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Abstract 
In this paper, based on the Kirchhoff transformation and the natural boun-
dary element method, a coupled natural boundary element and curved edge 
finite element is applied to solve the anisotropic quasi-linear problem in an 
unbounded domain with a concave angle. By using the principle of the natu-
ral boundary reduction, we obtain the natural integral equation on the artifi-
cial boundary of circular arc boundary, and get the coupled variational prob-
lem and its numerical method. Then the error and convergence of coupling 
solution are analyzed. Finally, some numerical examples are verified to show 
the feasibility of our method. 
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1. Introduction 

In this paper, we propose the method of coupling curved edge finite element 
(CEFE) and natural boundary element (NBE) to solve an anisotropic quasi- 
linear problem in an unbounded domain. The CEFE-NBE method is based on 
the artificial boundary method [1] [2], namely the coupling of edge finite ele-
ment (EFE) and natural boundary element (NBE) method [3] [4]. The EFE-NBE 
method has been used to solve many linear problems [5] [6] and is generalized 
to solve quasilinear problems [7] [8] [9] [10] [11]. We find the CEFE-NBE me-
thod also has been used to solve some linear problems [12] [13] [14] [15], so we 
try to generalize it to quasilinear boundary value problem. 
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The standard procedure of the method of coupling curved edge finite element 
and natural boundary element can be described as follows. We introduce an ar-
tificial boundary to divide the original domain into two subregions, a bounded 
inner region and an unbounded one with special boundary, which are solved by 
the curved edge finite element and the boundary element method respectively. 

Suppose Ω is an infinite domain with a concave angle ω , and 0 2ω< ≤ π ; 
the boundaries of Ω are disintegrated into three disjoint parts: 1 2Γ Γ Γ∂Ω =   , 
the boundary Γ is a simple smooth curve part, Γ1 and Γ2 are two half lines. We 
have 

( ){ } ( ){ }, | ,0 , , | ,0 ,r r R r r Rθ θ ω θ θ ωΩ = > < < Γ = = < <  

( ){ } ( ){ }1 2, | , 0 , , | , .r r R r r Rθ θ θ θ ωΓ = > = Γ = > =  

We consider the following quasilinear problem 

( ) ( )

( )

1

1 2

, , , in ,

0, on ,

0, on ,
is bounded, as .

u ua x u a x u f
x x y y

u
n

u
u x x

α β
   ∂ ∂ ∂ ∂ − + = Ω    ∂ ∂ ∂ ∂     
∂

= Γ Γ
∂

 = Γ


→∞



 

Suppose that the given function ( ),a ⋅ ⋅  satisfies: 
( )0 10 , ,C a x u C u R< ≤ ≤ ∀ ∈ , and for almost all  

x∈Ω ,                            (1) 

with two constants 0 1,C C R∈ ; 
( ) ( ), , , ,La x u a x v C u v u v R− ≤ − ∀ ∈ , and for almost all  

x∈Ω ,                           (2) 

with a constant 0LC > . 
This problem has many physical applications in the field of continuum me-

chanics, we also assume that 
2

2,a a
s s
∂ ∂
∂ ∂

 are continuous and suppose that the 

given function ( )2f L∈ Ω  has compact support, i.e., there exists a constant 

0 0R > , such that 

{ }0

2
0| .Rsupp f x R x R⊂ Ω = ∈ ≤                 (3) 

Furthermore, we assume that 

( ) ( )0,a x u a u≡ , when 0x R≥ .                (4) 

The rest of the paper is organized as follows. In section 2, we obtain the exact 
quasilinear elliptical arc artificial boundary condition. In section 3, we give the 
equivalent variational problems and the finite element approximations and 
prove the well-posedness and the convergence results of the reduced problems. 
In section 4, we give some numerical examples to show the efficiency and feasi-
bility of this method. 
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2. Natural Boundary Reduction 

Now, we introduce an artificial boundary 

( ) ( ){ }0 , | 0, ,R θ θ ωΓ = ∈                       (5) 

with 0R R≥ . 
Let us introduce the artificial boundary Γ0 which divides Ω into two regions 

(see Figure 1), a bounded domain Ω1 and an unbounded domain Ω2. Then the 
problem (1) can be rewritten in the coupled form: 

( ) ( ) 1

11 21

, , , in ,

0, on ,

0, on ,

u ua x u a x u f
x x y y

u
n

u

α β
  ∂ ∂ ∂ ∂ − + = Ω   ∂ ∂ ∂ ∂    

∂
= Γ Γ

∂






= Γ







      (6) 

( ) ( )

( )

2

12 22

, , 0, in ,

0, on ,

is bounded, as ,

u ua x u a x u
x x y y

u
n

u x x

α β
  ∂ ∂ ∂ ∂ − + = Ω   ∂ ∂ ∂ ∂    

∂
= Γ Γ

∂






→∞







      (7) 

( )u x  and ( ) ( )0 0x y
u ua u n a u n
x y

α β∂ ∂
+

∂ ∂
 are continuous on 0Γ , where 

11 1 1Γ = Ω Γ , 21 1 2Γ = Ω Γ , 12 2 1Γ = Ω Γ  and 22 2 2Γ = Ω Γ , and 

( ),x yn n n=  is the unit exterior normal vector on 0Γ . 

Particularly, ( ),a x u a≡  is independent of x and u when 0 0x R≥ > , the 
problem (7) is simplified to the linear exterior elliptic problem [8].  

We introduce the so-called Kirchhoff transformation: [8] 

( ) ( )( )
0 20

d , ,
u x

w x a xξ ξ= ∈Ω∫                     (8) 

which gives  

( )0 ,w a u u∇ = ∇                           (9) 

and 
 

 
Figure 1. Artificial boundary of area Ω. 
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( ) ( )0 0, , .x y
w w u ua u n a u n
x y x y

α β α β
   ∂ ∂ ∂ ∂

=   ∂ ∂ ∂ ∂   
           (10) 

From (7), that w satisfies the following problem: 

( )

2 2

22 2

12 22

0, in ,

0, on ,

is bounded, as .

w w
x y

u
n

w x x

α β
 ∂ ∂

− + = Ω 
∂ ∂ 

∂
= Γ Γ

∂
→






 ∞









              (11) 

Assume that ( )w x  is the solution of the problem (13), and the value 
1u uw

=
 

is given 

( )
0

, ,w w R θ
Γ
=  

we introduce ,x yαξ βη= = , the boundary 0Γ  is changed to the elliptic 
arc boundary ( ){ }2 2 2

0 , | Rξ η αξ βηΓ = + = , the unit exterior normal vector on 

0Γ  is 

( )
2 2

1 cos , sin ,
x y

α ϕ β ϕ
α β

= −
+

v  

The next, we need to discuss the relationship between elliptic coordinates 
( ),u ϕ  and cartesian coordinates ( ),x y , the relationship can be expressed as 
below: 

0

0

cosh cos ,
sinh sin ,

x f u
y f u

ϕ
ϕ

=
 =

                      (12) 

where 

0 0, ln ,f R u
α ββ α

αβ β α
+−

= =
−

 

( ){ } ( ){ }0 0, | ,0 , , | ,0 ,u u u u u uϕ ϕ ω ϕ ϕ ωΩ = > < < Γ = = < <  

( ){ } ( ){ }1 0 2 0, | , 0 , , | , ,u u u u u uϕ ϕ ϕ ϕ ωΓ = > = Γ = > =  

( ) ( )2 2 2 2 2
0, sinh cos cosh sin .

u
J u f u u

u

ξ ξ
ϕ

ϕ ϕ ϕ
η η

ϕ

∂ ∂
∂ ∂

= = +
∂ ∂
∂ ∂

 

The problem (11) is transformed into 

( )

2 2

22 2

12 22

0, in ,

0, on ,

is bounded, as .

w w

u
n

w x x

ξ η
 ∂ ∂

− + = Ω ∂ ∂ 
∂

= Γ Γ
∂

→






 ∞









               (13) 

The based on the natural boundary reduction [1] [2], there are the Poisson 
integral formulas [9]. 
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( )
( ) ( )

( ) ( )
( )

2 2

2 20 2

2 2 2

1 1,
2

2 cos

1 , d , 0 ,
2 cos

w r R r
r R Rr

w R R r
r R Rr

ω
ω ω

ω ω ω

ω ω ω

θ
ω

θ θ
ω

θ θ
θ θ

ω

π π

π π π

π π π


 
= − −    π  ′+ − −




′ ′+ < <
π ′+ − + 

∫

 (14) 

and the natural integral equation 

( )2 0 2 2

1 1 , d .
4 sin sin π

2 2

w w R
n R

ω
θ θ

θ θ θ θω
ω ω

 
 ∂ π ′ ′= − + ′ ′− +∂  π 
 

∫      (15) 

From (9), we obtain 

( )0 .w ua u
n n

∂ ∂
=

∂ ∂
                     (16) 

Combining (8), (9) and (15), we obtain the exact artificial boundary condition 
of u on 0Γ , 

( ) ( )

( )( )( ) ( )

( )( )

0 0

,
0 00 0

1

1 1

d cos d

, .

x y
r R

u R

n

u ua u n a u n
x y

w a y y n n
R
u u

ω θ

α β

αβ
θ θ θ

κ ϕ

=

∞ ′

=

∂ ∂
+

∂ ∂

′ ′= − −
π ∑∫ ∫



        (17) 

By the exact quasilinear artificial boundary condition (17), the original prob-
lem confines in 1Ω  can be defined as follows 

( ) ( )

( ) ( ) ( )( )

1

11 21

0 0 1 1 0

, , , in ,

0, on ,

0, on ,

, o ., nx y

u ua x u a x u f
x x y y

u
n

u
u ua u n a u n u u
x y

α β

α β κ ϕ

   ∂ ∂ ∂ ∂ − + = Ω    ∂ ∂ ∂ ∂     
∂ = Γ Γ
∂
 = Γ
 ∂ ∂

+ = Γ ∂ ∂

     (18) 

3. Variational Problem and Finite Element Approximation 
3.1. The Equivalent Variational Problems 

Now, we consider the problem (18). First, we will use ( ),m pW Ω  denoting the 
standard Sobolev spaces, 

. ,m p Ω
⋅  and 

, ,m p Ω
⋅  denoting the corresponding 

norms and semi-norms. In particular, we denote ( ) ( ),2m mH WΩ = Ω , 

, .2,m mΩ Ω
⋅ = ⋅  and ,, ,2,m mΩ Ω

⋅ = ⋅ . 
Let us introduce the space 

( ){ }
0

1
1 | 0 ,V v H v

Γ
= ∈ Ω =                   (19) 

https://doi.org/10.4236/ajcm.2023.131009


M. Y. Tu, B. Q. Liu 
 

 

DOI: 10.4236/ajcm.2023.131009 190 American Journal of Computational Mathematics 
 

and the corresponding norms 

( )
1 11 1

2 2 2

0, 1,d , d .v v x v v v x
Ω ΩΩ Ω
= = + ∇∫ ∫  

The boundary value problem (18) is equivalent to the following variational 
problem 

( ) ( ) ( )
Find , such that

; , ; , ,
u V

A u u v B u u v F v v V
∈

 + = ∀ ∈
               (20) 

with 

( ) ( )
1

; , , d ,u v u vA w u v a x w x
x x y y

α β
Ω

 ∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 
∫                (21) 

( ) ( )( ) ( ) ( ) ( )00 0
1

, ,
; , , cos d d

n

u R v R
B w u v a w R n

n
ω ω θ θαβ

θ θ θ θ θ
θ θ

∞

=

′∂ ∂
′ ′ ′= −

′π ∂ ∂∑ ∫ ∫  (22) 

( ) ( ) ( )
1

.F v f x v x
Ω

= ∫                      (23) 

Lemma 1 [4] There exists 0 1, 0C C > , such that 

( ) ( )
1 1 1

2
0 01, 1, 1,; , , ; , , , , .B w u v C u v B u u v C u u v w V

Ω Ω Ω
≤ ≥ ∀ ∈  

In practice, we need to truncate the series in (17) for some nonnegative in-
teger N, that is 

( ) ( ) ( )( )0 0 1 1, ,N
x y

r R

u ua u n a u n u u
x y

α β κ ϕ
=

∂ ∂
+ =

∂ ∂
          (24) 

with 

( )( ) ( )( )( ) ( ),
1 1 0 00 0

1
, d cos d .

N u RN

n
u u w a y y n n

R
ω θαβ

κ ϕ θ θ θ
′

=

′ ′= − −
π ∑∫ ∫   (25) 

Then, we consider the following approximate problem 

( ) ( )

( ) ( ) ( )( )

1

11 21

0 0 1 1 0

, , , in ,

0, on ,

0, on ,

, , o .n

N N
N N

N

N

N N
N N N N

x y

u ua x u a x u f
x x y y

u
n

u
u ua u n a u n u u
x y

α β

α β κ ϕ

     ∂ ∂ ∂ ∂
− + = Ω      ∂ ∂ ∂ ∂     

∂ = Γ Γ

 ∂
 = Γ
 ∂ ∂

+ = Γ
∂ ∂

  (26) 

The problem (26) is equivalent to the following variational problem 

( ) ( ) ( )
Find , such that

; , ; , , ,

N

N N N N
N

u V

A u u v B u u v F v v V

 ∈


+ = ∀ ∈
         (27) 

where 

( ) ( )( ) ( ) ( )

( )

00 0
1

, ,
; , ,

cos d d .

N

n

u R v R
B w u v a w R

n
ω ω θ θαβ

θ
θ θ

θ θ θ θ
=

′∂ ∂
′=

′π ∂ ∂
′ ′= −

∑ ∫ ∫       (28) 
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Similar with lemma 1, we have:  
Lemma 2 There exists a constant 0C > , such that  

( ) ( )
1 1 1

2
0 01, 1, 1,; , , ; , , , , .N NB w u v C u v B u u v C u u v w V

Ω Ω Ω
≤ ≥ ∀ ∈  

3.2. Finite Element Approximation 

Firstly, we divide the arc 0Γ  into M parts and take an edge finite element sub-
division τ  in 1Ω , so that their nodes on 0Γ  are the same. The curved edge 
element subdivision τ . means that we make a regular hT  on 1Ω , and then we 
replace the standard triangles T whose two vertices lie on the boundary 0Γ  
with a curved triangles T  whose one edge coincides with the boundary.  

Secondly, we let T τ∈ , and use ( )( ), 1, 2,3i i iP x y i= =  to denote the vertex 
of a curved triangles T , and 1 3P P  to denote the curved edge. We use area 
coordinates ( )1 2 3, ,λ λ λ  to represent a standard triangle T corresponding to the 
curved triangle T , 

3 3

1 1
, ,i i i i

i i
x x y yλ λ

= =

= =∑ ∑                     (29) 

where 1 2 31 , ,λ ξ η λ ξ λ η= − − = = , then, based on the linear transformation of 
the T, we make the following nonlinear transformation, so that the curved trian-
gle T  can be mapped to the reference element T  one-by-one, 

( ) ( )
( ) ( )

1 2 3

1 2 3

1 ,

1 ,

x x x x

y y y y

ξ η ξ η η

ξ η ξ η η

 = + + + − − Φ


= + + + − − Ψ
              (30) 

where  

( ) ( )( )1 1 1 3
1 ,

1
s s x xη ϕ η η

η
Φ = + − −

−
              (31) 

( ) ( )( )1 3 1 3
1 ,

1
s s y yη ψ η η

η
Ψ = + − −

−
              (32) 

and 3 3 1s s s= − , ( )x sϕ= , ( )y sψ= , 2 2 1x x x= − , 2 2 1y y y= − , 3 3 1x x x= − , 

3 3 1y y y= − . 

In the end, we get a curved edge element subdivision by the above method in 

1Ω , and it maps a standard triangle in the plane ( ),ξ η  to a curved triangle 
one-by-one. 

Next, we construct the coordination element, i.e. approaching space 
( )

0

1
1hS HΓ⊂ Ω . Triples ( )( )1, ,T P T TΣ  are used to define the finite element, 

and use ( )1P T  to denote the space of first degree polynomials and the space of 
zero degree polynomials on T . The following mappings exist 

( ) ( ){ }1
1 1

ˆ ˆ: ; , ,TP T P T R P P F P P T−= → = ∈ 

            (33) 

and use   to denote a composite mapping, and { }: 1, 2,3iT N iΣ = =  is a set of 
linear functions, we denote ( ) ( ) ( ), , 1, 2,3i i iN p p T iϕ ϕ ϕ= = =  [12] (supple-
ment: see reference [12] for meaning of 1

TF − ). 
According to the reference [12], we propose: 
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Lemma 3. If τ  and the edge finite element are regular, the difference error 
of each curved triangular element is estimated as follows 

( )2
2,1,

,T T TT
v v Ch v v H T−Π ≤ ∀ ∈              (34) 

where C is a constant, Π  is interpolation operator, ( )1T v P TΠ ∈ ,  
( ) ( )( )1,2,3i iT v P v P iΠ = =  is well-determined. 

Proof: we assume hτ  is regular, from reference [12], when 0h → , we have 

( )( ) ( ) ( ) ( ) ( )2 1 1
1, , 1, ,0, ,

, , 1, 2 , .l
T T T T T TT TT

J F o h F o h l F o h− −
∞ ∞∞

⋅ = = = =




 

In the affine condition, according to various properties of TF , we obtain the 
difference error of each curved triangular element, 

( )2
2,1,

.T T TT
v v Ch v v H T−Π ≤ ∀ ∈  

Let ( ) ( ) ( ){ }0

1
1 1 1|h h h TS v C H v P TΓ= ∈ Ω Ω ∈ , combined with (29), we ob-

tain  

( )
21 12,1,

inf , .
h h

h hv S
u v Ch u u S

ΩΩ∈
− ≤ ∀ ∈ Ω            (35) 

The approximate problem of (27) can be written as 

( )
( ) ( ) ( ) ( )

1

1

Find , such that

; , ; , , .

N
h h

N N N N
h h h N h h h h h h

u S

A u u v B u u v F v v S

 ∈ Ω


+ = ∀ ∈ Ω
      (36) 

Similar with existence and uniqueness in [4], we have:  
Lemma 4. The variational problems (20), (27) and (36) are uniquely solvable. 
From now on, let ( )2

1, Nu u H∈ Ω , and N
h hu S∈  be the solution of problems 

(20), (27) and (36) respectively. We also assume that 

( ) ( )1,2
1Ω , for some 0,1 ,hS V W ε ε+⊂ ∈              (37) 

and we require that { } 0h h
S

→
 is a family of finite-dimensional subspaces of 

( )1V C Ω , such that  

( ) { }
11 1,0

, : , 0, as 0,h h h hh
v V C v v S v v h

Ω→
∀ ∈ Ω ∃ ∈ − → →    (38) 

( )
11,2,

, ,hv C v h
Ω
≤ ∀                       (39) 

where ( ) 0C v >  is independent of h. 
The continuous piecewise polynomial spaces, such as hS , satisfy the condi-

tion (37), and if let h hv v= Π , where :h hV SΠ →  is the interpolation operator, 
we have  

( )
11 1 1,2 ,1,2 , 1,2 ,

,h hv v v v C v
εε ε + Ω+ Ω + Ω

≤ Π − + ≤  

and we can obtain the following lemma. 
Theorem 1 [5] Suppose ( )2

1, Nu u H∈ Ω , and N
h hu S∈  be the solution of 

problems (20), (27) and (36) respectively, ( )1,2
1hS V W ε+⊂ Ω . According to 

the references [4], we know 

( ) ( )
0 1

11

1

1,1,
e .

N
u uN

hu u C h uσ ω
+ π

−

ΩΩ

 
− ≤ + 

  
             (40) 
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Proof: For v V∈ , we assume that  

( )
( )00

0
1

, e cos , ,
2

nu u

n
n

b nw u b u uω ϕϕ
ω

π+∞ −

=

π
= + ∀ ≥∑  

( ) 0
1

1
, cos .

2 n
n

c nv u c θθ
ω

+∞

=

π
= +∑  

Then, we have the following result 

( ) ( )
( ) ( )

( )

( ) ( )

( )

0 1

0 1

10

1 1
0 0

1

1

1

11 , 1,
2

; , ; ,

, ,2 sin sin d d

e
2

e .
1 u

N

n N

nu u

n n
n N

N
u u

k k

B u u v B u u v

w u v u n n
n

n b c

C u v
N

ω ω

ω

ω

τ

ϕ θ ϕ θ ϕ θ
ϕ θ ω ω

+∞

= +

π+∞ −

= +

+ π
−

− − Ω

−

∂ ∂ π π
=

π ∂ ∂

π
=

≤
+

∑∫ ∫

∑  

From references [5] [8] [9], we know 

( ) ( )
1

1
1,

1,

; , ; ,
,NN B u u v B u u v

u u C
vΩ

Ω

−
− ≤  

then, we obtain 

( ) ( )

( ) ( )

0 1

10

1
1

0 1

0

1

1 , 1,
2

1,
1,

1

1 ,
2

e

e .

u

u

N
u u

k
N

N
u u

k

u v
u u C

v

C u

ω
τ

ω
τ

+ π
−

− Ω

Ω
Ω

+ π
−

−

− ≤

=

 

Like [8], we introduce operators: :h hP V V→ , we have 

1 10 01, 1,
inf , 0 1, ,
h h

h hv V
v P v C v P v C h v Vσ σ

Ω Ω∈
− ≤ − ≤ < < ∀ ∈  

for Nu V∈ , we have 

1 1 11, 1, 1,
.N N N N N N

h h h hu u u P u P u u Chσ

Ω Ω Ω
− ≤ − + − ≤  

Therefore,  

( ) ( )
0 1

11 1 1

1

1,1, 1, 1,
e .

N
u uN N N N

h hu u u u u u C h uσ ω
+ π

−

ΩΩ Ω Ω

 
− ≤ − + − = + 

  
 

4. Numerical Example 

Example 1. We assume  

( ){ } ( ){ }, | ,0 , , | ,0 ,r r R r r Rθ θ ω θ θ ωΩ = > < < Γ = = < <  

( ){ } ( ){ }1 , | , 0 , , | , ,r r R r r Rθ θ θ θ ωΓ = > = Ω = > =  

with 3 , 0.8, 1.5, 0.5
2

R r αω ε
β

= π = = = = . According to references [8] [9] [10], 
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we make 0.5ε =  for easy analysis. We introduce an elliptical boundary 

( ) ( ){ }0 0 0, | 0, , 1.5.R Rθ θ ωΓ = ∈ =  

We take our numerical results for problem (1), with 

( )
2

2

2

116 , 0.8 1.5,
1,

1 , 1.5,
1

r r
ua x u

r
u

 − + ≤ ≤ += 
 >
 +

 

2 2tan .yu
x y

 
=  + 

 

Furthermore, we let 
1 3,

2
r

m M
θ π

∆ = ∆ =  for some integer ,m M N∈ . The 

exact solution “u” is solved with 
110, ,

16 64
N r ωθ= ∆ = ∆ = .  

The numerical results are given in Table 1 and Table 2 (Figures 2-4).  
 

Table 1. Error value when straight triangular element is used for finite element. 

mesh ( )2
1h L

u u
Ω

−  ratio ( )( )2
1ΩL  ( )1h L

u u ∞ Ω
−  ratio ( )( )1L∞ Ω  

h 3.58174E-1  8.76106E-1  
h/2 1.30051E-1 2.75411 3.75232E-1 2.33484 
h/4 4.44990E-2 2.92254 1.50271E-1 2.49704 
h/8 1.46775E-2 3.03180 4.12880E-2 3.63954 

 
Table 2. Error value of curved edge element in finite element. 

mesh ( )2
1h L

u u
Ω

−  ratio ( )( )2
1ΩL  ( )1h L

u u ∞ Ω
−  ratio ( )( )1L∞ Ω  

h 2.44592E-1  7.47451E-1  
h/2 9.79710E-2 2.49660 3.45129E-1 2.165713 
h/4 3.55530E-2 2.75559 1.48746E-1 2.320254 
h/8 1.18910E-2 2.98991 4.12630E-2 3.604833 

 

 
Figure 2. Error value of straight triangular element in finite 
element with N = 10, 0.5ε = . 
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Figure 3. Error value of curved edge element in finite ele-
ment with N = 10, 0.5ε = . 

 

 
Figure 4. Comparison of error value in Figure 2 and Fig-
ure 3 with mesh = h/4. 

 
These are the three error analysis diagrams of Example 1. 
Example 2. We assume  

( ){ } ( ){ }, | ,0 , , | ,0 ,r r R r r Rθ θ ω θ θ ωΩ = > < < Γ = = < <  

( ){ } ( ){ }1 , | , 0 , , | , ,r r R r r Rθ θ θ θ ωΓ = > = Ω = > =  

with 15 , 1, 1.5, 0.5
8

R r αω ε
β

= π = = = = . Similar with example 1, 0.5ε = . We 

introduce an elliptical boundary 

( ) ( ){ }0 0 0, | 0, , 1.5.R Rθ θ ωΓ = ∈ =  

We take our numerical results for problem (1), with 

( )
2

2

2

14 , 1 1.5,
1,

1 , 1.5,
1

r r
ua x u

r
u

 − + ≤ ≤ += 
 > +
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2 2sin .yu
x y

 
=  + 

 

Furthermore, we let 
1 15,

8
r

m M
θ π

∆ = ∆ =  for some integer ,m M N∈ . The 

exact solution “u” is solved with 
110, ,

16 64
N r ωθ= ∆ = ∆ = . 

The numerical results are given in Table 3 and Table 4 (Figures 5-7). 
 

 
Figure 5. Error value of straight triangular element in finite 
element with N = 10, 0.5ε = . 

 

 
Figure 6. Error value of curved edge element in finite ele-
ment with N = 10, 0.5ε = . 

 
Table 3. Error value when straight triangular element is used for finite element. 

mesh ( )2
1h L

u u
Ω

−  ratio ( )( )2
1L Ω  ( )1h L

u u ∞ Ω
−  ratio ( )( )1L∞ Ω  

h 5.93620E-1  6.20480E-1  

h/2 2.45574E-1 2.41727 2.58075E-1 2.40426 

h/4 8.78220E-2 2.79628 9.23020E-2 2.79597 

h/8 2.26990E-2 3.86890 2.60230E-2 3.54698 
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Table 4. Error value of curved edge element in finite element. 

mesh ( )2
1h L

u u
Ω

−  ratio ( )( )2
1L Ω  ( )1h L

u u ∞ Ω
−  ratio ( )( )1L∞ Ω  

h 5.20189E-1  5.65939E-1  

h/2 2.26124E-1 2.30046 2.46121E-1 2.29943 

h/4 8.49490E-2 2.66189 9.24893E-2 2.66108 

h/8 2.26970E-2 3.74275 2.47190E-2 3.74160 

 

 
Figure 7. Comparison of error value in Figure 5 and Fig-
ure 6 with mesh = h/2. 

 
These are the three error analysis diagrams of Example 2. 
The numerical examples show that the errors can be affected by the location 

of the artificial boundary and the order of the artificial boundary condition, and 
it can be reduced by refining the mesh and optimizing finite element subdivision 
methods. The numerical results are coincident with the theoretical analysis and 
show the efficiency of the coupling method. 
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