes (om) very good while more 
havely represented classes (e.g. cp) are not classified 
well. But the same is trying for the Nearest Neighbor 
classifier and ProtoClass. The result seems to depend on 
the class distribution. If we judge the performance of the 
classifier on the basis, how often a classifier is outper-
forming the other classifiers, we can summarize that 
ProtoClass k=7 performs very well on both measures, 
classification quality (see Figure 2) and class specific 
quality (see Figure 3). If we chose a value for k greater 
than 7 the performance of the nearest neighbor classifiers 
and ProtoClass drop significantly down (k=20 and over-
all accuracy is 84,6%). That confirms that the value of k 
has to be in accordance with the sample number of the 

classes. 
It is interesting to note that prototype selection does 

not have so much impact on the result in case of the 
E.coli data base (see Table 7). Rather than this feature 
subset selection and feature weighting are important. 

Results for the Wisconsin Breast Cancer dataset are 
summarized in Tables 15 and 16. The sample distribution 
is 448 for beningn data and 241 for malignant data. Due 
to the expensive computational complexity of the proto-
type implementation and the size of the dataset it was not 
possible to generate results for all prototype selections. 
Therefore: only results for feature subset selection and 
feature weighting have been completed. While the Wis-
consin dataset is a two class problem, it still has the same 
disparity between the number of samples in each case. 
As expected in a reasonably well delineated two-class 
problem: Naïve Bayes and Decision Trees both perform  

Classification  
Quality 

cp im imL imS imU om omL pp 

 143 77 2 2 35 20 5 52 

Number of 
Outperform 

Naive Bayes 95,83 78,38 0,00 0,00 59,46 95,00 80,00 85,71 1 

Math knn 1 93,66 72,73 0,00 0,00 52,78 88,89 83,33 80,00 1 

Math knn 3 93,92 76,92 0,00 0,00 56,67 85,00 71,43 86,54 1 

Math knn 7 94,59 81,08 0,00 0,00 64,71 100,00 71,43 83,93 1 

Proto k 1 94,43 74,70 0,00 0,00 61,30 88,23 83,33 80,00 1 

Proto k 3 93,30 78,00 0,00 0,00 62,06 89,97 71,42 86,27 0 

Proto k 7 94,60 83,56 0,00 0,00 68,57 100,00 71,42 82,45 3 
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Table 16. Combined contingency table for k=1,3,7 for the Wisconsin dataset using ProtoClass 

 benign malignant 

k 1 3 7 1 3 7 

benign 444 445 447 14 13 11 

malignant 25 15 11 216 226 230 

class specific qual-

ity 
94.67 96.74 97.6 93.91 94.56 95.44 

classification qual-

ity 
96.94 97.16 97.6 89.63 93.78 95.44 

 
Table 17. Combined contingency table for k=1,3,7 for the Wisconsin dataset using Matlab knn Classifier 

 benign malignant 

k 1 3 7 1 3 7 

Malignant 19 229 230 231 18 17 

Benign 440 18 13 11 445 447 

pti*100 95,86% 92,71% 94,65% 95,45% 96,11% 96,34% 

pki*100 96,07% 92,34% 92,74% 93,15% 97,16% 97,60% 

 
Table 18. Contingency table for the Wisconsin dataset using 
Bayes Classifier 

 benign malignant 

Malignant 9 230 

Benign 442 16 

pti *100 98,00% 93,50% 

pki *100 96,51% 96,23% 

 
acceptably.  

The k-value of 7 produces the best overall accuracy. 
The feature subset and feature weighting tasks both dis-
play slight improvements or retention of the performance 
for all values of k. The Wisconsin dataset has the largest 
number of features (9) of the datasets discussed here and 
it is to be expected that datasets with larger numbers of 
features will have improved performance when applying 
techniques to adjust the importance and impact of the 
features. However, it is worth noting that the feature 
subset selection and feature weighting techniques used in 
this prototype assume that the features operate inde-
pendently from each other. This may not be the case, 
especially when applying these techniques to classifica-
tion using low-level analysis of media objects.  

The contingency tables shown in Table 16 provide a 
more in-depth assessment of the performance of the Pro-
toClass classifier than is possible by using the overall 
accuracy value. In this instance the performance differ-
ence between classes is relatively stable and the k-value 
of 7 still appears to offer the best performance. Prototpye 
selection can significantly improve the performance of 
the classifier in case of k equal 1. 

Table 17 shows the performance of the Matlab knn. 
ProtoClass does not clearly outperform Matlab knn on 
this dataset. Table 18 shows the performance of Naïve 
Bayes Classifier. The performance is only for the class 
“benign” with the high number of samples better than the 
one of ProtoClass. 

Overall the results from the three datasets summarised 
in this section demonstrate that measuring performance 
by using the overall accuracy of a classifier is inaccurate 
and insufficient when there is an unequal distribution of 
samples over classes, especially when one or more clas- 
ses are significantly under-represented. In addition, when 
the classifier uses the overall accuracy as feedback for 
feature subset selection, feature weighting and prototype 
selection are flawed as this approach encourages the 
classifier to ignore classes with a small number of mem-
bers. Examining the contingency table and calculating 
the class specific quality measurements provides a more 
complete picture of classifier performance . 

6. Discussion 

We have studied the performance of some well-known 
classifiers such as Naïve Bayesian, decision tree induc-
tion and k-NN classifiers with respect to our case-based 
classifier ProtoClass. This study was done on datasets 
where some classes are heavily under-represented. This 
is a characteristic of many medical applications. 

The choice of the value of k has a significant impact 
upon the classifier. If a k-value is selected that is larger 
than the number of cases in some classes in the data set 
then samples from those classes will not be correctly 
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classified. This results in a classifier that is heavily gen-
eralized to over-represented classes and does not recog-
nize the under-represented classes. For example, in the E. 
coli dataset (described in Section 4) there are two classes 
with only two cases. When the k-value is greater than 3, 
these cases will never be correctly classified since the 
over-represented classes will occupy the greater number 
of nearest cases. This observation is also true for Deci-
sion Trees and Naïve Bayesian classifiers. To judge the 
true performance of a classifier we need to have more 
detailed observations about the output of the classifier. 
Such detailed observations are provided by the contin-
gency table in Section 3 that allow us to derive more 
specific accuracy measures. We choose the class-specific 
classification quality described in Section 3.  

The prototype selection algorithm used here is prob-
lematic with respect to the evaluation approach. Relying 
on the overall accuracy of the design dataset to assess 
whether two cases should be merged to form a new pro-
totype tends to encourage over-generalization where un-
der-represented classes are neglected in favor of changes 
to well-populated classes that have a greater impact on 
the accuracy of the classifier. Generalization based on the 
accuracy seems to be flawed and reduces the effective-
ness of case-based classifiers in handling datasets with 
under-represented classes. We are currently investigating 
alternative methods to improve generalization in case-ba- 
sed classifiers that would also take into account under- 
represented classes in spite of the well-represented 
classes. 

The question is what is important from the point of 
view of methodology? FS is the least computationally 
expensive method because it is implemented using the 
best first search strategy. FW is more expensive then FS 
but less expensive than PS. FS and FW fall into the same 
group of methods. That means FS changes the weights of 
a feature from “1” (feature present) to “0” (feature turned 
off). It can be seen as a feature weighting approach. 
When FS does not bring about any improvement, FW is 
less likely to provide worthwhile benefits. With respect 
to methodology, this observation indicates that it might 
be beneficial to not conduct feature weighting if feature 
subset selection shows no improvement. This rule-of- 
thumb would greatly reduce the required computational 
time.  

PS is the most computationally expensive method. In 
case of the data sets from the machine learning repository 
this method did not have much impact since the data sets 
have been heavily pre-cleaned over the years. For a real 
world data set, where redundant samples, duplicates and 
variations among the samples are common, this method 
has a more significant impact [6].  

7. Future Work and Conclusions 

The work described in this paper is a further develop-

ment of our case-based classification work [6]. We have 
introduced new evaluation measures into the design of 
such a classifier and have more deeply studied the be-
havior of the options of the classifier according to the 
different accuracy measures.  

The study in [6] relied on an expert-selected real-wor- 
ld image dataset that was considered by the expert as 
providing prototypical images for this application. The 
central focus of this study was the conceptual proof of 
such an approach for image classification as well as the 
evaluation of the usefulness of the expert-selected proto-
types. The study was based on more specific evalu- 
ation measures for such a classifier and focused on a 
methodology for handling the different options of such a 
classifier. 

Rather than relying on the overall accuracy to properly 
assess the performance of the classifier, we create the 
contingency table and calculate more specific accuracy 
measures from it. Even for datasets with a small number 
of samples in a class, the k-NN classifier is not the best 
choice since this classifier also tends to prefer well-repre- 
sented classes. Further work will evaluate the impact of 
feature weighting and changing the similarity measure. 
Generalization methods for datasets with well-represent- 
ed classes despite the presence of under-represented clas- 
ses will be further studied. This will result in a more det- 
ailed methodology for applying our case-based classifier. 
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