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Abstract: BS (Binary Searching) is a known basic technique for keys searching in a sorted list. Fibonacci 
searching is another binary searching which splits remainder of the list by adopting no equilibrium criterion, 
or irregular partition. For MFS(Minimal Fibonacci Searching), because each shift distance is always the 
shorter F(m-2) of F(m)=F(m-1)+ F(m-2) for i=1,2,…,k, if within f(m-1), shift distance is F(m-3) based on 
F(m-1)=F(m-2)+ F(m-3), and if within F(m–2), similarly, it is F(m-2)=F(m-3)+F(m-4), so that it’s movement 
is shorter. This paper shows the irregular partition of Fibonacci and its PASCAL-likely algorithm, and also 
indicates, from the view point of searching length, Fibonacci is superior to the general binary searching, and 
also mainly in two ways that the algorithm of MFS is superior to that of BS, one just addition and subtraction 
to complete partition of sorted lists, and the other Min shift to search sorted lists. The latter is important if n 
is big enough and data is stored in file storage. 
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1  Intr oduction 

Binary searching is a standard technique known for 

linear searching in sorted lists for a given 

key[1][2][5][6],and its searching always attempt to aim 

at the  middle key in reminder of sorted lists. Since 

binary searching itself does not implicate using the same 

partition, we call the binary searching above mentioned 

as BS, while imply the generalized binary searching as 

partition searching. Fibonacci searching using Fibonacci 

numbers as another 

 

partition criterion is superior to BS in the shortest 

movement distance. A Fibonacci’s algorithm is shown in 

section 2, shift analysis for BS and MFS is shown in 

section 3 and conclusion in section 4. 

2 A Searching Algorithms of Fibonacci 
To facilitate discussion, we use symbols as follows 

before describing the algorithm: 

Fi ith Fibonacci number, also Fi= Fi-1+Fi-2(i2, F0=F1 =1) 
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(a) BS decision tree                                 (b) MFS decision tree 

Figure 1. BS and MFS decision trees of a sorted list (digits on edges are shift distance) for n=12  
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n denotes the length of sorted list（Fm=Fm-1+Fm-2=n） 

 k =key；k[i] as ith key in the list 

We define the shortest Fibonacci searching algorithm as 

MFS (Minimal Fibonacci Searching) for movement 

distance of searching. In any Fibonacci searching, the 

size of sublist pair partitioned always forms two 

successive Fibonacci numbers which are expressed as 

Fi-1 and Fi-2. In MFS, the algorithm mainly determines 

the position where length of one of partitioned sublist 

pair is the smaller Fi-2 that is current position close to 

searching. Hence, since searching shift is only Fi-2 unit 

not Fi-1 in each step, searching movement keep the 

smallest shift. the MFS algorithm described is as 

follows: 

procedure MFS(T,n,a,k) 

begin 

a:=Fk-2;p:=Fk-2;q:=Fk-3;r:=Fk-4;sw=1; 

while a0 do 

 case 

  k=k(a): return(a); 

(k<k(a) and sw=1)or(k>k(a) and sw=-1): 

  if p=1 then a:=0 

else[sw:=-sw;a:=a+swr;p:=r; 

     q:=q-r;r:=p-q]; 

(k<k(a) and sw=-1)or(k>k(a) and sw=1): 

  if q=0 then a:=0; 

     else[a:=a+swq;p:=q;q:=r; 

      r:=p-q] 

 end 

end   

where T is a list searched for key k, switch variable sw 

represents sub trees, of which is right, or is being 

searched left(see Figure 1). We suppose that searching 

position is set left in lists initially. So, sw is set initially 1 

which represents right sub tree for the beginning of a 

given list, while sw=-1 represents the left sub tree being 

searched for the former tree. Figure 1 is the binary 

decision trees from BS and MFS.  
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Figure 2. Searching sequence (a) BS (b) MFS (only initial 3 times are shown) 
（b）

 

Figure 2 shows how searching is made in BS and 

MFS(only 3 times are shown).Searching in the algorithm 

always start from the left  in a given list. In the given 

list, keys are sorted from left to right by ascension. 

Though Figure 2 represents only first three times in 

searching procedure, it clearly shows that MFS is 

superior to BS, that is, searching length (shift distance) 

keep the least. Their shift distance BS=18, MFS=15 

respectively for a given decision tree in Figure 1. 

3  Movement Analysis of BS and MFS 

In this section, we show general description of MFS 

superior to BS. Let the size of sorted lists=n(suppose 

some f(m)). 

3.1 The sam e Length Movem ent on BS in Each 
Step 

For BS, remainder lists are divided into the same two 
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parts. Initial movement is n/2 (responding to the root 

node of a tree), then two binary partition occur after first 

comparesion and also two movement so, of which 

distance is n/22. hence, total movement distance=2n/22. 

By parity of reasoning, each movement distance is n/2k 

on ith level(based on binary decision trees) and there are 

2k-1 shifts, so that total movement distance= 2k-1n/2k on 

ith level. For level i, each shift is as follows: 

 

1: 20n/2 

2: 21n/22 

3: 22n/23 

… 

i: 2i-1n/2i 

… 

the shift distance for all levels is B(k)=20n/2 

+21n/22+... +2i-1n/2i+...+2k-1n/2k=n/2+n/2 

+...+n/2=kn/2 

where k as times of binary partition, or deep of trees. 
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┅ 
Figure 3. Functions expression of a MFS partition tree (only first 3 times) 

 

3.2  Fibonacci Trees of Min Movement 

For MFS, because each shift distance is always the 

shorter F(m-2) of F(m)=F(m-1)+ F(m-2) for i=1,2,…,k, 

if within f(m-1), shift distance is F(m-3) based on 

F(m-1)=F(m-2)+ F(m-3), and if within F(m–2), similarly, 

it is F(m-2)=F(m-3)+F(m-4) (see Figure 3), so shift on 

every level is 

1: F(m-2) 

2: F(m-3)+F(m-4) 

3: F(m-4)+F(m-5)+F(m-5)+F(m–6) 

┅ 

i: F(m-i- 1)+F(m-i-2)+F(m-i-2)+ F(m-i -3)+... 

┅ 

Owing to F(m-3)+F(m-4)=F(m-2) and F(m-4)+ 

F(m-5)+F(m-5)+F(m-6)=F(m-3)+F(m-4) =F(m-2), total 

of shift distance always notates F(m-2) on any level, in 

this way, MFS =kF(m-2), or the definition 

F(k)=kF(m-2). 

3.3  F(k) B(k) 

There is a problem whether MFS less than BS for each 

shift. F(k)B(k) if F(Li) B(Li)(1Lk) for any ith shift, 

but when n is big enough, not always MFS less than BS. 

We take n=377=F(m)=F(m-1)+F(m-2) for example 

(m=13) and analyses shift distance based on the worst 

instance. 
 

 0  1  2  3  4  5  6  7  8   9   10  11  12   13  

1  1  2  3  5  8  13 21  34  55  89  144  233  377  

3.3.1 Keys i n T wo E nds (Di gits Unl ined are 
MFS(ki)>BS(ki)) 

  1). shift direction 

       BS: 188,94,47,23,11,5,2,1 

     MFS: 144,89,55,34,21,13,5,2,1 
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  2). shift direction 

       BS: the same as  

     MFS: 144,55,34,21,13,5,2,1 

3.3.2  Keys in Middle 
BS: the same as (owing to binary searching, it is the 

same as in two ends) 

MFS: because  shift direction probably occurs, there 

exists BS in recording to  analysis of shift direction. 
3.3.3  F(k) B(k) 
As mentioned above, there exists B(ki)<F(ki) sometime 

for any i, but always B(k)F(k) for total of shift distance, 

or average shift distance. The cause that B(k)F(k) is 

B(k)=kn/2, and F(k)=kF(m-2), so testify only n/2 

F(m-2). 

Owing to F(m)=F(m-1)+F(m-2)=n, n/2=(F(m-1)+ 

F(m-2))/2, and when k1, there is always 

F(m-1)F(m-2). So 

n/2=(F(m-1)+F(m-2))/2(2F(m-2))/2=F(m-2) is tenable. 

When k is big enough (or n bigger), then will be n/2 

F(m-2), that is, B(k)F(k). 

4  Conclusions 

It mainly in two ways that the algorithm of MFS is 

superior to that of BS, one just addition and subtraction 

to complete partition of sorted lists, and the other Min 

shift to search sorted lists. The latter is important if n is 

big enough and data is stored in file storage. Because 

searching is a mechanical movement, total searching 

length becomes the evaluation of time. In MFS, owing to 

avoiding massive movement (see Figure 2) and 

attempting to search the key close to the current position, 

total searching distance is less than BS, so that MFS is 

faster than BS. It is very important to access sorted lists 

stored in file storage, or database.  
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Part 3 
Digital Signal Processing 

第三部分 

数字信号处理 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




