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Abstract 
Monitoring secondary forest regrowth is a priority in forest restoration strat-
egies. A site history helps in understanding the present status of natural rege-
neration in the three landscapes impacted by bauxite mining. Nonetheless, 
high rainfall in bauxite residue storage areas can facilitate natural regenera-
tion of forest. This research analyzed the natural regeneration of forest after 
thirty years of different land use histories at three bauxite mining areas of the 
Upper Demerara—Berbice region of Guyana. There are no man made forest 
plantations in the three landscapes being reviewed. The methodology in-
cluded: 1) the selection of three sampling landscapes with different land use 
histories 2) the generation Land Use/Land Cover maps using KMeans unsu-
pervised classification of satellite images in each landscape and 3) the assess-
ment of landscape structure of the land cover classes for year 2020 at class 
and landscape level using landscape metrics. The assessment of landscape 
structure of the land cover classes was carried-out with landscape metrics for 
the comparisons at class and landscape level. Principal component analysis 
enables the identification of main patterns among landscape-level metrics and 
land cover classes. Discriminant classification of the landscape classes was 
analyzed with the different metrics. The results suggest that Normalized Dif-
ference Vegetation Index and KMeans unsupervised classification can be used 
to evaluate the difference in natural forest regeneration among landscapes 
with differing land use histories. The landscape metrics revealed secondary 
stages of forest succession. The Landscape Shape Index and Edge Density 
were the most significant for landscape differentiation. The result of the var-
ious land uses reveals a mosaic of early, intermediate, and late successional 
sequences. 
 

Keywords 
NDVI, KMeans, Natural Forest Regeneration, Landscape Approach 

How to cite this paper: Lewis, S., Rosales, 
J. and Lewis, L. (2023) Remote Sensing for 
Analyzing Forested Landscape Structure and 
Land-Use Histories in Guyana’s Bauxite 
Mining Landscapes. Advances in Remote 
Sensing, 12, 29-46. 
https://doi.org/10.4236/ars.2023.121002 
 
Received: December 14, 2022 
Accepted: March 10, 2023 
Published: March 13, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ars
https://doi.org/10.4236/ars.2023.121002
https://www.scirp.org/
https://doi.org/10.4236/ars.2023.121002
http://creativecommons.org/licenses/by/4.0/


S. Lewis et al. 
 

 

DOI: 10.4236/ars.2023.121002 30 Advances in Remote Sensing 
 

1. Introduction 

Open-pit bauxite mining and its associated infrastructure are anthropogenic ac-
tivities that lead to drastic changes in the landform, converting forest ecosystems 
into fragmented forest [1]. This type of surface mining generates 2 - 11 times 
more degraded land than underground mining [2]. Every single operation in-
volved in open-cast bauxite mining has negative environmental impacts globally, 
regionally, and locally [3]. At first, the vegetation is completely removed from 
the land, subsequently, the topsoil is removed and the soil profile is heavily dis-
turbed leading to the destruction of soil seed banks [4]. The most identifiable 
impacts of bauxite mining are associated with landscape transformations, espe-
cially high urbanization, landform alteration, soil erosion, and unstable waste 
spoils [5]. Waste dumps change the overall topography of the landscape due to 
the increases in elevation and slopes [6]. Mining infrastructure and emergent 
settlements require additional clearing of forestlands [7]. Forest fragmentation 
and loss of habitat connectivity are two major consequences of continual reduc-
tion of forest cover [4]. [8] studied successional patterns after five years follow-
ing a hurricane disturbance event found that land use history of different sites 
influenced forest regeneration at the seedling stage and therefore the succession-
al pathway. [9] reviewed extensively the role of land use history in successional 
processes and concluded that they are very important for the restoration of 
tropical forests. In Guyana, bauxite deposits occur on approximately 104,000 ha 
of the sandy rolling terrain and are mined in large open cast pits [10]. Bauxite 
mining has been conducted for over 100 years and was the main land use activity 
practiced within the Upper-Demerara Berbice Region (UDBR), a region domi-
nated by rain forests until the early 1980s, when the industry closed operations. 
Bauxite mining was the principal cause of land and forest degradation and no 
reclamation or restoration program for these degraded lands has ever been es-
tablished by the mining industry. Land use histories in different landscapes 
might have influenced different successional pathways as land uses diversified 
surrounding the three old mining towns (Linden, Ituni and Kwakwani) [11]. 
The Guyana Geology and Mines Commission’s (GGMC) restoration unit is in-
volved in restoration initiatives and is favourable to restoring vegetation on un-
stable spoil dumps in bauxite mined lands. GGMC relies on local knowledge of 
the areas, which is valuable but still limited and fragmented. The number and 
size of closed and active bauxite mines is key information that is not well docu-
mented in Guyana specifically in terms of natural vegetation colonization. Be-
sides the aforementioned, the age and status of bauxite residue storage areas are 
important for restoration studies and this is unknown in Guyana [17]. There is a 
serious lack of data in regard to age, status and spatial distribution of natural re-
generation on bauxite mined lands. In order to fill these gaps, this study aims to 
assess the status of landuse/landcover using a landscape ecology approach in-
volving remote sensing to analyze successional patterns of forest regeneration in 
relation to landuse history, which can be considered a pre-requisite for land-
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scape level research in areas impacted by bauxite mining in Guyana.  
Natural forest regeneration and the design of successful future restoration and 

reclamation activities are dependent on the direction of secondary forest succes-
sional processes. Therefore, based upon recent postulates from applications of 
the landscape ecology theory, we questioning how land use histories could in-
fluence different directions of natural forest regeneration in the successional 
processes. The study aims to discuss observed changes in the forested landscape 
structure of vegetation cover in relation to different land use history after thirty 
years of post-bauxite mining in Guyana. It is focused on a landscape ecology ap-
proach using a remote sensing. Vegetation classes are considered as surrogate 
variables for multivariable analyses seeking to find factors that could explain the 
dynamics of natural forest regeneration. 

This is the first study to investigate the relationships between natural forest 
regeneration and land use in Guyana’s bauxite mining areas using remote sens-
ing analysis. Previous studies have been experimental, but never attempted re-
mote sensing techniques and landscape ecology approaches. 

2. Materials and Methods 
2.1. Study Area 

Guyana is part of the Guiana Shield, which is one of the oldest geological forma-
tions in the world [12] and is dominated by the largest track of dense tropical 
forest [13]. Inside this region, the Upper-Demerara watershed (UDW) covers 
189,000 ha [14], between 60˚00' North and 58˚30' West (Figure 1, Figure 2).  
 

 
Figure 1. Location of the study sites. (Source: Administrative regions of Guyana, Waterbodies, Roads 
and Rails shapefiles from DIVA-GIS: https://www.diva-gis.org/).  
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Figure 2. The photograph (A) is a section of an isolated remnant forest at the right and 
passive restoration in residues storage areas (BRAS) at the left and an artificial bauxite 
mining pond in Kwakwani at the center of the photograph. Photograph taken in May 
2021 by Ewart Smith. Examples of natural regeneration in Linden abandoned BRAS, (B) 
of natural regeneration by grasses. (E) Natural regeneration by trees, shrubs and scrubs. 
(G) Natural regeneration by grasses and trees in (B, C, D). Photographs taken in 2020 
Photo Credits: Gordon Lorrimer. 
 
The bauxite mining belt is located on the white sand plateau that dominates the 
northeastern area of Guyana. This plateau covers an area of approximately 64,000 
km2 and has a topography that appears rather homogeneous and monotonous. 
The elevation ranges from 16 meters along the coast to more than 150 meters 
inland [15]. The white sand plateau corresponds to the Berbice formation (Pli-
ocene and Pleistocene), which consists of sub-continental and old deltaic sand 
and clay deposits interbedded with kaolinitic clay, laterite, and bauxite. The soil 
of the white sand plateau consisted of well-drained Ultisols, Oxisols, and Enti-
sols [16]. 

The study area was previously covered by Wallaba (Eperua falcata) and Da-
kama (Dimorphandra conjugata) forests in mosaic with Muri (Humiria balsa-
mifera) shrubland and savannah grasslands [5].  

2.2. Methods 
2.2.1. Research Design 
The work was concentrated in three landscapes namely Ituni, Kwakwani and 
Linden known as mining towns that were created around the mines. After their 
closure these towns were no longer administered by the bauxite companies and 
thereby derived different histories of land use [17]. In Ituni, there has not been 
any further bauxite mining operation. Instead, the community of Ituni has re-
sorted to low impact logging (Community Forestry) as means of earning live-
lihood. Nevertheless, there has been considerable expansion of bauxite mining as 
well as logging in Kwakwani. Whilst in Linden the bauxite mining operation has 
been constant throughout the whole period. One main fair-weather road con-
nects the three landscapes in Region 10, Guyana, Upper Demerara-Berbice ad-
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ministrative region.  

2.2.2. Remote Sensing 
Three areas with similar surfaces were selected from each of the landscapes for 
remote sensing analysis. The satellite image that showed the vegetation cover 
within the mining closure period in the nineteenth century is the Landsat 5 TM 
top atmospheric reflectance (TOA) images of the period of 1989. These images 
were obtained from the Google Earth Engine (GEE), which provides a visual de-
piction of the three landscapes at this specific year (Table 1). The satellite images 
were used to calculate the normalized difference vegetation index (NDVI) and to 
compute a KMEANS Unsupervised Classification to generate secondary succes-
sion map which includes six (6) land use/landcover classes (forest, shrublands, 
grassland, non-vegetation, water bodies and built-up areas) for each study site 
(Table 2). In this study, forest is referred to the dominant woody life forms such 
as forest regeneration, secondary regrowth of woody trees and shrubs or dwarf 
woody scrubs. Landcover changes in surface were analyzed from the landuse/land- 
cover (LULC) maps 1998 to 2020. 

2.2.3. Data Acquisition and Image Preparation 
The boundary of each landscape (Linden, Ituni and Kwakwani) was stored as a 
shapefile. Ortho-rectified Level 2A Sentinel-2 Multispectral Instrument satellite 
images (MSI) with resolutions 10-m were acquired for the same time (August to 
November 2020) to avoid seasonal variation. In addition, Landsat 5 TM 10-m 
resolution top atmospheric reflectance (TOA) images for the period 1989 were 
also obtained (Table 1). Satellite images Landsat 5 and Sentinel 2 were used for 
the calculation of the normalized difference vegetation index (NDVI) and the 
KMeans Unsupervised Classification. 

2.2.4. Computation of KMeans Unsupervised Classification 
The KMeans unsupervised method created a land cover classification using SA- 
GA-GIS version 2.3.2. The multi-spectral bands in the study included Blue (B2), 
Green (B3), Red (B4), and near infrared (NIR) (B8). In addition to these spectral 
bands, the normalized difference vegetation index (NDVI) was added to the im-
age. The classification used fifty (50) number of spectral classes and the Hill  
 
Table 1. Satellite data used in landcover classification (Sentinel-2) and reference images 
(Landsat 5). 

Satellite 
Number  
of bands 

Resolutions Data of Observation Landscapes 

Sentinel-2 MSI, Level-2A 12 10 16 August 2020 Linden 

Sentinel-2 MSI, Level-2A 12 10 18 August 2020 Ituni 

Sentinel-2 MSI, Level-2A 12 10 20 August 2020 Kwakwani 

 7 30 19 August 1989 
Linden, Ituni, 

Kwakwani 
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Table 2. Normalized difference vegetation index (NDVI) range values and description of 
landcover classes. 

Class ID Name NDVI Description 

1 Forest 0.4 to 1 

This class comprises areas occupied by 
secondary forest regeneration and residual 
forest tracks along major rivers and creeks. 
Woody trees. 

2 Shrubland 0.35 to 0.39 

This class comprises areas occupied by  
volunteer forest developed after severe  
disturbances such as mining and forest 
fires. A mixture of short trees and  
multiple-stem woody plants. 

3 Grassland 0.19 to 0.34 
A land mainly composed of grass with 
sparse scrubs. 

4 Non-Vegetation 0.1 to 0.18 
Lands without vegetation cover, barren soil, 
open white sandy areas. 

5 Water bodies −0.01 to −0.05 
Artificial ponds, irregular shape, rivers. 
Some of these waterbodies have small and 
low vegetation cover. 

6 Built-up areas 0.01 to −0.09 

An area that is appropriate for a mix of 
residential and office uses, Major Impact 
Facilities (strip mines, quarries, mine pits), 
roads, trials. 

 
climbing method. The rule that selection for the number of spectral classes 
should be much larger than the number of informational classes was considered 
in this study [18]. The resulting image was then reclassified using the land cover 
classes of Table 2. 

The images classification used six landuse/landcover classes: forest, shrubland, 
grassland, non-vegetation, water bodies and built up areas. The true and false 
RGB composites, NDVI values, the land cover classification scheme and the seven 
elements for image interpretation [19] aided in the reclassification of clusters. 

The accuracy of each classified Sentinel image was determined using stratified 
random selection [20]. An error matrix was produced from the accuracy assess-
ment. The result of the accuracy assessment provides an overall accuracy of the 
land use/land cover map and the accuracy for each class shown on the map. The 
number of sampling point (N) was calculated by means of the following formula: 

“Equation (1)”: N = (∑i =1 (Wi * Si)/So)2 

where: 
Wi is the mapped area proportion of class I; 
Si is the standard deviation of stratum I; 
So is the expected standard deviation of overall accuracy; 
c total number of classes. 
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2.2.5. Landscape Metrics Analysis 
The classified images of Sentinel-2 2020 were used for the calculation of land-
scape metrics with FRAGSTATS ver. 4 software [21]. While the software has 
numerous landscape metrics available for assessing landscape structure and 
fragmentation [22]. Studies in restoration of mine landscape worldwide were re-
viewed where several landscape metrics were proposed as appropriate [22]-[27], 
then determined the best suited method for this study. The authors considered 
avoiding metrics that were highly correlated [28] [29] and selected the metrics 
most suitable for the quantification of landscape structure and connectivity at 
the class- and landscape-levels (Table 3). 
 

Table 3. Description of the landscape metrics used in this study. 

Scale Name of landscape metric Abbreviations Description Unit 

Area-Edge indices 

Class Class percent of landscape PLAND 
The proportion of total is occupied by a particular 
patch type: It a measures of dominance of patch type. 

Percent 

Landscape/Class Largest Patch Index LPI 
The proportion of total area occupied by the largest 
patch of a patch type. 

Percent 

Landscape/Class 
Patch Size Coefficient  

of Variation 
AREA_CV 

Patch size standard deviation divided by the mean 
patch size; a measure of relative variability. CV  
(coefficient of variation) equals the standard deviation 
divided by the mean, multiplied by 100 to convert to a 
percentage, for the corresponding patch metric. 

None 

Landscape/Class Edge Density ED 
Describe the distance of an ecosystem from its  
centroid (the center of the patch). 

m/ha 

Shape index     

Landscape/Class 
Area-Weighted Mean 

Shape Index 
SHAPE_AM A mean patch-base shape weighted by patch size. None 

Aggregation Indices 

Landscape/Class Number of Patches NP Express the number of patches identified for each class. None 

Landscape/Class Patch Density PD The number of patches of per hectare. #100 ha 

Landscape/Class Landscape Shape Index LSI 
The landscape boundary and total edge within the 
landscape divided by the total area, adjusted by a  
constant for a square standard. 

None 

Landscape/Class Patch Cohesion Index COHESION 
Patch cohesion index at the class level measures the 
physical connectedness of the corresponding patch type. 

None 

Landscape Clumpiness Index CLUMPY 

Clumpiness index is calculated from the adjacency 
matrix, which shows the frequency with which  
different pairs of patch types (including like  
adjacencies between the same patch type) appear 
side-by-side on the map. Clumpiness is scaled to  
account for the fact that the proportion of like  
adjacencies (Gi) will equal Pi for a completely  
random distribution. 

Percent 
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Continued 

Diversity and connectivity indices 

Landscape Patch richness PR 
This index reflects the number of patch types  
(vegetation types) in the bauxite mining landscape.  
It is a measure of diversity of patch type. 

None 

Landscape Shannon’s Diversity Index SHDI 
Express the proportional abundance of every patch of a 
certain type of patch multiplied by a proportion. 

Information 

Landscape 
Perimeter Area Fractal 

Dimension Index 
PAFRACMN 

It reflects shape complexity across a range of spatial 
scales (patch sizes). Perimeter-area fractal dimension at 
the landscape level is identical to the class level. 

None 

Landscape 
Radius of Gyration Area 

Weighted Mean 
GYRATE_AM 

Radius of gyration is a measure of patch extent (i.e., 
how far-reaching it is); thus, it is effected by both patch 
size and patch compaction. 

Meters 

2.2.6. Multivariate Analysis 
A multivariate analysis of the selected landscape metrics was conducted using 
the principal component analysis PCA [22] [30] [31]. Libraries package within 
RStudio software [32] enabled the statistical analysis of multivariate ecological 
data. The library packages Vegan, BiodiversityR, FactoMineR [33] were used. A 
spatial pattern analysis with PCA was performed to find the main patterns among 
landscape level metrics and land cover classes. A Wilks-test was used to compute 
the p-value that best explains the distance between the land cover classes. The PCA 
provided an individual factor map that showed the contribution of each landscape 
metrics. Discriminant analysis classification of the landscapes was carried out with 
the resulting metrics of the landscape classes using stepwise variation; F values 
and Wilks-Lambda. 

3. Results 
3.1. Land Cover Classification 

The LULC classification results showed that forest was the predominant land 
cover class in the three landscapes (Figure 3, Table 4). The forest surface in-
creased from year 1998 to year 2020 in Ituni and Linden, while there was a re-
duction in Kwakwani. Scrublands increased in Ituni while it was less in Kwak-
wani and Linden; there was a reduction in Grasslands for Ituni and Linden but 
an increase in Kwakwani; Waterbodies increased in Ituni and Kwakwani while 
reduced in Linden. There was a reduction in Non-vegetated areas of the three 
landscapes, especially in Linden. 

3.2. Landuse/Landcover Level Vegetation Metrics for Years 2020 

In 2020, Table 5 shows the vegetation metrics indicating that highest percentage 
of forest regeneration in Kwakwani (72.5%) followed by Linden (64.5%), and the 
least was found in Ituni (59.9%), but the scrubland class for Ituni showed the 
highest percentage (32.4%) when compared to Linden (8.8%) and Kwakwani  
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Table 4. Landcover class metrics of the three studied landscapes for the year 2020. 
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Ituni Forest 2987.20 59.86 31.25 1.69 2754.91 501.41 70.08 1763 35.33 115.16 99.84 0.48 

Kwakwani Forest 3614.26 72.45 60.94 4.88 2318.43 98.22 14.6 740 14.83 21.38 99.90 0.88 

Linden Forest 3220.98 64.52 23.68 3.85 1476.78 84.54 4.66 836 16.75 23.68 99.40 0.91 

Ituni Shrubland 1616.24 32.39 1.76 0.15 854.82 539.68 7.57 10371 207.83 167.88 94.67 0.39 

Kwakwani Shrubland 203.60 4.08 0.16 0.05 506.97 81.89 2.31 4167 83.53 71.63 79.00 0.48 

Linden Shrubland 438.29 8.78 0.24 0.06 535.74 183.49 3.43 6685 133.91 0.24 85.21 0.43 

Ituni Grassland 26.06 0.52 0.02 0.02 186.07 14.31 1.38 1027 20.58 34.74 52.65 0.32 

Kwakwani Grassland 292.58 5.86 0.11 0.08 313.91 127.18 3.30 3767 75.51 92.61 84.14 0.43 

Linden Grassland 108.23 2.17 0.02 0.03 189.62 58.39 1.61 3505 70.20 0.02 60.08 0.31 

Ituni Waterbodies 29.33 0.59 0.02 0.03 236.15 14.28 1.68 866 17.35 32.93 65.25 0.39 

Kwakwani Waterbodies 132.76 2.66 0.19 0.09 413.89 41.95 2.59 1493 29.93 45.35 85.29 0.61 

Linden Waterbodies 3.65 0.07 0.02 0.06 234.09 1.28 1.54 65 1.30 0.02 72.90 0.59 

LN: Landscape Name; LULC: Lnad Use/Land Cover Name; TA: Total Area; PLAND: Percentage of Landscape; LPI: Largest Patch 
Index; AREA_MN: Mean Patch Size; AREA_CV: Coefficient of Variation in Patch Area; ED: Edge Density; SHAPE_AM: Area 
Weighted Mean Shape Index; LSI: Landscape Shape Index. 
 

Table 5. Area size (ha) and percentage of landuse/landcover classes in 1989 and 2020 for 
each landscape. I = Increase in area size (has) covered by the landuse/landcover class. 

Landscape Class 
Landsat (1989) Sentinel 2 (2020) 

Difference 
(1989-2020) 

Area[ha] % Area[ha] % [ha] 

Ituni Forest 2548.98 50.59 2987.20 59.86 438.22 I 

Kwakwani Forest 3735.18 74.15 3614.26 72.45 120.92  

Linden Forest 2900.34 41.07 3220.98 64.52 320.64 I 

Ituni Shrubland 1430.55 28.39 1616.24 32.39 185.69 I 

Kwakwani Shrubland 512.55 10.17 203.60 4.08 308.95  

Linden Shrubland 465.84 22.47 438.29 8.78 27.55  

Ituni Grassland 460.62 9.14 26.06 0.52 434.56  

Linden Grassland 161.01 3.20 292.58 5.86 131.57 I 

Kwakwani Grassland 202.32 2.38 108.23 2.17 94.09  

Ituni Waterbodies 8.55 0.17 29.33 0.59 20.78 I 

Linden Waterbodies 58.95 1.17 132.76 2.66 73.81 I 

Kwakwani Waterbodies 164.97 3.27 3.65 0.07 161.32  

https://doi.org/10.4236/ars.2023.121002


S. Lewis et al. 
 

 

DOI: 10.4236/ars.2023.121002 38 Advances in Remote Sensing 
 

 
Figure 3. KMeans Unsupervised Image Classification of Land Use/Land Cover Classes (LULC) 
based on NDVI for images year 1989 (Landsat 5 TM) and 2020 (Sentinel-2 MSI). Left images: 
Landsat 5 TM for (A) Linden, (B) Ituni and Kwakwani (C); Right images: Sentinel MSI for (D) 
Linden, (E) Ituni and Kwakwani (F). 

 
(4.1%). Kwakwani had the highest percentage of grassland (5.9%) when com-
pared to Linden (2.1%) and Ituni (0.52%) respectively. A similar pattern was 
shown with the metrics, Largest Patch Index and Mean Patch Size and Clumpi-
ness Index. On the other hand, the metrics Patch Size Coefficient of Variation, 
Edge Density Area, Weighted Mean Shape Index, Aggregation Indices, Number 
of Patches, Patch Density and Landscape Shape Index and Patch Cohesion Index 
showed the highest values for Ituni in both landuse/landcover forests and scrub-
lands. 
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3.3. Landscape Level Vegetation Metrics for Years 2020 

Computation of diversity, shape and connectivity metrics assisted in describing 
the diversity, complexity and landscape connectivity. Associated with the do-
minance of the forest class, Shannon’s diversity index (SHDI) was in general low 
between 0.90 and 1 and the Patch richness (PR) remained constant across the 
three landscapes. The results of the Perimeter Fractal Dimension (PAFRAC) did 
not show significant differences indicating similar processes in the three land-
scapes. The radius of gyration (GYRATE_AM) however showed a gradient of rel-
ative reduction of complexity in the landscapes from Kwakwani (1823.72 m) to 
Ituni (1732.29 m) to Linden (1503.40 m). 

3.4. Multivariate Analysis of Class Level Metrics 

The PCA model indicated that about 80.8% of the total variability in the set of 
landscape pattern metrics that was generated by FRAGSTATS is explained by the 
first two components: PC1 accounted for 40.71% of the variation while PC2 ac-
counted for 31.59%. The first axis was highly aligned with AREA_CV and PLAND 
having its metric increasing to the right, whereas the second axis was highly as-
sociated with PD, NP and ED. The first axis was dominated by fewer land cover 
classes as opposed to the high number of land cover classes at the left side of the 
plane (Figure 4(A)). 

The organization of centers of landuse/landcover classes in relation to the Com-
ponents 1 and 2 indicate that Forest cover was positively correlated to Component 
1 (D1M1) as opposed to Waterbodies and Grasslands. However, Shrubland was 
positively correlated to Component 2 (D1M2) (Figure 4(B)).  

 

 
Figure 4. Multivariate statistics using principal component analysis (PCA). (A) Variables factor map showing class and 
landscape level metrics (PLAND = Class Percent of Landscape; LPI = Largest Patch Index; AREA_MN = Mean Patch Size; 
AREA_CV = Patch Size Coefficient Variation; ED = Edge Density; SHAPE_AM = Area-Weighted Mean Shape Index; NP = 
Number of Patches; PD = Patch Density; LSI = Landscape Shape Index; COHESION = Patch Cohesion Index; CLUMPY = 
Clumpiness Index; PR = Patch Richness; SHDI = Shannon’s Diversity Index; PAFRACMN = Perimeter Area Fractal Di-
mension Index and GYRATE_AM = Radius of Gyration Area Weighted Mean. (B) Qualitative factor map illustrating the 
best LULC categories shown on the plane (Forest; Shrubland; Grassland; Non-Vegetation; Waterbodies and Built-up areas). 
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An examination of the contribution values for the landscape metrics sug-
gests that AREA_CV, AREA_MN, PLAND, LPI, ED, COHESION, CLUMPY and 
SHAPE_AM were positively correlated to Component 1 (DIM1). Therefore, me-
trics related to the percentage of landscape (PLAND), size/area/edge of the patches, 
either their mean patch size (AREA_MN) or their variability (AREA_CV), the 
largest path index (LPI), shape (SHAPE_AM) and the aggregation metrics of 
COHESION and CLUMPY shared high values for this axis. While PD, NP, ED 
and LSI positively contributed to Component 2 (DIM2). In Component 1, AR- 
EA_CV (0.96), PLAND (0.94) and LPI (0.90) were the strongest correlated land-
scape metrics, whereas PD (0.91) and NP (0.91) were found to be the strongest 
correlated landscape metrics for Component 2. On the other hand, Discriminant 
analysis of the three landscapes using the values of the metrics and stepwise me-
thod resulted in one axis accounting 95% of the variance with edge density and 
landscape shape index being the most significant for the landscape differentia-
tion (Figure 5). 

The eigenvalue of (2.028) showed a strong canonical correlation. The Wilks’ 
Lambda’s statistical significance of 0.302, with the Chi-square statistic (17.367), 
confirmed this result. The probability value p < 0.05 at four (4) degrees of free-
dom showed that group discrimination is highly significant. The analysis indi-
cated that the first discriminant function is significant but not the second. Edge 
density (ED) and Landscape shape index (LSI) were the metrics variables with 
the highest correlation (Figure 5). The landscape metric Edge Density (ED) is  

 

 
Figure 5. Analysis of the discriminant classification of the landscapes classes with the re-
sulting metrics of the landscapes (1, 2, 3 = Group centroid). The eigenvalue of (2.028) 
showed a strong canonical correlation. The Wilks’ Lambda’s statistical significance of 0.302, 
with the Chi-square statistic (17.367), and a probability value p < 0.05 at four (4) degrees 
of freedom (df). 
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larger for Linden than for Ituni and Kwakwani, the Largest Patch Shape (LSI) 
was greater in Ituni and Kwakwani than in Linden. 

4. Discussion 
4.1. Land Cover Classification 

A landscape approach interpretation from the land use history of each landscape 
during the last thirty years was used to explain these results: 1) forest regenera-
tion Ituni > Linden > Kwakwani, 2) shrubland regeneration Kwakwani > Ituni > 
Linden and 3) grassland regeneration Ituni > Kwakwani > Linden. Furthermore, 
the highest secondary shrubland regeneration in Kwakwani could indicate ex-
tensive intermediate successional dynamics associated with the community fore-
stry, while the lowest early successional grassland communities are in Linden, 
where mining is responsible for active early stages of regeneration.  

4.2. Class-Level Vegetated Land Cover Structure 

The study illustrated the use of landscape structure and connectivity analysis as a 
means of quantitatively evaluating the spatial patterns of the three-forested land-
scapes with different land use histories in the last thirty years. The PCA results 
confirmed that from the six LULC classes, forest and shrubland regeneration 
dominated the studied landscapes. PLAND (percentage of landscape) and LPI 
(largest patch index) were the main landscape metrics explaining the main axis 
of spatial variation so they can be considered as useful indicators to describe the 
current landscape fragmentation. EDGE DENSITY is an important indicator of 
the rate of forest recovery and the metric showed that forest (540 m/ha) and 
shrubland (501 m/ha) classes for Ituni having the highest value. This is an im-
portant finding related to the land use history of this landscape as after the initial 
closing of mining operations the community did not continue mining opera-
tions but a community forest industry developed and involved timber extraction 
activities.  

The lower LPI values for Linden (23.7%) which is the landscape where the 
mining activities continued after initial closing of mining operations suggested 
that the patches were more scattered, resulting in a spread throughout the land-
scape, whilst higher LPI values for Ituni (31.2%) and Kwakwani (60.9%) indi-
cated that the patches were more compact. The LSI for the forest and shrubland 
classes fluctuated amongst landscapes, which suggests high levels of fragmenta-
tion due to low patch compactness [34]. LSI, COHESION and CLUMPY are 
measures of the degree of complexity of classes and it can apply to the whole 
landscape. These aggregation metrics are of particular importance in the analysis 
of land cover changes; such changes reflect the alteration in the structural and 
functional characteristics of the landscapes [35]. The results found a significant 
increase of the physical connection of forest patches, the COHESION index was 
above 1 for the three landscapes which implies that over the period of thirty 
years, the small isolated patches of forest fragments gradually clumped into ir-
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regular patches of compact woody vegetation. 

4.3. Landscape-Level Connectivity 

Concerning the landscape level metrics, the results for the SDI (Shannon Diver-
sity Index) are between 0.90 and 1.0 for the three landscapes indicating unifor-
mity and low diversity given the dominance of the forest class.  

The results of the study showed a similar perimeter fractal dimension (PAFRAC) 
for the three landscapes indicating similarities in the processes of fragmentation 
and forest regeneration within the landscapes [36]. The PAFRAC results ob-
tained for this study means that the differences in land use histories were the 
main factors explaining the landscape patterns of natural forest regeneration.  

Furthermore, after thirty years natural forest regeneration, new forest and shrub-
land classes together at the three studied landscapes occupied a large proportion 
of each landscape. These results were similar to those highlighted in a study by 
[36] for some abandoned bauxite residue storage areas in Linden where high rain-
fall facilitated the development of vegetation cover overtime [37]. Natural forest 
regeneration is higher in Ituni, while in Kwakwani, the secondary forest succes-
sion was mainly comprised of grasslands and shrublands. 

The high reduction in connectivity observed from Kwakwani (1823.72 m) and 
Ituni (1732.29 m) in relation to Linden (1503.40 m) indicated that Linden had a 
reduction of potential habitats for forest species conservation. The continuation 
of mining as an exclusive land use leads to increased alteration of the landscape. 
This was demonstrated in several case studies by [37]. Future restoration activi-
ties will need to design corridors to increase connectivity. 

In terms of landscape configuration and connectivity, the landscape metrics of 
GYRATE_AM and PAFRAC indicated that these landscapes are highly frag-
mented, especially Linden that experienced a continuous mining operation and 
it is possible to describe the current landscape matrix as a complex system con-
sisting of a number of smaller disconnected forest regeneration patches that are 
isolated from each other.  

5. Conclusion 

The study aimed at detecting the land use/land cover change during 30 years of 
land use history in the Upper Demerara Berbice River Basin of Guyana by em-
ploying a combination of a Landscape ecology approach and Remote Sensing 
technology. This analysis reveals the development of different mosaics of early, 
intermediate and late successional sequences as a result of community forestry, 
community forestry and bauxite mining and predominantly continuous mining. 
This study confirmed that vegetation occupied a large proportion of each land-
scape as was pointed out by Santini and Fey in 2013 for some abandoned bauxite 
residues storage facilities in Linden. In Kwakwani, the vegetation covers are 
mainly comprised of grass than woody vegetation, however, in Ituni the highest 
proportion of the landscape was occupied by woody vegetation. The investiga-
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tion goes further with the identification of potential drivers which are essential 
to the process of changes emerged from various land uses. Regardless of the large 
areas of forest cover, the build-up class occupied the third level of importance in 
relation to the class level metrics, however, these forest areas are seeming to be 
suitable for edge species. The results obtained from this preliminary study dem-
onstrate that there is some degree of fragmentation within the landscapes and is 
similar to the results obtained by studies done by Wang et al. (2014) [36]. The 
landscape metrics indicated that these sites are highly fragmented and it is poss-
ible to describe the current landscape matrix as a complex system. The decline in 
bauxite mining after thirty years of land use histories has identified three distinct 
land use configurations that suggest a mosaic of the primary succession of vege-
tation which needs to be examined through experimentation in the field and 
testing of primary successional theories. Each of the studied metrics indepen-
dently offers information that allows explanations for the vegetation cover dif-
ferences in the three landscapes. The approach used in this study can be repli-
cated in other areas within the Guiana Shield where similar commercial deposits 
of bauxite are found. 
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