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Abstract 
Water markets even though not perfect and require a lot of effort to establish 
are considered as a robust tool to address water management issues around 
the world. However, the existing literature does not provide an optimal water 
resource management policy. To create a perfect water market, the govern-
ment needs to identify the potential number of suppliers/producers and con-
sumers of water against various extraction/supply/production rates of water, 
i.e., to identify a supply and a demand curve for number of suppliers/producers 
of water against each production rate in economy. This article presents a theory 
which is practically applicable for an optimal dynamical water resource man-
agement policy (JEL H20, H23, H27). 
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1. Introduction 

Water is a scarce natural resource upon which the very existence of life depends. 
The water on earth is in abundance, however, only 0.3 percent of that is usable, 
and the rest, i.e., 99.7 percent is in the soil, icecaps, oceans, and floating in the 
atmosphere. A huge fraction of usable water has still not been made available for 
use. The prospects of water resource management are formidable including fi-
nancial, regulatory, and institutional hindrances regarding policy formulation. A 
huge fraction of population still does not have access to safe drinking water. 
Without appropriate policy measures, water resource management in an optimal 
manner is not achievable. 

Agricultural water management is the use of water for agricultural purposes in 
an optimal manner, i.e., to provide crops and animals the water they need to 
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enhance productivity, and at the same time avoid wastage of water, and save it 
for other purposes including ecosystem balance. Around 70 percent of global 
freshwater is consumed for agricultural purposes, however, water use efficiency 
is less than 50 percent in majority of countries. Due to lack of proper manage-
ment, changing environment, and wasteful utilization of water, fresh water 
supply has been increasingly getting scarce. Downward trends both in quality 
and quantity of water in various parts of the world are daunting challenges both 
for safe drinking water and sustainability of ecological balance. To address these 
issues, efficiency in water use is required. 

For efficiency in water use, the government needs to create a perfect water 
market on the principle of economic efficiency. This is essential to address over-
use of water on part of free riders. A price attached to the use can be instrumen-
tal in demand management. The other component of market is supply side, 
which needs to be augmented. It requires engineering and/or infrastructure so-
lutions to enhance water supply, such as construction of dams, weirs, and desa-
lination, etc. Formal water markets involve the transformation of water public 
property rights to one where some water-use rights are divisible, transferable, 
privately managed that can be bought or sold (in whole or part). Creation of a 
water market can allocate resources efficiently. The first stage involves the estab-
lishment of enabling institutions, e.g., this includes having available information 
on current and sustainable (capped) water extractions, hydrology, regulations, 
legislation, and enforcement to govern water markets. The second stage involves 
trade facilitation including the assessment of trade benefits, monitoring supply 
of water, and reduction in transaction costs. The third stage involves revisiting 
and reform of existing water markets. Water markets even though not perfect 
and require a lot of effort to establish are considered as a robust tool to address 
water management issues around the world. However, the existing literature 
does not provide an optimal water resource management policy. 

Although water markets will not generally achieve a least-cost solution, they 
may be a practical alternative to economically efficient, but informationally in-
tensive, environmental policies such as Pigouvian taxes [1]. More efficient irri-
gators are willing to pay a higher price for water, whereas the least efficient far-
mers are willing to sell at a lower price, showing that the buyers with high value 
of marginal product are willing to pay a price in excess of the value of the in-
come generated by the sellers with low value of marginal product [2]. The allo-
cation of water by markets is considered that are only imperfectly developed, in 
which prices are not publicly known and in which there is no centralized trading 
location [3]. The distributive impacts on the relevant population are examined 
(in particular on the poor and the most vulnerable groups [4]. The operational 
mechanism of a water exchange is discussed in Victoria, Australia, and analyses 
the outcome of the first five years of operation [5]. Demand-side responses to 
water allocation in two irrigation districts in South Africa is studied by investi-
gating how water markets can lead to more efficient water allocation and use [6]. 
A multi-criteria methodology is developed to simulate irrigation water markets 
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at basin level [7]. Much more water changes hands via leases than via sales of 
water rights [8]. Transferable water rights are advocated [9]. The nature of the 
seasonal water market is examined using a theoretical model and empirical evi-
dence from the Victorian market [10]. A static computable general equilibrium 
model of South Africa is adapted to compare new taxes on water demand by two 
industries, namely forestry, and irrigated field crops [11]. The integration of an 
economic trading model with a hydrologic water allocation model is discussed 
[12]. A multi-objective mixed integer linear programming model is set up to ob-
tain the optimal operation policy of multi-reservoir water supply system during 
drought [13]. An overview of the policy context for water marketing and the re-
lated practice of groundwater banking are provided and trends summarized in 
both areas [14]. It has been shown how Australia provides a leading example of a 
government buying back water for the environment [15]. The literature relevant 
to market environmentalism in the water sector, focusing on five themes, the 
privatization of resource ownership and management, the commercialization of 
resource management organizations, the environmental valuation and pricing of 
resources, the marketization of trading and exchange mechanisms, and the libe-
ralization of governance has been reviewed [16]. The existing water market de-
velopment gap has been attempted to be filled and an initial framework has been 
provided (the water market readiness assessment (WMRA)) to describe the pol-
icy and administrative conditions/reforms necessary to enable governments/ju- 
risdictions to develop water trading arrangements that are efficient, equitable 
and within sustainable limits [17]. 

In order to create a perfect water market, the government needs to identify the 
potential number of suppliers/producers and consumers of water against various 
extraction/supply/production rates of water, i.e., to identify a supply and a de-
mand curve for number of suppliers/producers of water against each production 
rate in economy. Graph A in Figure 1 shows the number of producers of water 
on x-axis, and the production rate on y-axis. The upward sloping curve is the 
supply curve for number of producers (both private and public) of water against 
each production rate, and the downward sloping curve is the demand curve. 
Graph B illustrates the supply and demand of quantity of water against various 
prices, and both supply and demand collectively determine the equilibrium price. 
Both graphs are connected, i.e., if perpendiculars from various points on de-
mand and supply curves are drawn on x, and y-axes in graph A, the areas cor-
respond to the abscissas/horizontal coordinates for demand and supply curves in 
graph B. As number of producers of water multiplied by the production rate in 
graph A determines the quantity of water supplied and demanded at various 
prices in graph B, both graphs and hence equilibria occur simultaneously. How-
ever, the government has a non-tax revenue constraint for production contracts/ 
leasing out water extraction facilities/tradable licenses fee, which needs to be sa-
tisfied for an optimal water production/supply level, therefore, the design of 
policy involves an order for graph B, and A, i.e., to first derive an optimal level of 
contract/lease/license fee subject to the non-tax revenue constraint based on  
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Figure 1. Theory of an optimal dynamical water resource management policy. (a): Water production; 
(b): Water market; (c): (a) and (b) combined. 

 
graph B, followed by a policy design based on graph A for an optimal number of 
producers of water, and the production rate subject to the constraint imposed by 
the optimal policy in graph B, i.e., the change in inventory/storage of water per 
unit time. For an optimal contract/lease/license fee, the efficiency loss in post-fee 
equilibrium as well as that during the adjustment of water market is minimized 
subject to the fee revenue constraint. When the government leases out the water 
extraction facility, the producers’ cost becomes equal to the production cost plus 
the lease/contract/license fee, which pushes the water market out of equilibrium 
(assuming that before the government adopted the leasing out/contract/license 
fee, water demand was equal to water supply, and the equilibrium was inefficient 
due to an externality of over-use of water). Both supply and demand of water 
adjust over time and the market attains the final equilibrium. The mechansim 
for adjustment of water market is based on the presumption that when the mar-
ket is out of equilibrium, the decisions of producers and consumers are not 
coordinated at current price. The efficiency losses during the water market ad-
justment must be taken into account to find an optimal policy. The optimal fee 
policy based on graph B decides the constraint for an optimal policy based on 
graph A, i.e., to find an optimal number of producers of water and the production 
rate by minimizing the social damage in terms of inadequate/excessive number of 
producers/suppliers of water in initial equilibrium as well as during the adjust-

https://doi.org/10.4236/jwarp.2023.153006


M. A. Ahmed, N. Nawaz 
 

 

DOI: 10.4236/jwarp.2023.153006 89 Journal of Water Resource and Protection 
 

ment process to the final equilibrium subject to a change in water invento-
ry/storage per unit time (a constraint determined by derivation of an optimal 
policy in graph B). As soon as the government adopts a policy to vary the num-
ber of water producers/suppliers and the production/extraction rate, an equili-
brium does not result instantaneously, and rather the market of water producers 
undergo an adjustment mechanism to achieve the final equilibrium, i.e., where 
the supply and demand of water producers become equal. While deriving an op-
timal policy for number of producers based on graph A, social damage both in 
initial equilibrium as well as during the adjustment process has been minimized 
subject to the change in water inventory/storage per unit time. 

The remainder of this paper is organized as follows: Section 2 presents the 
water market model as a basis for policy design. Section 3 provides a solution of 
the water market model with a contract/lease/license fee to portray the water 
market behavior when a fee is imposed by the government. Section 4 derives a 
dynamically optimal water market policy which maximizes social benefit. Sec-
tion 5 presents the water producers and production rate model for an optimal 
policy design regarding water extraction/production. Section 6 provides a solu-
tion of the water producers model with a production policy to capture the im-
pact of production policy. Section 7 derives a dynamic optimal production poli-
cy for water producers model which maximizes social benefit. Section 8 provides 
a summary of findings and conclusion. Appendix elaborates detailed mathemat-
ical steps in derivations in the text. 

2. The Water Market Model 

Suppose an imperfect water market exists and demand equals supply. There are 
four types of infinitely-lived market agents, i.e., a representative or a unit mass of 
producer who uses some engineering technique to make water useable and sup-
plies that to the government who stores water and sells to the consumer of water. 
The government has a dual role, i.e., as a middleman between the producer and 
consumer, and also as a policy maker. Government sets the price equal to mar-
ginal cost (marginal cost of producer plus the marginal cost of storage by the 
government). The government as a policy maker increases the marginal cost of 
producer by imposing a contract/lease/license fee to control the overuse of water. 
When a shock happens to the water market, the market goes out of equilibrium, 
and the price is adjusted by government to bring the final equilibrium after 
shock. Although, government is more informed than other economic agents and 
can play a coordination role among agents, however, still the information of gov-
ernment is far from perfect regarding the new water supply and demand patterns 
after the shock, so the government adjusts the price based on the changing size of 
inventory/storage of water. Suppose the demand of water contracts in agriculture 
due to some innovative technology which improves the water efficiency of crops. 
As the supply and demand are not equal any longer, the market is out of equili-
brium, and the excess supply will be reflected from a bigger inventory/storage 
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volume of water with the government. Government will react to this bigger vo-
lume of storage by decreasing the price, which will lead the producer to produce 
less based on an altered profit maximizing condition after a price decrease. After 
some adjustment the water market will arrive at the final equilibrium with both a 
lower price and quantity than before. Equilibrium in water market is defined as 
follows: 

1) The producer maximizes profit and the consumer maximizes utility subject 
to their respective constraints. 

2) Supply of water equals demand and the storage volume with government 
stays the same. 

The equilibrium conditions, i.e., Routh-Hurwitz stability criterion, which 
provides a necessary and sufficient condition for the stability of a linear dynam-
ical system have been elaborated in Section 3. Government as a middleman does 
not change the price during water market equilibrium, as it sets price equal to 
marginal cost and does not deviate from that. However, after a shock happens to 
the water market and equilibrium no longer holds, the government changes 
price only during the adjustment of the market to the final equilibrium and once 
the market attains the equilibrium again, the government stays put. 

For mathematical purposes, the problem of each of the economic agents is 
considered and solved such that their objective is achieved, and the equations 
resulting from their individual solutions are solved simultaneously to arrive at 
the collective water market outcome. Linearity of supply and demand curves is 
assumed which is reasonable as far as the final equilbrium is not too off the ini-
tial equilibrium after shock. 

2.1. Government-Water Storage 

Government in the role of middleman buys water from producers at a price 
equal to the producers’ marginal cost, stores it and sells to the consumers at a 
price equal to the marginal cost of production plus the marginal cost of storage. 
Storage is a phase between supply and demand of water. If the level of storage 
remains the same, it implies that the supply and demand rate of water is the 
same. A change in the level of storage implies a change in either of the rates, i.e., 
supply, demand or both (at different rates). If due to a supply shock, the supply 
curve shifts to right without a change in demand, the water storage goes up at 
the existing price (equal to marginal cost), and the price decreases to equalize the 
new marginal cost in final equilibrium. Similarly, if due to a demand shock, the 
demand curve shifts to right while there is no change in supply, the size of water 
storage reduces at current price, and the price increases to the new marginal cost 
in the final equilibrium. This implies that a price change is inversely related to 
water storage change, ceteris paribus. If both supply and demand curves shift but 
the water storage size stays put, the price of water will also remain the same. 
Water storage is central to both supply and demand shocks as each shock oper-
ates through a change in size of water storage. 
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The following mechanism is operative to bring about the price changes de-
scribed above: The government maintains a water storage through buying water 
from producers and selling to consumers. It costs government more to maintain 
a bigger storage size. If supply and demand rates of water are the same, the size 
of water storage does not change, and the price of water also stays put. Suppose 
as a result of a technological advancement, the marginal cost of supply of water 
decreases, and the production/extraction rate of water goes up, whereas demand 
remains the same. The water market is no longer in equilibrium, and the water 
storage size increases at the current price. As the government’s marginal cost of 
storage has gone up (while that of producer has gone down, and the total mar-
ginal cost has also decreased, i.e., the marginal cost of producer plus the gov-
ernment’s marginal cost of storage), the government will try to reduce the water 
storage size by reducing the price to bring demand up along demand curve. Af-
ter making price follow some adjustment, the government will finally set the 
price equal to the new marginal cost and the market will settle at final equili-
brium mathematically, the movement of price of water by government as mid-
dleman is captured as follows: 

Price change ∝ change in water storage. 
P = price change. 

−B Bsm m  = change in water storage, 

Bm  = water storage at time t, 

Bsm  = water storage in steady state equilibrium. 

( )dd d
Input output

d d d
−

− = = =B BsB Bm mm M
t t t

, 

or ( )input output d= −∫BM t . 

( )Price change supply rate demand rate d∝ −∫ t  

or 

( )supply rate demand rate d= − −∫BmP K t . 

BmK  is proportionality constant; supply and demand rates are quantity of 
water per unit time. The negative sign reflects that when (supply rate - demand 
rate) is positive, price goes down. After rearranging the above expression, we get:  

( )0 d ,− = −∫ Bi B
Bm

Pw w t
K

                     (1) 

Biw  = supply rate, 

0Bw  = demand rate, 

BmK  = dimensional constant. 
Suppose at 0=t , supply rate = demand rate, i.e., market is in equilibrium, 

substituting which, Equation (1) becomes as follows:  

( )0 d 0.− =∫ Bis B sw w t                       (2) 

The subscript s stands for steady state equilibrium. 0=P  when market is in 
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equilibrium. Subtracting Equation (2) from (1) gives:  

( )0 d ,− = −∫ Bi B
Bm

PW W t
K

                    (3) 

where − =Bi Bis Biw w W  = change in supply rate, 

0 0 0− =B B s Bw w W  = change in demand rate. 
, BiP W  and 0BW  are deviation variables, i.e., they reflect a deviation from 

equilibrium value, which implies that their initial values are zero. Equation (3) 
can also be expressed as:  

d ,= − = −∫Bm B Bm BP K W t K M                   (4) 

where 0= −B Bi BW W W . If price of water changes on account of an input other 
than a change in water storage volume, Equation (4) can be expressed as:  

d .= − + = − +∫Bm B B Bm B BP K W t B K M B              (4a) 

This is due to the fact that in a linear dynamical model, inputs can get added. 
The water storage volume can also get an exogenous shock which is not the same 
as the price feedback. 

2.2. Water Extractor/Producer/Supplier 

The water extractor/producer/supplier’s problem is to maximize present dis-
counted value of future stream of profits. The zero value, i.e., the present value 
for 0=t , is as follows:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
0

0 , e d ,ρα −∞
 = − − ∫ BptV p t f k t l t w t l t r t i t t       (5) 

α  denotes the market price fraction charged by water extractor to govern-
ment. ρBp  reflects the discount rate; ( )l t  (labor) and ( )i t  (level of invest-
ment) are control variables and ( )k t  is state variable. Water extractor’s prob-
lem can be written as:  

( ) ( ){ }
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

0,
max 0 , e d ,ρα

∞ − = − − ∫ Bpt

l t i t
V p t f k t l t w t l t r t i t t  

subject to the constraints given in Appendix. 
The expression for current-value Hamiltonian is as follows:  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), .α µ δ= − − + −  

BpH p t f k t l t w t l t r t i t t i t k t    (6) 

Maximizing conditions are given in Appendix. 
First two conditions are:  

0,∂
=

∂

H
l

                           (7) 

0,∂
=

∂

H
i

                           (8) 

and 

.µ ρ µ ∂
− = −

∂



Bp Bp Bp
H
k

                      (9) 
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After a price increase, the water extractor’s profit maximizing condition gets 
modified and prompts him to supply more water (details in Appendix). Let p = 
market price of water at which government supplies water to consumers, Bc  = 
a reference/feasible minimum price for water extractor to decide whether to op-
erate or not.  

BpW  = Change in water extraction/production volume due to change in price. 
The condition 0− ≥Bp c  provides the water extractor/producer an incentive 

to supply more water, i.e.,  

( )α∝ −Bp BW p c , 

or 

( ).= −Bp Bp BW K p c                       (10) 

When the water market is in equilibrium, 0=BpW , i.e.,  

( )0 .= −Bp s BsK p c                        (11) 

BpK  is a proportionality constant. sp  and Bsc  reflect the equilibrium val-
ues. If we subtract Equation (11) from Equation (10), we get:  

( ) ( ) ( ) ,ε = − − − = − − = − Bp Bp s B Bs Bp B Bp BW K p p c c K C P K      (12) 

,Bp BW C  and P reflect corresponding deviation values from those at the steady 
state. 

2.3. Consumers of Water 

There are two major types of consumers of water, i.e., the producers involved in 
production activities using water as an input, and the final consumer. The prob-
lems of both types of consumers are discussed below: 

Producers Using Water as an Input: 
The producer of a commodity using water as an input has a problem of max-

imizing present discounted value of future streams of profits. The zero value, i.e., 
the present value for 0=t , is as follows:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 , e d ,
∞ − = − −ℜ − ∫ rt

Bc BcV p t F K t L t w t L t t I t p t w t t (13) 

Bcp  is price of commodity being produced by the producer; r reflects discount 
rate. ( )L t  (labor input), ( )I t  (investment), and ( )Bcw t  (quantity of water as 
an input) are control variables and ( )K t  is the state variable. The producer’s (as 
consumer of water) problem can be written as  

( ) ( ) ( ){ }
( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

0

max 0

, e d ,
∞ − = − −ℜ − ∫

BcL t I t w t

rt
Bc Bc

V

p t F K t L t w t L t t I t p t w t t
 

subject to the constraints given in Appendix. 
The expression for current-value Hamiltonian is as follows:  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

,

.µ δ

= − −ℜ −

+ −  



Bc BcH p t F K t L t w t L t t I t p t w t

t I t K t
    (14) 
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Maximizing conditions are given in Appendix. 
First two conditions are:  

0,∂
=

∂

H
L

                           (15) 

0,∂
=

∂

H
I

                           (16) 

0,∂
=

∂



Bc

H
w

                          (17) 

and  

.µ µ ∂
− = −

∂


Hr
K

                        (18) 

After a water price increase, the producer using water as an input will reduce 
water consumption to satisfy profit maximization condition (see detail in Ap-
pendix). If demand change is proportional to price change (or otherwise if linea-
rization of demand schedule around equilibrium is a reasonable assumption), we 
have:  

Change in demand ∝ P, or 
.= −Bc BcW K P                          (19) 

BcW  is deviation in demand with respect to the equilibrium value after a price 
change, i.e., P. BcK  is proportionality constant, and the negative sign is reflec-
tive of the fact that when price increases, the demand of water goes down. 

Final Consumer: 
The consumer’s problem is to maximize present discounted value of future 

stream of utilities. The zero value, i.e., the present value for 0=t , is as follows:  

( ) ( )( )0
0 e d ,ρ−∞

= ∫ Bct
Bc BcV U w t t                  (20) 

ρBc  reflects the discount rate, and ( )Bcw t , i.e., the amount the consumer 
chooses for consumption is control variable. Consumer’s problem can be written 
as:  

( ){ }
( ) ( )( )0

max 0 e d ,ρ∞ −= ∫ Bc

Bc

t
Bc Bcw t

V U w t t  

subject to the constraints given in Appendix. 
The expression for current-value Hamiltonian is as follows:  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) .µ= + + −  

Bc Bc Bc BcH U w t t r t a t w t p t w t       (21) 

Maximizing conditions are given in Appendix. 
First two conditions are:  

( )( ) ( ) ( ) 0,µ∂ ′= − =
∂



Bc Bc Bc
Bc

H U w t t p t
w

              (22) 

and  

( ) ( ).µ ρ µ µ∂
− = − = −

∂



Bc Bc Bc Bc
H t r t
a

               (23) 

If price of water goes up, the consumer’s utility maximizing condition at cur-
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rent consumption level modifies to the following inequality:  

( )( ) ( ) ( ) 0,µ∂ ′= − <
∂



Bc Bc Bc
Bc

H U w t t p t
w

 

which reflects that after price goes up, the consumer will reduce consumption of 
water for utility maximization condition to get satisfied. If demand change is 
proportional to price change (or otherwise if linearization of demand schedule 
around equilibrium is a reasonable assumption), we have:  

Change in demand ∝ P, or 

.= −Bc BcW K P                        (24) 

BcW  is deviation in demand with respect to the equilibrium value after a price 
change, i.e., P. BcK  is proportionality constant, and the negative sign is reflec-
tive of the fact that when price increases, the demand of water goes down. The 
demand going down implies that people economize on use of water, and reduce 
wastages as they face a higher cost for wasting water. 

3. Solution of the Water Market Model with a  
Contract/Lease/License Fee 

From Equations (4a), (12) and (24), and in the absence of a shock, i.e.,  

( ) ( ) ( ).= −B Bp BcW t W t W t  

We can write:  

( ) ( ) ( ) ( )
d

.
d

+ + =Bm Bp Bc Bm Bp B

P t
K K K P t K K C t

t
           (25) 

If a per unit water extraction fee is imposed on producer at 0=t , i.e., 
( ) =BC t T , the above expression becomes  

( ) ( ) ( )
d

.
d

+ + =Bm Bp Bc Bm Bp

P t
K K K P t K K T

t
            (26) 

The Routh-Hurwitz stability criterion (a necessary and sufficient condition for 
stability of a linear dynamical system depicted by the above differential equation) 
is as follows: ( ) 0+ >Bm Bp BcK K K . As BmK , BpK  and BcK  are defined as pos-
itive numbers, the stability condition holds, which ensures that after a shock the 
water market arrives at a new equilibrium through some adjustment mechanism. 
If the fee is charged from buyer instead of producer per unit of water consumption, 
the producer will take into account the price faced by him/her, i.e.,  

( ) ( ) ,ε = −B t T P t                       (27) 

which leads to the following expression:  

( ) ( ) ( )
d

.
d

+ + =Bm Bp Bc Bm Bp

P t
K K K P t K K T

t
 

The above expression is the same as Equation (26), however, the solution/ 
dynamic adjustment path will depend on initial conditions. The solution of Eq-
uation (26) with initial conditions of a producer’s fee is as follows:  
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( ) ( )
1 2e .

 − + = + Bm Bp BcK K K t
P t C C                  (28) 

Putting values of 1C  and 2C  in the above expression, we get:  

( ) ( )e .
 − + = −

+ +
Bm Bp BcK K K tBp Bp

Bp Bc Bp Bc

K T K T
P t

K K K K
          (29) 

When 0=t , ( )0 0=P  (initial condition). When = ∞t , ( )∞ =
+
Bp

Bp Bc

K T
P

K K
 

(final value). In final equilibrium, supply equals demand. 

4. A Dynamically Optimal Water Market Policy 

Pre-policy water market equilibrium is inefficient, and the imposition of pro-
ducer fee leads to an efficient equilibrium. However, there are some efficiency 
losses on the adjustment path of the water market to the new efficient equilibrium. 
After a fee is imposed on water producer, the supply of water shrinks, the market 
forces come into play and the water market adjusts to the final equilibrium. The 
price and quantity of water in final equilibrium are dependent on supply and de-
mand elasticities. The level of water storage rises if supply is higher than demand 
and goes down otherwise. When demand and supply again become equal, the wa-
ter market is in final equilibrium. When demand and supply are not equal, either 
water supply and/or consumption is being lost at that point in time. The total 
production and/or consumption lost in terms of quantity is the efficiency loss 
and can be expressed as follows:  

( ) ( )0
d .

∞−
 = − ∞ +  ∫B BpEL W t M t                  (30) 

After imposition of water fee, the supply of water shrinks by BpK T . As the de-
mand of water has not yet changed, the level of water storage also decreases by 

BpK T . The water market is out of equilibrium, and drifts toward the final equili-
brium through market forces. The price of water is changed by government to 
bring the final equilibrium. The government earns the following amount as pro-
ducer fee revenue (PFR):  

( ) ( ){ }0 . = − − Bpi BpPFR T w K T P t                (31) 

The problem of minimizing efficiency loss with T as a control variable subject 
to constraint that revenue from imposition of producer fee must be greater than 
or equal to BG  in a given time, is as follows:  

min s.t. .≥B BT
EL PFR G  

The constraint is binding. Lagrangian for the problem of minimizing efficien-
cy loss is as follows:  

( ) ( ) ( ) ( ){ }
( )

( ) ( )

0

0

d 0

1d e

0 e

λ

λ

−

 − + 
−

 − +

∞



∞

  = − ∞ − + − − −  
 

= + − + 
+ + +  

   + − − − +  
+ +    

∫

∫



Bm Bp Bc

Bm Bp Bc

Bp B Bpi Bp

K K K tBp Bc Bp Bp
Bm Bp

Bp Bc Bm Bp Bc Bp Bc

K K K tBp Bp
B Bpi Bp

Bp Bc Bp Bc

W t M t G T w K T P t

K K T K T K T
t K K T

K K K K K K K

K T K T
G T w K T

K K K K
.

 
 
  
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Derivative of Lagrangian with respect to T leads to the following expression:  

( ) ( )

( )

0 10 d e

.
2 1 e

λ

λ

 − + 
−

 − + 

∞

  
− + − +  

+ + +    =
 
− + 

+ +  

∫ Bm Bp Bc

Bm Bp Bc

K K K tBp Bc Bp Bp
Bpi Bm Bp

Bp Bc Bm Bp Bc Bp Bc

K K K tBp Bp
Bp

Bp Bc Bp Bc

K K K K
w t K K

K K K K K K K
T

K K
K

K K K K

 (32) 

Similarly derivative of Lagrangian with respect to λ  gives:  

( ) ( )0 e .
 − + 

   − − − +  
+ +    

Bm Bp BcK K K tBp Bp
B Bpi Bp

Bp Bc Bp Bc

K T K T
G T w K T

K K K K
  (33) 

Putting Equation (32) into (33), we obtain:  

( )2 2 2 24 0 ,λ λ= −B B Bpi BQ G w J  

where 
( )0

2
λ

λ
−

= Bpi B

B

w J
T

Q
, 

( )1 e ,
 − + 

 
= − + 

+ +  

Bm Bp BcK K K tBp Bp
B Bp

Bp Bc Bp Bc

K K
Q K

K K K K
 

( )0 1d e .
 − + 

−∞

 
= + − + 

+ + +  
∫ Bm Bp BcK K K tBp Bc Bp Bp

B Bm Bp
Bp Bc Bm Bp Bc Bp Bc

K K K K
J t K K

K K K K K K K
 

This implies that  

( )2
.

0 4
λ =

−
B

Bpi B B

J

w Q G
 

Equation (32) can also be written as  

( )0
.

2
λ

λ
−

= Bpi B

B

w J
T

Q
                      (34) 

After putting value of λ  in above expression, we obtain:  

( ) ( )20 0 4
.

2

− −
= Bpi Bpi B B

B

w w Q G
T

Q
                (35) 

The second order condition shows that efficiency loss has been minimized 
(see Appendix). Suppose government has a revenue target of $1000 to be gener-
ated through imposition of producer fee. The initial equilibrium value is 100, 
and the value of each parameter, i.e., ,Bm BpK K  and BcK  is equal to one. Plug-
ging these values in Equation (35) yields  

100 10000 4000 11.27,
2

− −
= =T  

where 21 0.5 0.5e−= − + t
BQ , and at 0=t , 1=Q .  

( ) ( ){ }0 1000 = − − = Bpi BpPFR T w K T P t . The optimal producer fee is $11.27 
per unit of water. 

5. The Water Producers and Production Rate Model 

Please refer to graph A in Figure 1, where the number of water producersper 
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unit time are plotted along x-axis, and the waterproduction rate, i.e., quantity of 
water produced/extracted per producer is plotted along 𝑦𝑦-axis. The upward 
sloping curve is the supply curve for number of producers, i.e., the number of 
water producers/extractors the society can have (both from public and private 
sector) against each production/extraction rate. The positive relationship be-
tween the water production rate and the number of producers is on account of 
the fact that a higher production/extraction by the existing producers due to 
some incentives also encourages new entrants in water industry. The downward 
sloping curve is the demand curve (including both public and private demand) 
for number of water producers/extractors against each production rate. The 
negative relationship indicates that for a higher water production/extraction rate, 
the demand for number of producers is lower. The point of intersection of both 
curves denotes the equilibrium. At a production rate where demand is higher 
than supply, the production rate will go up until the number of water produc-
ers/extractors becomes equal on both curves. If supply is higher than demand at 
a certain production rate, the production rate will decrease until the number of 
producers are in equilibrium. 

Suppose the number of water producers on supply curve equals that on de-
mand curve with an equilibrium water production/extraction rate. The following 
infinitely-lived economic agents are there: private and public sector in the role of 
having a demand for certain number of water producers against a production 
rate; a representative, or a unit mass of, water producers who produce/extract 
water to supply to the government as middleman; and public and private sector 
as a whole which supplies a certain number of water producers at a certain pro-
duction rate. The adjustment mechanism for water production rate is based on 
the fact that there is a lack of coordination among economic agents regarding 
new supply and demand patterns regarding number of water producers against 
each production rate after a supply or demand shift. Suppose the supply and 
demand of number of water producers are in equilibrium. A rightward shift in 
demand occurs due to which the demand of water producers becomes greater 
than the supply at production rate before demand shock. There is a higher de-
mand than supply regarding number of water producers. The existing producers 
will increase production/extraction rate and new entrants will enter water in-
dustry. This will lead to higher water production rate, and a higher number of 
producers in final equilibrium. The equilibrium is defined as given below: 

1) Producers maximize profit, public and private sector maximizes utility in 
the role of having a certain demand for water, and the public sector maximizes 
net benefit of public service for society, subject to their respective constraints 
mentioned in Section 5. 

2) The supply of water producers equals demand and the production rate 
stays put in equilibrium. 

The equilibrium conditions are based on Routh-Hurwitz stability criterion (a 
necessary and sufficient condition for a linear dynamical system to be stable), 
and are mentioned in Section 6. The production rate for the public and private 
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sector is given. Producer does not change water production/extraction rate dur-
ing equilibrium, however, he/she does so during the phase of disequilibrium. 
The government formulates a policy to enhance or reduce water production/ex- 
traction either by shifting supply and/or demand schedules depending on the 
objectives to be achieved. The final equilibrium after implementation of policy 
does not result instantaneously, and rather the production rate, and number of 
water producers/extractors adjust over time to lead to final equilibrium. The ba-
sis of adjustment is self-interest by economic agents. Some social damage occurs 
during the adjustment of number of producers and the water production rate, 
which is defined as the sum of too many or too few water producers/extractors 
before the new equilibrium arrives. The new equilibrium is (more) efficient as 
compared to the initial equilibrium. 

For mathematical derivation of results, the objectives of various economic 
agents are maximized subject to constraints and then the resulting expressions 
are solved simultaneously to find expression regarding the collective outcome of 
their individual and independent decisions in self-interest. Linearity of demand 
and supply schedules is assumed which is a reasonable assumption if both initial 
and final equilibriums are not too far from each other. 

5.1. Water Extractor/Producer/Supplier 

The water producer extracts water and supplies to the government for storage 
for onward supply to consumer. When the number of producers and production 
rate are in equilibrium, demand of water producers equals supply. If the number 
of producers changes, that must be on account of a supply or demand shock, or 
both at different rates. The cumulative number of water producers, their entry 
rate (supply) and demand are linked as follows: When demand of water produc-
ers shifts to the right while supply remains the same, the cumulative number of 
water producers is lower than the demand at existing water extraction rate, the 
water production/extraction rate goes up to equalize supply and demand in final 
equilibrium. If supply shifts to the right while demand stays put, the cumulative 
number of water producers increases at the existing water extraction rate, and 
the production rate reduces to bring final equilibrium. The above discussion 
concludes that there exists a negative relationship between number of water 
producers and production/extraction rate. 

The following mechanism is at work: Suppose the number of water producers 
and the extraction rate are in equilibrium. If supply of producers shifts to the 
right due to a reduced marginal cost of production as it will lead to new firms’ 
entry into water industry, the production rate goes down, and the demand for 
producers increases as a feedback effect of reduced production rate. The adjust-
ment of number of producers and the production rate depends on how water 
producers react to the shock, and the direction and magnitude of shock. For 
mathematical illustration of the producer’s choice, let us take into consideration 
profit maximizing decision of the water producer as follows: 
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5.1.1. One Time Period Problem 
We consider profit maximization by producer for one time period where the 
water producer does not take into account future time periods. The purpose is to 
provide a simple intuition to the reader. A more complex dynamic problem is 
discussed later. Water producer’s objective is as follows:  

( ) ( )( ), ,ςΘ = −c A A AU c m c e                    (36) 

where 
Θ  = net benefit of water producer, 

( )cU c  = benefit of the producer by producing, 
c = quantity of water extracted per producer (production rate in a dynamic 

setting), 

Am  = total number of water producers in economy, 

Ae  = other factors which affect the total number of producers, 
( )( ),ς A A Am c e  = cost as a function of total number of producers in economy 

(increasing in number of producers). 
The derivative of Θ with respect to c is given below:  

( ) ( )( ) ( )1, , 0.ς′ ′ ′− =c A A A A AU c m c e m c e               (37) 

If supply of water producers shifts to right due to a reduced water extraction 
cost faced by producers, new entrants get an incentive to enter water industry, 
and number of producers get out of equilibrium. With more water producers in 
number, the term ( )( ),ς ′A A Am c e  is higher at existing value of c. As the term, 

( )1 ,′A Am c e  is a function of c, which has not changed yet, therefore, ( )1 ,′A Am c e  
is the same as before, and the water producer faces the following inequality as a 
modified profit maximization condition:  

( ) ( )( ) ( )1, , 0,ς∂Θ ′ ′ ′= − <
∂ c A A A A AU c m c e m c e
c

          (38) 

which suggests that after supply shock, the water producer reduces production/ 
extraction rate to maximize net benefit. If profit maximizing values of number of 
water producers are plotted against respective production/extraction rate, a 
downward sloping curve is obtained with number of water producers/extractors 
on x-axis, and production/extraction rate on y-axis. This is defined as cumula-
tive number of producers curve. 

5.1.2. Dynamic Optimization 
The water producer’s long run problem (dynamic context) is to maximize 
present discounted value of future stream of net benefits. The producer’s present 
value at 0=t  is given below:  

( ) ( ) ( )( )0
0 , e d ,ϖς −∞

 = − ∫ t
c A A AV U c m c e t               (39) 

where ϖ  is discount rate. ( )c t  is control variable, and ( )Am t  is state varia-
ble. Net benefit maximization problem of water producer/extractor is as follows:  
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( ){ }
( ) ( ) ( )( )0

max 0 , e d ,ϖς
∞ − = − ∫ t

c A A Ac t
V U c m c e t  

subject to the following constraints: 

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( ) ( )( ) ( )1 2 1, , , , ,′ ′ ′= +  A A A A A A A A Am t m c t e c t z c t m c t e c t z e c t z c t  

( Az  denote exogenous variables), 

( )0 =A Asm m  (initial condition), 
( ) 0≥Am t  (non-negativity constraint on state variable), 
( )∞Am  free (terminal condition). 

Current-value Hamiltonian is given below:  

( )( ) ( ) ( )( )( )( )
( ) ( ) ( ) ( )( )( )

( ) ( )( )( ) ( )( )
1

2 1

, ,

, ,

, , , .

ς

µ

= −

 ′+ 
′ ′+ 





c A A A A

A A A A

A A A A A

H U c t m c t e c t z

t c t m c t e c t z

m c t e c t z e c t z

           (40) 

The maximizing conditions are listed below: 

1) ( )*c t  maximizes H  for all t: 0∂
=

∂

H
c

, 

2) µ ϖµ ∂
− = −

∂



A A
A

H
m

, 

3) 
µ

∗ ∂
=
∂



 A
A

Hm  (this just gives back the state equation), 

4) ( ) ( )lim e 0ϖµ −

→∞
=t

A At
t m t  (the transversality condition). 

Conditions (1) and (2) are as follows:  

( )( ) ( ) ( )( )( )( ) ( ) ( )( )( ){
( ) ( )( )( ) ( )( )} ( ) ( )

( ) ( )( )( ) ( ) ( )( )( ) ( )( )
( ) ( )( )( ) ( )( ) ( ) ( )( )( )

( )( ) ( ) ( )( )( ) ( )( )

1

2 1

11 12 1

21 1 22

2
1 2 11

, , , ,

, , ,

, , , , ,

, , , , ,

, , , ,

0

ς

µ

∂ ′ ′ ′= −
∂

′ ′+ +

 ′′ ′′ ′∗ +
′′ ′ ′′+ +

′ ′ ′′∗ +

=








c A A A A A A A

A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A

H U c t m c t e c t z m c t e c t z
c

m c t e c t z e c t z t c t

m c t e c t z m c t e c t z e c t z

m c t e c t z e c t z m c t e c t z

e c t z m c t e c t z e c t z

.

 (41) 

and 

( ) ( )( )( )( ), , .µ ϖµ ς∂ ′− = − =
∂



A A A A A A
A

H m c t e c t z
m

          (42) 

In steady state, ( ) 0=c t , substituting which in Equation (41), the following 
expression is obtained:  

( )( ) ( ) ( )( )( )( ) ( ) ( )( )( ){
( ) ( )( )( ) ( )( )}

1

2 1

, , , ,

, , , 0.

ς′ ′ ′−

′ ′+ =

c A A A A A A A

A A A A A

U c t m c t e c t z m c t e c t z

m c t e c t z e c t z
 

Suppose a positive shock shifts supply to the right, then at current water ex-
traction rate, the number of water extractors is higher, and the same is the case 
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with the term ( ) ( )( )( )( ), ,ς ′A A A Am c t e c t z . The term multiplying  
( ) ( )( )( )( ), ,ς ′A A A Am c t e c t z , i.e.,  

( ) ( )( )( ) ( ) ( )( )( ) ( )( )1 2 1, , , , ,′ ′ ′+A A A A A A A Am c t e c t z m c t e c t z e c t z  is a function of 
water extraction rate which is the same as before. Therefore, water produc-
er/extractor faces the following expression aftershock:  

0.∂
<

∂

H
c

 

The water producer/extractor will reduce the extraction rate for maximizing 
net benefits in the dynamic context after supply shock. Hence, a negative rela-
tionship exists between number of water producers/extractors and extraction 
rate. If supply equals demand regarding number of water producers in economy, 
there is an equilibrium. However, if due to a shock the supply rate is no longer 
equal to demand rate, and the economic agents do not respond to the water ex-
traction rate on account of a difference in supply and demand rates, the water 
extraction rate will keep on changing until the saturation point arrives. This ex-
planation can be depicted mathematically as follows:  

Water production/extraction rate change ∝ change in number of producers. 
C = production rate change. 

= −A A AsM m m  = change in number of producers, 

Am  = number of producers at time t, 

Asm  = number of producers in steady state equilibrium. 

( )dd d
Input output

d d d
−

− = = =A AsA Am mm M
t t t

, 

or ( )input output d= −∫AM t . 

( )Production rate change inflow supply rate required demand rate d∝ −∫ t , 

or 

( )inflow supply rate required demand rate d= − −∫cC K t , 

cK  is proportionality constant; inflow/supply and required/demand rates are 
inflow of new entrants and demand of number of producers in water industry 
respectively. When (inflow/supply rate − required/demand rate) is positive, C is 
negative, i.e., the water production/extraction rate reduces. The above expres-
sion can also be written as: 

( )inflow supply rate required demand rate d− = −∫
c

Ct
K

, 

or 

( )0 d ,− = −∫ Ai
c

Cw wA t
K

                     (43) 

Aiw  = inflow/supply rate, 

0Aw  = required/demand rate, 

cK  = dimensional constant. 
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At time 0=t , inflow/supply rate = required/demand rate, and Equation (43) 
becomes:  

( )0 d 0.− =∫ Ais A sw w t                       (44) 

The subscript s is for steady state equilibrium, where 0=C . Subtracting Equ-
ation (44) from (43) gives:  

( )0 d ,− = −∫ Ai A
c

CW W t
K

                     (45) 

where − =Ai Ais Aiw w W  = change in inflow/supply rate, 

0 0 0− =A A s Aw w W  = change in required/demand rate. 
, AiC W  and 0AW  are deviation variables with zero initial value, as they indi-

cate deviation from equilibrium values. Equation (45) is given by:  

d ,= − = −∫c A c AC K W t K M                     (46) 

where 0= −A Ai AW W W . If C gets changed due to some other input, that can be 
added to the above expression as follows (inputs can get added in a linear dy-
namical system):  

d .= − + = − +∫c A A c A AC K W t E K M E               (46a) 

AM  gets affected due to feedback of water production/extraction rate, how-
ever, it can also have an exogenous input just like C. 

5.2. Private Sector as a Supplier of Water Producers/Extractors 

The public and private sectors both supply and demand water producers/ex- 
tractors, however, only one of their roles is presented here. Total supply and 
demand is a sum of that of both public and private sectors. In this section, the 
role the private sector plays as a supplier of water producers/extractors is pre-
sented. The private sector has a problem of maximizing present discounted value 
of future stream of net benefit for economy, and present value at 0=t , is given 
below:  

( ) ( ) ( )( )0
0 e d .ς

∞ − = − ∫ prr t
pr pr pr prV U n c n t             (47) 

( )pr prU n  is increasing in number of water producers/extractors, i.e., the pri-
vate sector draws a higher utility, the more the number of water producers. 

( )( )ς pr prc n  is their cost which is a positive function of the water extraction rate. 
The cost curve as a plot of cost against water production rate is concave down-
ward, i.e., decreasing in slope. 

prr  is discount rate. ( )prn t  denotes control variable, and ( )c t  has been de-
fined as the state variable. The private sector’s problem is given below:  

( ){ }
( ) ( ) ( )( )0

max 0 e d ,ς
∞ − = − ∫ pr

pr

r t
pr pr pr pr

n t
V U n c n t  

subject to the following constraints: 
( ) ( )( ) ( )′= pr prc t c n t n t  (state equation, describing how the state variable 

changes with time), 
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( )0 = sc c  (initial condition), 
( ) 0≥c t  (non-negativity constraint on state variable), 
( )∞c  free (terminal condition). 

Current-value Hamiltonian is given below:  

( )( ) ( )( )( ) ( ) ( )( ) ( ).ς µ ′= − + 



pr pr pr pr pr prH U n t c n t t c n t n t      (48) 

Maximizing conditions can be expressed as follows: 

1) ( )∗
prn t  maximizes H  for all t: 0∂

=
∂



pr

H
n

, 

2) µ µ ∂
− = −

∂



 pr pr pr
Hr
c

, 

3) *

µ
∂

=
∂





pr

Hc  (this just gives back the state equation), 

4) ( ) ( )lim e 0µ −

→∞
=prr t

prt
t c t  (the transversality condition). 

(1) and (2) are given below:  

( )( ) ( )( )( ) ( )( ) ( ) ( )( ) ( ) 0,ς µ∂ ′ ′ ′ ′′= − + =
∂



pr pr pr pr pr pr pr pr
pr

H U n t c n t c n t t c n t n t
n

(49) 

and  

( )( )( ).µ µ ς∂ ′− = − =
∂



 pr pr pr pr pr
Hr c n t
c

             (50) 

During equilibrium, ( ) 0=prn t , and we can express ∂
∂



pr

H
n

 as follows:  

( )( ) ( )( )( ) ( )( ) 0.ς′ ′ ′− =pr pr pr pr prU n t c n t c n t  

If water production/extraction rate increases, the term ( )( )( )ς ′pr prc n t  de-
creases, and the private sector’s first order condition for dynamic optimization 
gets modified to:  

0.∂
>

∂



pr

H
n

 

The private sector will increase supply of water producers after production 
rate shock. If supply curve is linear (or linearization around steady state is a rea-
sonable assumption), and change in number of water producers supplied is di-
rectly proportional to water extraction rate, we get the following expression:  

( ) ( ) ( ) ( ) ,η= − − = −  pr pr prW t K t C t K t              (51) 

where ( ) = − st e e ; e is a reference water production rate parameter. The pri-
vate sector takes it as a reference for decision making with which the variation in 
production rate is compared. ( )prW t  is change in number of water produc-
ers/extractors by private sector as a supplier of producers from initial equili-
brium value, with an initial value of zero. Due to a time delay between change in 
water production/extraction rate and change in the number of producers sup-
plied, a time lag term has been introduced in the above equation leading to:  
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( ) ( )1 .η τ= − −pr pr dW t K t                     (52) 

5.3. Public Sector/Government as a Demander of Water  
Producers/Extractors 

This section presents the role of public sector as a demander of water produc-
ers/extractors. The private sector also acts as a demander and the total demand is 
the sum of demand of both public and private sectors. In the role of a demander, 
the public sector has the problem of maximizing present discounted value of future 
stream of net benefits for economy, and present value at 0=t , is given below:  

( ) ( ) ( )( )0
0 e d ,ς

∞ − = − ∫ pur t
pu pu pu puV U n c n t             (53) 

( )pu puU n  is public service benefit for economy, increasing in number of wa-
ter producers/extractors and concave downward. ( )( )ς pu puc n  is their cost to 
encourage production, and is a positive function of the water production rate. 
The cost curve, i.e., a plot of cost against water production rate is concave up-
ward, i.e., increasing in slope. 

pur  is discount rate. ( )pun t  denotes control variable, and ( )c t  has been 
defined as the state variable. The public sector’s problem is given below:  

( ){ }
( ) ( ) ( )( )0

max 0 e d ,ς
∞ − = − ∫ pu

pu

r t
pu pu pu pu

n t
V U n c n t  

subject to the following constraints: 
( ) ( )( ) ( )′= pu puc t c n t n t  (state equation, describing how the state variable 

changes with time), 
( )0 = sc c  (initial condition), 
( ) 0≥c t  (non-negativity constraint on state variable), 
( )∞c  free (terminal condition). 

The current-value Hamiltonian for this case is  

( )( ) ( )( )( ) ( ) ( )( ) ( ).ς µ ′= − + 



pu pu pu pu pu pu puH U n t c n t t c n t n t     (54) 

Maximizing conditions can be expressed as follows: 

1) ( )∗
pun t  maximizes H  for all t: 0∂

=
∂



pu

H
n

, 

2) µ µ ∂
− = −

∂



 pu pu pu
Hr
c

, 

3) *

µ
∂

=
∂





pu

Hc  (this just gives back the state equation), 

4) ( ) ( )lim e 0µ −

→∞
=pur t

put
t c t  (the transversality condition). 

(1) and (2) are given below:  

( ) ( )( )( ) ( )( )

( ) ( )( ) ( )

( )

0.

ς

µ

∂ ′ ′ ′= −
∂

′′+

=





pu pu pu pu pu
pu

pu pu pu

H U n t c n t c n t
n

t c n t n t            (55) 
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and 

( )( )( ).µ µ ς∂ ′− = − =
∂



 pu pu pu pu pu
Hr c n t
c

              (56) 

During equilibrium, ( ) 0=pun t , and we can express ∂
∂



pu

H
n

 as follows:  

( )( ) ( )( )( ) ( )( ) 0.ς′ ′ ′− =pu pu pu pu puU n t c n t c n t  

If water production/extraction rate increases, the term ( )( )( )ς ′pu puc n t  in-
creases, and the public sector’s first order condition for dynamic optimization 
gets modified to:  

0.∂
<

∂



pu

H
n

 

For maximization the slope should zero; and as the slope gets negative, there-
fore, the public sector will decrease demand of water producers after production 
rate shock. If demand curve is linear (or linearization around steady state is a 
reasonable assumption), and change in number of water producers demanded is 
directly proportional to water extraction rate, we get the following expression:  

( ) ( ) ( ) ( ) ,= − = −  pu pu puW t K t C t K C t               (57) 

( )puW t  is change in number of water producers/extractors by public sector as 
a demander of producers from initial equilibrium value, with an initial value of 
zero. Due to a time delay between change in water production/extraction rate 
and change in the number of producers demanded, a time lag term has been in-
troduced in the above equation leading to:  

( ) ( )2 .τ= − −pu pu dW t K C t                    (58) 

6. Solution of the Water Producers Model with a Production  
Policy 

We solve the model for 1 2 0τ τ= =d d . From Equation (46a), (51), and (57), and 
in the absence of an exogenous shock, suppose government shifts supply left-
ward by adopting a policy of size A, i.e.,  

( ) ( ) ,= − −  pr prW t K A C t  

We have the following expression: 

( ) ( ) ( )
d

.
d

+ + =c pr pu c pr

C t
K K K C t K K A

t
              (59) 

The Routh–Hurwitz stability criterion for the dynamical system represented 
by the above expression is ( ) 0+ >c pr puK K K . As cK , prK  and puK  have 
been defined as positive numbers, ( ) 0+ >c pr puK K K , which ensures that after 
a shock, a new equilibrium is arrived at, after following an adjustment path. The 
solution is as given below:  

( ) ( )
1 2e .

 − + = + c pr puK K K t
C t C C                    (60) 
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Plugging in the values of 1C  and 2C  in Equation (60) yields:  

( ) ( )e .
 − + = −

+ +
c pr puK K K tpr pr

pr pu pr pu

K A K A
C t

K K K K
            (61) 

The initial conditions are 0=t , ( )0 0=C , and in the final steady state equi-

librium, = ∞t , ( )∞ =
+
pr

pr pu

K A
C

K K
. 

7. A Dynamic Optimal Production Policy for Water  
Producers Model 

The equilibrium before adoption of water production policy needed to be im-
proved upon, this is why government wanted to adopt a water policy. Also, there 
are some efficiency losses on the dynamic adjustment path to the new equili-
brium. Adding the equilibrium and adjustment path inefficiencies, we get the 
total social damage which needs to be minimized. The government either shifts 
the demand or the supply curve through a production policy. Suppose it shifts 
supply leftward. The number of water producers/extractors and the production 
rate adjust over time to bring final equilibrium, at which the production/extrac- 
tion rate is higher and the number of water producers is lower as compared to 
those in the initial equilibrium. If supply of water producers is higher than de-
mand, the number of producers is excessive and vice versa. The excessive num-
ber or a shortage of water producers is the social damage at a certain point in time. 
By summing up the social damage in equilibrium and that on the dynamic ad-
justment path, the total damage in terms of number of water producers/extractors 
is obtained as follows:  

( ) ( )0
d .

−∞
 = − ∞ +  ∫ pr ASD W t M t                  (62) 

From Equation (51), a change in number of water producers/extractors on 
account of implementation of production policy is given below:  

( ) ( ) ,= − −  pr prW t K A C t  

or 

( ) ( ) ( )0 ,− = − −  prf pri prw t w K A C t  

where ( )0priw  is number of water producers/extractors supplied in initial equi-
librium and ( )prfw t  is new value after water production policy is adopted, as 

( )prW t  is a deviation variable, i.e., deviation from initial steady state value. A 
change in quantity of production/extraction per unit time is given below: 

( ) ( ){ }0 . ∆ = − − pri prQP A w K A C t                (63) 

The problem of minimizing the social damage subject to a change in quantity 
of production being greater than or equal to AG  (change in quantity of  

production per unit time = 
d

d
BM

t
) can be expressed as follows: 
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d
min s.t.Δ .

d
 ≥ = 
 

B
AA

MSD QP G
t

 

A is choice variable, i.e., the size of production policy. The constraint is bind-
ing, and Lagrangian can be expressed as follows:  

( ) ( ) ( ) ( ){ }{ }0
d 0 .λ

−∞
 = − − ∞ + − − − ∫ A pr A pri prM t W t G A w K A C t  

Expression from Equation (46a) is given below:  

( ) .= − +c A AC t K M E  

The value of AE  is found by imposing initial conditions as shown below:  

= −A c prE K K A  

This implies that  

( ) ( )1 . = − + A c pr
c

M t C t K K A
K

 

Therefore, the Lagrangian can now be written as:  

( ) ( ) ( ) ( ){ }{ }
( )

( ) ( )

0

0

d 0

1d e

0 e

λ

λ

−

 − + 
−

 −

∞

∞

+ 

 = − ∞ − + − − − 
 

= + − + 
+ + +  

     + − − − +  
+ +      

∫

∫



c pr pu

c pr pu

pr A A pri pr

K K K tpr pu pr pr
c pr

pr pu c pr pu pr pu

K K K tpr pr
A pri pr

pr pu pr pu

W t M t G A w K A C t

K K A K A K A
t K K A

K K K K K K K

K A K A
G A w K A

K K K K
.


 

Derivative of Lagrangian with respect to A leads to the following expression:  

( ) ( )

( )

0 10 d e

.
2 e

λ

λ

 − + 
−

 − + 

∞

  
− + − +  

+ + +    =
  − + + +  

∫ c pr pu

c pr pu

K K K tpr pu pr pr
pri c pr

pr pu c pr pu pr pu

K K K tpr pr
pr

pr pu pr pu

K K A K A K A
w t K K A

K K K K K K K
A

K A K A
K A

K K K K

 (64) 

Similarly derivative of Lagrangian with respect to λ  gives:  

( ) ( )0 e 0.
 − + 

   − − − + =  
+ +    

c pr puK K K tpr pr
A pri pr

pr pu pr pu

K A K A
G A w K A

K K K K
  (65) 

Putting Equation (64) into (65), we obtain:  

( )2 2 2 24 0 ,λ λ= −A A pri AQ G w J  

where 
( )0

2
λ

λ
−

= pri A

A

w J
T

Q
, 

( )1 e ,
 − + 

 
= − + 

+ +  

c pr puK K K tpr pr
A pr

pr pu pr pu

K K
Q K

K K K K
 

( )0 1d e .
 − +

∞


−

 
= + − + 

+ + +  
∫ c pr puK K K tpr pu pr pr

A c pr
pr pu c pr pu pr pu

K K A K A K A
J t K K A

K K K K K K K
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This implies that 

( )2
.

0 4
λ =

−
A

pri A A

J

w Q G
 

Equation (64) can also be written as  

( )0
.

2
λ

λ
−

= pri A

A

w J
A

Q
                      (66) 

After putting value of λ  in above expression, we obtain:  

( ) ( )20 0 4
.

2

− −
= pri pri A A

A

w w Q G
A

Q
                (67) 

A is a policy for an optimal number of water producers/extractors in a dy-
namical setting. The second order condition shows that efficiency loss has been 
minimized (see Appendix). 

8. Conclusions 

When government adopts a dynamically optimal water market policy, e.g., im-
poses a production fee, and shifts the water production/extraction curve to the 
left, the water market goes out of equilibrium, with a presemption that it was in 
equilibrium before the implementation of the policy. The water production/ex- 
traction and the market price of water adjust over time and the water market 
eventually attain the final equilibrium. The final equilibrium is (more) efficient 
as compared to the initial equilibrium, however, some efficiency is lost during 
the adjustment of the market. Equation (35) presents a dynamically optimal wa-
ter market policy after minimizing the efficiency losses during adjustment of the 
market. The expression involves production, demand, and government storage 
curves’ slopes and initial pre-policy water equilibrium quantity. 

For a dynamically optimal production policy for water producers model, we 
develop a water production model involving number of water producers and 
production/extraction rate. The model can predict the adjustment path and the 
final equilibrium after a supply/demand or production rate shock. A dynamic 
optimal water production policy has been derived by minimizing social damage 
in terms of excessive number of water producers/extractors on the adjustment 
path to final equilibrium after the government adopts the policy subject to a cer-
tain change in water quantity per unit time. The area under the demand curve is 
social benefit in terms of water quantity per unit time when water production is 
in equilibrium. Equation (67) presents the expression for the optimal production 
policy depending on parameters ( ) 10 , , , , ,τpri A c pr pu dw G K K K  and 2τ d . 
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Appendix 
A.1. Water Extractor/Producer/Supplier 

Constraints: 

( ) ( ) ( )δ= −k t i t k t , 

( )0 = sk k , 

( ) 0≥k t , 

( )∞k  free. 
Maximizing conditions: 

1) ( )*l t  and ( )*i t  maximize H  for all t: 0∂
=

∂

H
l

 and 0∂
=

∂

H
i

, 

2) µ ρ µ ∂
− = −

∂



Bp Bp Bp
H
k

, 

3) *

µ
∂

=
∂





Bp

Hk , 

4) ( ) ( )lim e 0ρµ −

→∞
=Bpt

Bpt
t k t . 

First two conditions:  

( ) ( ) ( )( ) ( ), 0,α∂ ′= − =
∂



l
H p t f k t l t w t
l

               (70) 

( ) ( ) 0,µ∂
= − + =

∂



Bp
H r t t
i

                   (71) 

and  

( ) ( ) ( )( ) ( ), .µ ρ µ α δµ∂  ′− = − = − − ∂



Bp Bp Bp k Bp
H p t f k t l t t
k

      (72) 

A.2. Consumers of Water 

Producers Using Water as an Input: 
Constraints: 

( ) ( ) ( )δ= −K t I t K t , 

( ) 00 =K K , 

( ) 0≥K t , 

( )∞K  free. 
Maximizing conditions: 

1) ( )*L t , ( )*I t  and ( )*
Bcw t  maximize H  for all t: 0∂

=
∂

H
L

, 0∂
=

∂

H
I

 

and 0∂
=

∂



Bc

H
w

, 

2) µ µ ∂
− = −

∂


Hr
K

, 
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3) *

µ
∂

=
∂



HK , 

4) ( ) ( )lim e 0µ −

→∞
=rt

t
t K t . 

First two conditions are:  

( ) ( ) ( ) ( )( ) ( )
.

2 , , 0,∂
= − =

∂



Bc Bc
H p t F K t L t w t w t
L

           (78) 

( ) ( ) 0,µ∂
= −ℜ + =

∂

H t t
I

                    (79) 

( ) ( ) ( ) ( )( ) ( )
.

3 , , 0,∂
= − =

∂



Bc Bc
Bc

H p t F K t L t w t p t
w

          (80) 

and 

( ) ( ) ( ) ( )( ) ( )
.

1 , , .µ µ δµ∂  − = − = − − ∂  



 Bc
Hr p t F K t L t w t t
K

      (81) 

A.3. A Dynamically Optimal Water Market Policy 

Second order condition:  

( )( )0 .λ  = + − −  B B Bpi BJ T G T w Q T  

Bordered Hessian matrix:  

( )

( )
( )2

0 0 2
2 .0 2
0 4

 − 
 

=  −
 − 

Bpi B

B B
Bpi B

Bpi B B

w Q T
Q JBH w Q T

w Q G
 

Determinant of above matrix is negative, i.e., ( )( )2
0 2 0− − <Bpi Bw Q T . 

A.4. A Dynamic Optimal Production Policy for Water Producers  
Model 

Second order condition: 

( )( )0 .λ  = + − −  A A pri AJ A G A w Q A  

( )

( )
( )2

0 0 2
2 .0 2
0 4

 − 
 

=  −
 − 

pri A

A A
pri A

pri A A

w Q A
Q JBH w Q A

w Q G
 

Determinant of above matrix is negative, i.e., ( )( )2
0 2 0− − <pri Aw Q A . 
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