
American Journal of Computational Mathematics, 2023, 13, 199-210 
https://www.scirp.org/journal/ajcm 

ISSN Online: 2161-1211 
ISSN Print: 2161-1203 

 

DOI: 10.4236/ajcm.2023.131010  Mar. 31, 2023 199 American Journal of Computational Mathematics 
 

 
 
 

Diophantine Quotients and Remainders  
with Applications to Fermat and  
Pythagorean Equations 

Prosper Kouadio Kimou1, François Emmanuel Tanoé2 

1Department of Mathematics and Computer Science, Félix Houphouet-Boigny National Polytechnic Institute, Yamoussoukro, 
Ivory Coast 
2UFR Mathematics of Computer Science, Université Félix Houphouet-Boigny, Abidjan, Ivory Coast 

 
 
 

Abstract 
Diophantine equations have always fascinated mathematicians about exis-
tence, finitude, and the calculation of possible solutions. Among these equa-
tions, one of them will be the object of our research. This is the Pythagoras’- 
Fermat’s equation defined as follows. 

, 2 an integern n nx y z n+ = ≥                 (1) 

when 2n = , it is well known that this equation has an infinity of solutions 
but has none (non-trivial) when 2n > . We also know that the last result, 
named Fermat-Wiles theorem (or FLT) was obtained at great expense and its 
understanding remains out of reach even for a good fringe of professional 
mathematicians. The aim of this research is to set up new simple but effective 
tools in the treatment of Diophantine equations and that of Pythagoras-Fermat. 
The tools put forward in this research are the properties of the quotients and 
the Diophantine remainders which we define as follows. Let ( ), ,a b c  a 

non-trivial triplet ( 0abc ≠ ) solution of Equation (1) such that a b c< < . 
( )1 2,q q  and ( )1 2,r r  are called the Diophantine quotients and remainders of 

solution ( ), ,a b c . We compute the remainder and the quotient of b and c by a 
using the division algorithm. Hence, we have: 1 1b aq r= +  and et 2 2c aq r= +  
with 1 2,r r a< . We prove the following important results. 2 1q q=  if and only 
if 2 1r r>  and 2 1 1q q= +  if and only if 2 1r r< . Also, we deduce that 2 1q q=  

or 2 1 1q q= +  for any hypothetical solution ( ), ,a b c . We illustrate these re-
sults by effectively computing the Diophantine quotients and remainders in 
the case of Pythagorean triplets using a Python program. In the end, we apply 
the previous properties to directly prove a partial result of FLT. 
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1. Introduction 

The subject we are dealing with is within the framework of Diophantine analysis 
[1]. A Diophantine equation is an equation that can be solved in the domain of 
natural integers or at most in the domain of rational numbers [1]. The study of 
this type of problem is recognized as being difficult [2]. Indeed, each equation or 
its special cases may require its own tools to deal with them. In most cases, these 
tools do not seem to fit into any general theory. The focus of our study is on the 
Diophantine equation n n nx y z+ =  with 2n ≥  an integer, which we name the 
Pythagoras’-Fermat’s equation. When 2n = , we have the Pythagoras’ equation 
which admits an infinite number of parametric solutions ([1] p. 462) [3]. 

Ancient Babylonian, Greek and Egyptian mathematicians were fascinated by 
Pythagorean triplets, and they discovered some of them. Today, they continue to 
be analyzed, classified, studied to bring out new properties or algorithms for 
cryptographic uses [4] [5] [6]. 

When 2n > , it is the Fermat equation, and it is well known that this equation 
has no non-trivial solutions as demonstrated in 1995 by Wiles [1]. To achieve his 
proof, Wiles had to deploy “sophisticated” tools and difficult to access for the 
non-specialist [2] [7]. Even partial results like Abel’s conjecture and the cases 
where 1z y= +  or even 1y x= +  in Fermat’s equation have not been fully 
resolved [6]. Indeed, the second case, ( )0 modxyz p≡  with 2p >  a prime, of 
these subproblems still awaits direct proof. Thus, the search for new ways that 
are accessible and comprehensible to most amateurs is still ongoing [8] [9] [10].  

In 2021, Serdar Beji has numerically calculated solutions of a generalized form 
of Fermat’s equation as a function of the number of terms and the degree of this 
equation [11]: 

1
, , 2 integers

m
n n
i

i
z Z m n

=

= ≥∑                     (2) 

This previous Diophantine equation, under certain conditions, does not admit 
solutions. Nevertheless, it should be noted that for 

( )3 3 3 3
1 2 3 i.e 3z z z Z m n+ + = = =                   (3) 

Scheinman L. J. found several non-trivial solutions based on relations between 
some known solutions or their elements [12]. He presented two different me-
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thods for calculating some solutions of Equation (3) [12].  
Let nF  be the set of proven or hypothetical non-trivial solutions of the Py-

thagoras-Fermat equation, the objective of this paper is to prove the following 
two main results. 

Theorem 1. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < , 
( )1 2,q q  and ( )1 2,r r  be its respective Diophantine quotients and remainders. 
We have:  

2 1 2 1q q r r= ⇔ > . 

Theorem 2. Let 2n ≥  an integer, ( ), , na b c F∈  such that a b c< < , 
( )1 2,q q  and ( )1 2,r r  be its respective Diophantine quotients and remainders. 
We have: 

2 1 2 11q q r r= + ⇔ < . 

We apply these theorems to prove following result. 
Theorem 3. Let 2n ≥  an integer, ( ), , na b c F∈  such that a b c< < , 

( )1 2,q q  and ( )1 2,r r  be its respective Diophantine quotients and remainders. 
We have:  

2 11c b q q− = ⇒ = . 

When 2n > , Theorem 3 directly proves that FLT is true in the case where 
1z y= +  and 2 1 1q q= + .  

To which must be added this important result:  
Theorem 4. Let 2n ≥  a prime ( ), , na b c F∈  such that a b c< < , ( )1 2,q q  

and ( )1 2,r r  be its respective Diophantine quotients and remainders. We have:  

1 2q q=  and 2 1r r>  or 2 1 1q q= +  and 2 1r r< .  

2. Preliminaries 

Definition 2.1 Let 2n ≥  be an integer, we call the subset of 3  defined as 
follows,  

( ){ }3, , , and 0n n n
nF x y z x y z xyz= ∈ + = ≠  

Pythagoras’-Fermat’s domain. 
The set nF  represents the set of non-trivial triplet solutions of the Pythago-

ras’ or Fermat’s equation. The Fermat-Wiles theorem shows that if 2n >  then 

nF = ∅ . In our study, we assume that a priori this set contains possible solu-
tions. 

Lemma 2.1. Let 2n ≥  be an integer, ( ), ,a b c  an integer triplet such that 
a b c< < . We have. 

( ), , 1na b c F a∈ ⇒ >  

Proof.  
Let us prove by the absurd by assuming that ( ), , na b c F∈  and 1a = . 

( ), , and 1 1 n n
na b c F a c b∈ = ⇒ = −  

( ) ( )1 ,nc b T b c⇒ = −  where ( ),
n n

n
c bT b c
c b
−

=
−
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1 1c b⇒ = − =  and ( ), 1nT b c =  because c b≠  

( ) 1 2 1, n n n
nT b c c bc b− − −⇒ = + + +  

⇒  because 1 2 1 1n n nc bc b− − −+ + + >  

where the symbol   designates the logic empty clause. It means absurd. So 1a > .  
Lemma 2.2. Let 2n ≥  be an integer, ( ), ,a b c  an integer triplet such that 

a b c< < . So, there are unique pairs of natural numbers ( 1 1,q r ) and ( 2 2,q r ) 
such that: 

( ) 1 1 2 2, , andna b c F b aq r c aq r∈ ⇒ = + = + . 

Proof. Let ( ), , na b c F∈ , according to Lemma 2.1. and the division theorem, 
we have: 1 1a acb< < ⇒ >   

( ) ( ) 2
1 1 2 2 1 1 22 12, , , , and , ,q r q r b aq aqcr a r r r⇒ ∃ ∈ = + = + <  

Remark 2.1. ( 1 1,q r ) and ( 2 2,q r ) are unique. If ( ), , na b c F∈  then 1 2
bq <  and 

2 2
cq < . Because, for example 1 1 1b aq r aq= + >  as a result 12b q>  because of 

lemma 2.1. 
Definition 2.2. The pair of unique integer numbers ( 1 1,q r ) and ( 2 2,q r ) ap-

pearing in Lemma 2.1 define the Diophantine quotient ( 1 2,q q ) and the Diophan-
tine remainders ( 1 2,r r ) of triplet solution ( ), ,a b c  of the Pythagoras’-Fermat’s 
equation. When 2n = , the triplet solution is a Pythagorean triplet and ( 1 2,q q ), 
( 1 2,r r ) are calls Pythagorean quotients and remainders of this solution.  

The Definition 2.2 relies on the division theorem or algorithm ([3], p.334).  
Lemma 2.3. Let 2n ≥  be an integer and ( ), ,a b c  an integer triplet such as 

a b c< < . We have 

( ), , .n
aa b c F c b
n

∈ ⇒ < +  

Proof.  

( ), , n n n
na b c F a b c∈ ⇒ + =  

( )
1

1

0

n
n n n n n k k

k
a c b a c b c b

−
− −

=

⇒ = − ⇒ = − ∑  

( )
1

1

0

n
n k k n

k
c b b b a

−
− −

=

⇒ − <∑  

( )
1

1

0
1

n
n n

k
c b b a

−
−

=

⇒ − <∑  

( ) ( )
1

1
1

n
n n

n

an c b b a n c b a
b

−
−

−⇒ − < ⇒ − <  

( ) an c b a c b
n

⇒ − < ⇒ < +  

Remark 2.2. We have a n>  otherwise 1ac b b
n

< + < +  which implies c b≤ , 

which is absurd. 
Lemma 2.4. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < . We 

have: 
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c a b< + . 

Proof. 

( ), , n
aa b c F c b a b c a b
n

∈ ⇒ < + < + ⇒ < +  

Remark 2.3: This property is also found in ([4], p. 100).  
Lemma 2.5. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < , 1q  

and 2q  be its Diophantine quotients. We have: 

2 1q q≥ . 

Proof 
On the one hand,  
( ), ,a b c  is an increasingly ordered triplet so a b c< < . Moreover, this triplet 

is a solution of Pythagoras’-Fermat’s equation, so by lemma 2.1 1a > . We can 
therefore apply the division algorithm. There are therefore unique pairs of in-
tegers ( )1 1,q r  and ( )2 2,q r  such that 1 1b aq r= +  and 2 2c aq r= +  such that 

1 20 ,r r a≤ < . 
On the other hand, 

( ) ( )2 1 2 1 2 1, , and andna b c F q q c b a q q r r a b c∈ < ⇒ − = − + − < <  

( )2 1 1 2c b r r a q q⇒ − = − − −  

2 10 becausec b r r a⇒ − < − <  

c b⇒ <  
⇒   

Hence 2 1q q≥  
Remark 2.3. Note that 1q  and 2q  are non-zero. Otherwise, b or c would be 

less than a.  
The following lemma is important for what follows. It will be used as a basis 

for the proof of the two theorems. 
Lemma 2.6. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< <  and 

( )1 2,q q  and ( )1 2,r r , its Diophantine quotients and remainders associates. We 
have: 

1 2 1 2
2 1 1

r r r rq q
a a
− −

< − < +  

Proof. We know that: 1 1 2 2,b aq r c aq r= + = + . According to lemmas 2.4 and 
2.5, we have 

( ) 2 1, , andna b c F c a b q q∈ ⇒ < + ≥  

2 10 andc b a q q⇒ < − < ≥  

( )2 1 2 10 a q q r r a⇒ < − + − <  

2 1
2 10 1

r rq q
a
−

⇒ < − + <  

2 1 2 1
2 1 1

r r r rq q
a a
− −

⇒ − < − < −  

1 2 1 2
2 1 1

r r r rq q
a a
− −

⇒ < − < +  
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Proposition 2.1. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< <  
and ( )1 2,q q  and ( )1 2,r r  be its Diophantine quotients and remainders asso-
ciates. We have 

2 1r r≠ . 

Proof. By absurd suppose that 2 1r r= . According to lemma 2.6 

( ) 2 1 2 1, , and 0 1na b c F r r q q∈ = ⇒ < − <  

] [2 1 0,1q q⇒ − ∈  
⇒  because 2 1q q− ∈  

Lemma 2.7. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < . We 
have: 

1c b− =  and 2 1 1 21 1q q a r r= + ⇒ = + − . 

Lemma 2.8. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < . We 
have: 

1c b− =  and 2 1 11 1q q r a= + ⇒ < − . 

Lemma 2.9. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < . We 
have: 

( )1 gcd , 1c b b c− = ⇒ = . 

Proof. According to Euclid algorithm, we have, 

( ) ( ) ( )1 gcd , gcd , 1 gcd ,1 1c b b c b b b− = ⇒ = + = =  

Lemma 2.10. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < . We 
have: 

( ) ( )1 gcd , gcd , 1c b a c b c− = ⇒ = = . 

Proof. Let ( ), , na b c F∈  and 1c b− = . We have on the one hand. 

( ) ( ) ( ) [ ]gcd , 1 1 and 1 0n nn na b a b b b d> ⇒ + = + + ≡  

⇒  because [ ]0b d≡  and ( )( )gcd , 1 1nb b + =  

Hence ( )gcd , 1a b = . 
On the other hand, 

( ) ( ) ( )gcd , 1 1 and 0 modnn n na c a b b b d> ⇒ + = + ≡   

⇒  because ( )1 0 modb d+ ≡  and ( )gcd , 1 1nb b + =  

Hence ( )gcd , 1a c = . 
Proposition 2.2. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< < . 

We have: 

( )1 , ,c b a b c− = ⇒  is a primitive triplet. 

3. Proof of Theorems 

In this section, we prove Theorems 1 and 2 stated in our introduction. 
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3.1. Proof of Theorem 1 

To prove Theorem 1, we proceed by implication. 
Proof. Let 2n ≥  an integer and ( ), , na b c F∈ . On the one hand, let’s prove 

that: if 1 2q q=  then 2 1r r> . We have: 

1 2 1 2
1 2 2 1 1

r r r rq q q q
a a
− −

= ⇒ < − < +  

1 2 1 2 1 20 1 0
r r r r r r

a a a
− − −

⇒ < < + ⇒ <  

2 1 2 10r r r r⇒ − > ⇒ >  

Reciprocally 

1 2 1 2
2 1 2 1 2 11 et 0

r r r rr r q q r r
a a
− −

> ⇒ < − < + − >  

2 1 2 1
2 1 1

r r r rq q
a a
− −

⇒ − < − < −  

2 1 2 1
2 11 1 1

r r r rq q
a a
− −

⇒ − < − < − < − <  

2 11 1q q⇒ − < − <   

2 1 2 11 0q q q q⇒ − < ⇒ − =   

2 1q q⇒ =   

3.2. Proof of Theorem 2 

We use the same approach as before to prove Theorem 2. 
Proof. Let 2n ≥  be an integer and ( ), , na b c F∈ . On the one hand, 

1 2 1 2
2 1 2 11 1

r r r rq q q q
a a
− −

= + ⇒ < − < +  

1 2 1 21 1
r r r r

a a
− −

⇒ < < +  

1 2 1 21 1 0
r r r r

a a
− −

⇒ < + ⇒ >  

1 2 1 20r r r r⇒ − > ⇒ >  

On the other hand, we prove the reciprocal of the previous result. 

1 2 1 2
2 1 2 1 1

r r r rr r q q
a a
− −

< ⇒ < − < +  

1 2 1 2
2 1 1 21 et 0

r r r rq q r r
a a
− −

⇒ < − < + − >  

1 2 1 2
2 10 1 2

r r r rq q
a a
− −

⇒ < < − < + <  

2 1 2 10 2 0 1q q q q⇒ < − < ⇒ < − ≤  

2 1 2 11 1q q q q⇒ − = ⇒ = +  

Proposition 3.1. Let 2n ≥  be an integer, ( ), , na b c F∈  such that a b c< <  
and ( )1 2,q q  its Diophantine quotients. Then 

2 1 2 1or 1q q q q= = +  

Proof. Let ( ), , na b c F∈  
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1 1 2 2 1 2et and ,a b c b aq r b aq r r r a< < ⇒ = + = + <  

On the one hand, according to Theorem 1, we have 

2 1 2 1r r q q> ⇒ =  

On the other hand, according to Theorem 2, we have 

2 1 2 1 1r r q q< ⇒ = +  

Hence the result.  
Example 3.1. Table 1 illustrates the values of Diophantine quotients and re-

mainders in the case of the Pythagorean equation. This table, obtained by the 
python program calculates the Diophantine quotients and remainders of some 
Pythagorean triplets. The algorithm of the program in Figure 1 is based on the 
Definition 2.2 

 
Table 1. Examples of Diophantine quotients and remainders of some Pythagorean trip-
lets. 

( ) 2, ,a b c F∈  1q  2q  1r  2r  

5 12 13 2 2 2 3 

7 24 25 3 3 3 4 

20 21 29 1 1 1 9 

28 45 53 1 1 17 25 

36 77 85 2 2 5 13 

39 80 89 2 2 2 11 

276 493 565 1 2 217 13 

287 816 865 2 3 242 4 

300 589 661 1 2 289 61 

 
Remark 3.1. The data in Table 1 were extracted from the results of the 

Calc_pythaQ_R(5, 39) and Calc_pythaQ_R(287, 300) commands. The first three 
columns identify a Pythagorean triplet, columns 4 and 5 respectively identify the 
Diophantine quotients 1q  and 2q  (note that either 1 2q q=  or 1 2 1q q= + ) 
the last two columns identify 1r  and 2r . They confirm the results of Theorems 
1 and 2 as well as that of Proposition 3.2. 

 

 
Figure 1. Python program to compute Pythagorean triples and their Diophantine quo-
tients and remainders. 
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4. Applications 

We apply the previous results to prove theorems 3 and 4. Theorem 3 gives a par-
tial proof of FLT and gives new properties of Pythagorean triplets when Equa-
tion (1) becomes:  

( )1 , 2nn nx y y n+ = + ≥                      (4) 

Let us denote by n  the set of hypothetical solution of the Equation (4). Ac-
cording to Proposition 3.1, we can write 

1 2 2 1 1 2 2 1/ / 1 / / 1andn n q q n q q n q q n q q= = + = = += = ∅       

with  

( )
1 2/ , , ,n q q n

b ca b c E E
a a=

    = ∈ =    
    

   and 

( )
2 1/ 1 , , , 1n q q n

b ca b c E E
a a= +

    = ∈ = +    
    

   

where ( )E  is the integer part function. 
Remark 4.1. ( ){ }, , , 1n nx y z F z y= ∈ = +  and n nF⊂ .  
We have, the following result. 
Proposition 4.1. Let 2n ≥  an integer and 

2 1/ 1n q q= +  as previously defined. 
We have:  

2 1/ 1n q q= + = ∅  

Proof. We proceed by absurd, supposing that 
1 2\n q q= ≠ ∅ . So, we have:  

( )
2 1/ 1 2 1, , , 1 and 1n q q na b c F c b q q= + = ∅⇒ ∃ ∈ − = = +  

1 2 1 21 with ,a r r r r a⇒ = + − <  according to Lemma 2.7. 

21 1a a r⇒ < + − −  according to Lemma 2.8 

2 0r⇒ < ⇒  

Hence the result. 
Proof of Theorem 3. Theorem 3 is an immediate consequence of Proposition 4.1. 
Remark 4.2. When 2n = , the following Python program calculates Pythago-

rean triplets that verify whether Theorem 3. The program also tests this proposi-
tion. 

Indeed, the program of Figure 2 calculates respectively the number of Pytha-
gorean triplets such that 1c b− =  and ( 1c b− =  and 1 2q q= ). Then, it com-
pares these two numbers to check the theorem 3: if there is equality the theorem 
3 is checked otherwise it is not. This program also computes Pythagorean trip-
lets ( ), ,a b c  such that 1c b− =  and it’s Pythagorean quotients and remaind-
ers. The results in Table 2 show that the theorem 3 is verified for the range of 
Pythagorean triplets tested.  

The OK in the last row of Table 2 means that in the defined range, the Py-
thagorean triples such that 1c b− =  are of the same number as the triplets sa-
tisfying 1c b− =  and 2 1q q= . 
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Figure 2. Python program compute Pythagorean triplets such as 1c b− =  or 1 2q q=  
and verify theorem 3. 

 
Table 2. Result of very_theo3(3, 16) showing that theorem 3 is true for Pythagorean trip-
lets ( ), ,a b c  where 3 16a≤ < . 

( ) 2, ,a b c F∈  1q  2q  

3 4 5 1 1 

5 12 13 2 2 

7 24 25 3 3 

9 40 41 4 4 

11 60 61 5 5 

13 84 85 6 6 

15 112 113 7 7 

OK     

 
Proof of Theorem 4. 
On the one hand, suppose that 1 2q q=  and 1 2r r> . We have  

1 2q q=  and 1 2 2 1r r r r> ⇒ >  because of Theorem 1 
⇒  

Hence 1 2q q=  and 2 1r r>  
On the other hand, suppose that 1 21q q+ =  and 1 2r r< . We have 

1 21q q+ =  and 2 1 2 1r r r r> ⇒ <  because of Theorem 2 
⇒  

Hence 2 1 1q q= +  and 1 2r r> . 
Remark. When n = 2, theorem 4 becomes the Pythagorean Quotients and 

Remainders Theorem (PQR Theorem). In this case, the Quotients and Remaind-
ers are said Pythagorean and we can compute them (see Table 1).  
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5. Conclusions 

In this paper we have shown that if ( ), ,a b c  is a solution of the Fermat equa-
tion and ( )1 2,q q  and ( )1 2,r r  are its Diophantine quotients and remainders, 
then 2 1q q=  if and only if 2 1 0r r− >  and 2 1 1q q= +  if and only if 2 1 0r r− < . 
These new properties used efficiently allowed us to find new properties verified 
by the Pythagorean triplets and to prove algebraically an important partial result 
of the FLT. This study opens new perspectives in the study of Diophantine equa-
tions and their applications. Here are some issues that can arise: Let ( ), ,a b c  be 
a solution of Pythagoras’-Fermat’s equation with ( )1 2,q q  and ( )1 2,r r  its Dio-
phantine quotients and remainders:  

1) In the case of Pythagorean triplets, we must solve the following questions. 
a) 1q  is it increased or not (study the evolution of 1q )? 
b) Which is new expression of 2r  when 2 1q = ?  
c) New classification of ( ), ,a b c  use Diophantine quotients and remainders 

properties and possible cryptographic applications. 
2) In the case of FLT being false, we have the following conjectures:  

a) If n p=  is a prime and 2 1q =  then 
[ ]2

2

0
p

p

er if b p
p

r e otherwise


= ≡


 =

 with e is  

Fermat principal divisor of b [10]. 
b) If n p=  is a prime then p is bounded ( ,p N N< ∈ ). 
c) If n p=  is a prime then 1 1q =  and 1 1r =  or 2.  
3) Generalize Diophantine quotients and remainders to variants of Fermat’s 

equation such as Equations (2) and (3).  
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