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ABSTRACT 

Though manifold learning has been success-
fully applied in wide areas, such as data visu-
alization, dimension reduction and speech rec-
ognition; few researches have been done with 
the combination of the information theory and 
the geometrical learning. In this paper, we carry 
out a bold exploration in this field, raise a new 
approach on face recognition, the intrinsic 
α-Rényi entropy of the face image attained from 
manifold learning is used as the characteristic 
measure during recognition. The new algorithm 
is tested on ORL face database, and the ex-
periments obtain the satisfying results. 

Keywords: Manifold Learning; Rényi Entropy; Face 
Recognition 

1. INTRODUCTION 

Face recognition has becoming a research hotspot in the 
fields of image processing, pattern recognition and arti-
ficial intelligence in recent years. Numerous research 
papers appear on the famous international publications, a 
great deal of capital and manpower is invested to this 
research and its relevant application system develop-
ments. However, the performance of the face recognition 
could be influenced by many factors, such as illumina-
tion, gesture, age, facial expressions, image resolution, 
and noise, etc; which cause difficulties for the computer 
processing of face recognition, and turn it into a chal-
lenging task at the same time. 

The existing face recognition methods can be roughly 
classified into two categories [1]: local feature based, 
and global feature based. A local feature based method 
symbolizes a human face with the extracted feature vec-
tors (eyes, nose, mouth, hair, and face contours), designs 
certain kinds of classifiers to make recognition. On the 
other hand, a global feature based method employs the 
whole images as the input feature vectors, and then 
low-dimensional features are extracted by some learning 

algorithms. The main difference between the two cate-
gories lies in the way how the features are extracted. In a 
local feature based method, features are designed com-
pletely by the algorithm designers; while in global fea-
ture based method, features are automatically extracted 
or learned by some self-learning algorithms. 

Local feature based or learning based methods can be 
further divided into two classes: 1) statistical learning, 
such as artificial neural networks (ANN) [2-4], support 
vector machine (SVM) [5,6], and Boosting [7,8]; 2) 
manifold learning(or dimensionality reduction), such as 
linear methods like PCA [9,10], LDA [11,12], and 
nonlinear methods like Isomap [13], LLE [14], Lapla-
cian Eigenmaps [15,16]. 

In recent years, nonlinear dimensionality reduction 
(NLDR) methods have attracted great attentions due to 
their capability to deal with nonlinear and curved data 
[1]. All these algorithms rely on an assumption that the 
image data lie on or close to a smooth low-dimensional 
manifold in a high-dimensional input image space. A big 
limitation of NLDR algorithms is the way how to esti-
mate the intrinsic dimension of the manifold. LLE and 
Laplacian Eigenmaps do not give method to estimate the 
intrinsic dimension; Isomap shows a simple way to es-
timate the intrinsic dimension by searching for the “el-
bow point” where the residual error decreases signifi-
cantly. However, for some real data, it is difficult to find 
an obvious “elbow point” to indicate the intrinsic di-
mension. 

The intrinsic dimensionality estimation of a data set is 
a classical problem of pattern recognition. From the 
math point, the intrinsic dimension of a manifold is the 
dimension of the vector space that is homeomorphic to 
local neighborhoods of the manifold; in other words, 
intrinsic dimension describes how many “degrees of 
freedom” are necessary to generate the observed data. 
When the samples are drawn from a large population of 
signals one can interpret them as realizations from a 
multivariate distribution supported on the manifold. The 
intrinsic entropy of random samples obtained from a 
manifold is an information theoretic measure of the 
complexity of this distribution. The entropy is a finite 
value when the distribution satisfies the restriction of 
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Lebesgue integral on the lower dimensional manifold.  
In 2003, Costa and Hero proposed an algorithm that 

can jointly estimate both the intrinsic dimension and 
intrinsic entropy of a dataset randomly distributed on a 
smooth manifold [17,18]. The algorithm constructs the 
Euclidean K-NN graph over all the sample points and 
use its growth rate to estimate the intrinsic dimension 
and entropy by simple linear least squares and method of 
moments procedure. This approach allows for the esti-
mation of the desired quantities using algorithms with 
low computational complexity that avoid reconstructing 
the manifold or estimating multivariate distributions. 

Considering the fact that on the various conditions of 
distance, direction, illumination or gestures, one object 
can form different face images; the corresponding high- 
dimensional dataset of those images can be viewed as a 
nonlinear low-dimensional embedded manifold deter-
mined by factors of illumination, location, scale, gesture, 
etc. Based on Costa’s algorithm, we take Rényi entropy 
as the characteristic vector; present a novel face recogni-
tion method—Face Recognition Based on Manifold 
Learning and Rényi Entropy. 

2. MANIFOLD LEARNING USING      
K-NEAREST NEIGHBOR GRAPHS 

Costa’s algorithm is based on minimal Euclidean graph 
methods. Let  1 , ,n nX X    be n independent iden-

tically distributed (i.i.d.) random sample points in a com-
pact subset of d , with multivariate Lebesgue density f. 
xn is also called the set of random vertices on a minimal 
Euclidean graph. First, a Euclidean k-nearest neighbors 
(k-NN) graph is constructed over all the sample points. 
Let  ,k i nN   be the set of k-nearest neighbors of xn in 

Xi. Then the total edge length functional of the Euclidean 
k-NN graph is: 
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where γ is a power weighting constant,  ,
i

d X X  is the 

Euclidean distance between X and Xi. The k-NN graph 
exhibits an asymptotic behavior of their total edge func-
tional:  
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is the extrinsic Rényi α-entropy of the multivariate 
Lebesgue density f. So the asymptotic unbiased and 
strongly consistent estimator of the α-entropy is: 
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The convergence results for k-NN graphs are extended 
from Euclidean spaces to general Riemannian manifolds. 
Let (M, g) be a compact smooth Riemann m-dimen-
sional manifold. Suppose 

1
, ,{ }

nny Y Y   are i.i.d. ran-

dom elements of M with bounded density f relative to 

the volume element 
g

 . Let L̂

 be the total edge leng- 

th of the k-NN graph. Assume 2,1m m    and let 
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where 
,m L



  is a constant independent of f and M. Ac-

cordingly, the asymptotic unbiased and strongly consis-

tent estimator of the α-entropy    ,M gH f  is: 
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Define  ˆlog
n n

l L y


 , the convergence theorem (5) 

suggests the log-linear model below: 
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and n  is an error residual that goes to zero as n   . 

Bootstrap resampling is used here to estimate mean 
graph length  [ ]M

nE L y , and linear least squares (LLS) 

is applied to jointly estimate slope â  and intercept b̂  

from sequence   log [ ], logM
n n

E L y n . After that, the 

following estimates of dimension m̂  and entropy Ĥ  
are obtained by inversion of the relations: 
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The specific steps of the algorithm are described as: 
1) Using entire database of signals  1, ,n nY Yy    

to construct K-NN graph. 
2) Estimate the dimension and α-Rényi entropy of the 

manifold that the sample sets lie in.  
a) Set parameters M, N, 

1
, ,

Q
p p , (

1 Q
p p n   );  

b) Initialize 0 , 0 , 1m H M    ; 

c) Choose P from 
1
, ,

Q
p p  in turn, 

Ⅰ. 0 ; 1;L N    
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Ⅱ. Randomly select a subset of P signals 
p

y  from 

n
y ; Compute graph total edge length 

p
L ; 

p
L L L  ; 

Ⅲ. 1;N N    if N N  , goto step Ⅳ, else goto Ⅱ; 

Ⅳ. Compute sample average graph length  

  ˆ ˆ / ;
p

E L y L N  

d) Use Eq.9 to estimate dimension m̂  and entropy 

Ĥ  from   
1

ˆ ˆ Qp

p p p
E L y


   ; 

, ˆˆ
M MH Hm m m H    ; 

e) 1M M   , if M M  , goto step (f), else goto (c). 
f) The estimate dimension ˆ /m m M ; α-Rényi en-

tropy ˆ /H H M . 
g). End. 
The parameters M and N are used to provide a trade-

off between the bias and variance performance of the 
estimators for finite n. ,m L

  is the limit of the normal-

ized length functional of the corresponding Euclidean 
entropic graph for a uniform distribution on the unit 

cube  0,1
m . It can be determined by performing Monte 

Carlo simulations of the entropic graph length on the 

unit cube  0,1
m  for uniform random samples. 

Unlike previous solutions, Costa’s algorithm can 
prove statistical consistency of the obtained estimators 
under weak assumptions of compactness of the manifold 
and boundedness of the (Lebesgue) sampling density 
supported on the manifold. This approach allows for the 
estimation of the desired quantities using algorithms 
with low computational complexity (  logO n n ) that 

avoid reconstructing the manifold or estimating multi-
variate distributions. 

3. FACE RECOGNITION ALGORITHM 
BASED ON MANIFOLD’S RÉNYI   
ENTROPY  

We applied the method to a real high-dimensional data-
set with unknown manifold structure and intrinsic di-
mension and entropy---face images. We chose “ORL 
Face Database” [19] of AT&T Laboratories Cambridge. 
There are 10 different images of each of 40 distinct peo-
ple (40 sample sets). The images were taken at different 
times, varying the lighting, facial expressions (open / 
closed eyes, smiling / not smiling) and facial details 
(glasses / no glasses).  

The original image is in PGM format, 92*112 pixels, 
with 256 grey levels per pixel. We first processed each 
image into BMP format, 64*64 pixels, normalized the 
pixel values between [0, 1]. Then we arranged each im-

age in a 4096*1 matrix using the common lexicographic 
order. 

From each of the 40 sample sets , ( 1, , 40)
i

s i   , we 

randomly chose 3,4,5,6,7,8 images as the training sam-
ples; hence there were 40*3=120, 40*4=160, 40*5=200, 
40*6=240, 40*7=280, 40*8=320 samples in the training 
set respectively. All 400 images were treated as test 
samples. Each 5,6,7,8 images of the same sample set 
(4096*5, 4069*6, 4069*7, 4069*8 matrix) were trained 
at one time to get an estimate Rényi Entropy ˆ

isH  ac-

cording to the algorithm introduced in section 2. The 
estimate entropy served as the characteristic vector of 
the recognition, each test image X was combined with 
every 3,4,5,6,7,8 sample images in one sample set 
(4096*n,n=3,4,5,6,7,8 matrix respectively ) to get an 
estimate Rényi entropy ˆ

X
H , then the classification cri-

terion is : 

 
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X would be classified to the set where its combined 
entropy is nearest to the origin entropy of the training 
set. 

4. EXPERIMENT RESULTS  

The parameters used in the experiment were set as fol-
lows: 3, 1, 1, 5 , 6k M N n     . Figure 1 shows the 

5 training images of face 1; and Figure 2 displays the 
results of running 20 simulations of the Costa’s algorithm  

 

Figure 1. The 5 training images of face 1. 
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Figure 2. The estimate manifold dimension of face 1 is 
between 5~6. 
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using the 5 training images in Figure 2. In same condi-
tions, as shown in Table 3, our Rényi Entropy method 
gives a weakly higher recognition accuracy compared 
with PCA and 2DPCA methods for ORL face database in 
Figure 3. 

Table 1 shows a part of estimate results of the training 
set from ORL face database. 

Using the Face recognition algorithm in section3, the 
results of our method are showed in Table 2. 

The results indicate that the face recognition algo-
rithm based on Manifold’s Rényi Entropy we present in 
this paper works effectively. The K–NN graph is em-
ployed so that we avoid the complex estimation of geo-
desic distances on the manifold.  

An important factor influenced the recognition effi-
ciency is the sample number of the same set we used is a 
little small (only 10), which induce the lack of informa-
tion needed for training samples. Besides, there must be 
certain inevitable information loss during the procedure 
of image pretreatment. Further work includes add boot-
strap confidence intervals for the estimators and apply 
other classification method to minimize the error. 

 
Table 1. Dimension estimate m̂  and entropy Ĥ  for some 
training face images 

 m̂  Ĥ (bits ) 
Face 1 5 20.856 
Face 4 6 19.890 
Face 7 6 21.052 
Face 14 5 20.175 
Face 17 5 18.706 
Face 39 5 17.804 

 
Table 2. The results of Face recognition algorithm based on 
Manifold’s Rényi Entropy. 

Training 
samples 

Computa-
tional com-

plexity 

 
Test samples 

 

Error 
recog-
nition 

 

Correct
Recog-
nition 
rate 

120 7 400 118 70.5% 
160 8 400 51 87.2% 
200 11 400 19 95.2％ 
240 13 400 12 97% 
280 18 400 10 97.5% 
320 21 400 7 98.2% 

 

 
Figure 3. PCA , 2DPCA, Rényi entropy. 

5. CONCLUSIONS 

We have presented a new face recognition algorithm 
based on Manifold’s Rényi Entropy. The algorithm is 
applied to ORL face database and the experiments obtain 
the satisfying results. At present we are studying the 
theoretic prove of this method, and trying to make fur-
ther utilizations in other research fields such as pattern 
recognition and artificial intelligence. 
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