

A New Algorithm MFS and Testifying for Binary
Searching

Fan Ce, Huang Hongtao
Faculty of Information Science and Technology, Guangdong University of Foreign Studies, GuangZhou, , China

fancemail@yahoo.com.cn

Abstract: BS (Binary Searching) is a known basic technique for keys searching in a sorted list. Fibonacci
searching is another binary searching which splits remainder of the list by adopting no equilibrium criterion,
or irregular partition. For MFS(Minimal Fibonacci Searching), because each shift distance is always the
shorter F(m-2) of F(m)=F(m-1)+ F(m-2) for i=1,2,…,k, if within f(m-1), shift distance is F(m-3) based on
F(m-1)=F(m-2)+ F(m-3), and if within F(m–2), similarly, it is F(m-2)=F(m-3)+F(m-4), so that it’s movement
is shorter. This paper shows the irregular partition of Fibonacci and its PASCAL-likely algorithm, and also
indicates, from the view point of searching length, Fibonacci is superior to the general binary searching, and
also mainly in two ways that the algorithm of MFS is superior to that of BS, one just addition and subtraction
to complete partition of sorted lists, and the other Min shift to search sorted lists. The latter is important if n
is big enough and data is stored in file storage.

Keyword: sort; binary searching length; movement; irregular partition
.

1 Intr oduction

Binary searching is a standard technique known for

linear searching in sorted lists for a given

key[1][2][5][6],and its searching always attempt to aim

at the middle key in reminder of sorted lists. Since

binary searching itself does not implicate using the same

partition, we call the binary searching above mentioned

as BS, while imply the generalized binary searching as

partition searching. Fibonacci searching using Fibonacci

numbers as another

partition criterion is superior to BS in the shortest

movement distance. A Fibonacci’s algorithm is shown in

section 2, shift analysis for BS and MFS is shown in

section 3 and conclusion in section 4.

2 A Searching Algorithms of Fibonacci
To facilitate discussion, we use symbols as follows

before describing the algorithm:

Fi ith Fibonacci number, also Fi= Fi-1+Fi-2(i2, F0=F1 =1)

1 2 3 4 5 6 7 8 9 10 11 12

6

3

1

9

4 7 11

2 5 8 10

5

12

3

2

1

4

8

7

6

10

9 11

2 33 3

2 1 2 2 1 1 1 2

1 1 1 1 1 1 1 1 1

1

12
(a) BS decision tree (b) MFS decision tree

Figure 1. BS and MFS decision trees of a sorted list (digits on edges are shift distance) for n=12

502

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

n denotes the length of sorted list（Fm=Fm-1+Fm-2=n）

 k =key；k[i] as ith key in the list

We define the shortest Fibonacci searching algorithm as

MFS (Minimal Fibonacci Searching) for movement

distance of searching. In any Fibonacci searching, the

size of sublist pair partitioned always forms two

successive Fibonacci numbers which are expressed as

Fi-1 and Fi-2. In MFS, the algorithm mainly determines

the position where length of one of partitioned sublist

pair is the smaller Fi-2 that is current position close to

searching. Hence, since searching shift is only Fi-2 unit

not Fi-1 in each step, searching movement keep the

smallest shift. the MFS algorithm described is as

follows:

procedure MFS(T,n,a,k)

begin

a:=Fk-2;p:=Fk-2;q:=Fk-3;r:=Fk-4;sw=1;

while a0 do

 case

 k=k(a): return(a);

(k<k(a) and sw=1)or(k>k(a) and sw=-1):

 if p=1 then a:=0

else[sw:=-sw;a:=a+swr;p:=r;

 q:=q-r;r:=p-q];

(k<k(a) and sw=-1)or(k>k(a) and sw=1):

 if q=0 then a:=0;

 else[a:=a+swq;p:=q;q:=r;

 r:=p-q]

 end

end

where T is a list searched for key k, switch variable sw

represents sub trees, of which is right, or is being

searched left(see Figure 1). We suppose that searching

position is set left in lists initially. So, sw is set initially 1

which represents right sub tree for the beginning of a

given list, while sw=-1 represents the left sub tree being

searched for the former tree. Figure 1 is the binary

decision trees from BS and MFS.

1 s t

3rd

2nd

 （a） 1 s t

 3rd

2nd

Figure 2. Searching sequence (a) BS (b) MFS (only initial 3 times are shown)
（b）

Figure 2 shows how searching is made in BS and

MFS(only 3 times are shown).Searching in the algorithm

always start from the left in a given list. In the given

list, keys are sorted from left to right by ascension.

Though Figure 2 represents only first three times in

searching procedure, it clearly shows that MFS is

superior to BS, that is, searching length (shift distance)

keep the least. Their shift distance BS=18, MFS=15

respectively for a given decision tree in Figure 1.

3 Movement Analysis of BS and MFS

In this section, we show general description of MFS

superior to BS. Let the size of sorted lists=n(suppose

some f(m)).

3.1 The sam e Length Movem ent on BS in Each
Step

For BS, remainder lists are divided into the same two

503

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

parts. Initial movement is n/2 (responding to the root

node of a tree), then two binary partition occur after first

comparesion and also two movement so, of which

distance is n/22. hence, total movement distance=2n/22.

By parity of reasoning, each movement distance is n/2k

on ith level(based on binary decision trees) and there are

2k-1 shifts, so that total movement distance= 2k-1n/2k on

ith level. For level i, each shift is as follows:

1: 20n/2

2: 21n/22

3: 22n/23

…

i: 2i-1n/2i

…

the shift distance for all levels is B(k)=20n/2

+21n/22+... +2i-1n/2i+...+2k-1n/2k=n/2+n/2

+...+n/2=kn/2

where k as times of binary partition, or deep of trees.

f(m-2)

f(m-4) f(m-3)

 f(m-6) f(m-5) f(m-5) f(m-4)

f(m-8) f(m-6) f(m-7) f(m-6) f(m-6)f(m-7) f(m-7) f(m-5)

┅
Figure 3. Functions expression of a MFS partition tree (only first 3 times)

3.2 Fibonacci Trees of Min Movement

For MFS, because each shift distance is always the

shorter F(m-2) of F(m)=F(m-1)+ F(m-2) for i=1,2,…,k,

if within f(m-1), shift distance is F(m-3) based on

F(m-1)=F(m-2)+ F(m-3), and if within F(m–2), similarly,

it is F(m-2)=F(m-3)+F(m-4) (see Figure 3), so shift on

every level is

1: F(m-2)

2: F(m-3)+F(m-4)

3: F(m-4)+F(m-5)+F(m-5)+F(m–6)

┅

i: F(m-i- 1)+F(m-i-2)+F(m-i-2)+ F(m-i -3)+...

┅

Owing to F(m-3)+F(m-4)=F(m-2) and F(m-4)+

F(m-5)+F(m-5)+F(m-6)=F(m-3)+F(m-4) =F(m-2), total

of shift distance always notates F(m-2) on any level, in

this way, MFS =kF(m-2), or the definition

F(k)=kF(m-2).

3.3 F(k) B(k)

There is a problem whether MFS less than BS for each

shift. F(k)B(k) if F(Li) B(Li)(1Lk) for any ith shift,

but when n is big enough, not always MFS less than BS.

We take n=377=F(m)=F(m-1)+F(m-2) for example

(m=13) and analyses shift distance based on the worst

instance.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 2 3 5 8 13 21 34 55 89 144 233 377

3.3.1 Keys i n T wo E nds (Di gits Unl ined are
MFS(ki)>BS(ki))

 1). shift direction

 BS: 188,94,47,23,11,5,2,1

 MFS: 144,89,55,34,21,13,5,2,1

504

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

 2). shift direction

 BS: the same as 

 MFS: 144,55,34,21,13,5,2,1

3.3.2 Keys in Middle
BS: the same as (owing to binary searching, it is the

same as in two ends)

MFS: because  shift direction probably occurs, there

exists BS in recording to  analysis of shift direction.
3.3.3 F(k) B(k)
As mentioned above, there exists B(ki)<F(ki) sometime

for any i, but always B(k)F(k) for total of shift distance,

or average shift distance. The cause that B(k)F(k) is

B(k)=kn/2, and F(k)=kF(m-2), so testify only n/2

F(m-2).

Owing to F(m)=F(m-1)+F(m-2)=n, n/2=(F(m-1)+

F(m-2))/2, and when k1, there is always

F(m-1)F(m-2). So

n/2=(F(m-1)+F(m-2))/2(2F(m-2))/2=F(m-2) is tenable.

When k is big enough (or n bigger), then will be n/2

F(m-2), that is, B(k)F(k).

4 Conclusions

It mainly in two ways that the algorithm of MFS is

superior to that of BS, one just addition and subtraction

to complete partition of sorted lists, and the other Min

shift to search sorted lists. The latter is important if n is

big enough and data is stored in file storage. Because

searching is a mechanical movement, total searching

length becomes the evaluation of time. In MFS, owing to

avoiding massive movement (see Figure 2) and

attempting to search the key close to the current position,

total searching distance is less than BS, so that MFS is

faster than BS. It is very important to access sorted lists

stored in file storage, or database.

Acknowledgments

This work is supported by the Natural Science
Foundation of Guangdong University of Foreign Studies
under Grant No. GW2006-TB-012

References
[1] D. E. knuth, The Art of computer Programming, Volumn

3/Sorting and Searching [M], Addison-Wesley Publishing
Company, Inc. 1973.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Uuman, The Design and
Analysis of Computer Algorithms [M], Addison-wesley, Reading
mass, 1974.

[3] E. Escortt Adrin, Binary Huffman Equivalent Code, IEEE
Transactions on Information Theory [M], 1998, 44(1), 346–351.

[4] Wang Guangfang and Cao Lanbin, Data Structure[M], Publish-
ing House of Hu Nan Science and Technology, 1983.

[5] A. V. Aho, J. E. Hopcroft, and J.D. Uuman, Data Structure and
Algorithms[M], Academic Publishing House, 1987.

[6] Cao Xinpu, The Design and Analysis of Computer Algorithms
[M], Publishing House of Hu Nan Science and Technology, 1984.

505

Proceedings of 14th Youth Conference on Communication

978-1-935068-01-3 © 2009 SciRes.

Part 3
Digital Signal Processing

第三部分

数字信号处理

