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Abstract 
Non-linear partial differential equations have been increasingly used to mod-
el the price of options in the realistic market setting when transaction costs 
arising in the hedging of portfolios are taken into account. This paper focuses 
on finding the numerical solution of the non-linear partial differential equa-
tion corresponding to a Bermudan call option price with variable transaction 
costs for an asset under the information-based framework. The finite differ-
ence method is implemented to approximate the option price and its Greeks. 
Numerical examples are presented and the option prices compared to the 
closed-form solution of the information-based model and the Black Scholes 
model with zero transaction costs. The results show that the approximated 
option prices correspond to the analytical solution of the information-based 
model but are slightly higher than the prices under Black-Scholes model. 
These findings validate the finite difference method as an efficient way of ap-
proximating the information-based non-linear partial differential equation. 
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1. Introduction 

Option pricing theory has made significant advancements since the development 
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of the Black Scholes and Merton (BSM) pricing framework in 1973 [1]. One such 
development is the Information-based model (IBM) introduced by [2] which 
models market filtration explicitly by specifying an information process that 
provides information about the value of a cash flow process. The standard in-
formation processes used include the Brownian bridge, Gamma bridge, Variance 
Gamma bridge and Lévy Random Bridge (LRB) processes. Most standard option 
pricing models begin by specifying the law of the price process which is impli-
citly chosen as the market filtration. For instance, under BSM model, the price 
process is assumed to be adapted to the Brownian filtration. On the contrary, 
information-based asset pricing constructs the market filtration explicitly allow-
ing price movements to show more structure, thereby, eliminating the restric-
tion on the distribution of the underlying price process. The IBM has gained 
traction over the past decade since it allows for more realistic assumptions such 
as stochastic volatility, stochastic interest rates and other market imperfections 
such as transaction costs [3]. In the literature, the IBM has been used to price 
credit risky bonds under stochastic interest rates [4], to model insider trading in 
an incomplete market [5], as well as price European options and binary bonds 
[6] [7] for assets with cash flow structures different from the normal distribu-
tion. 

The information-based model also provides a closed-form pricing formula for 
European-style contracts under market completeness similar to BSM. However, 
[7] suggested that the IBM could be used to price early exercise options with 
American or Bermudan-type exercise rights. In [8], we extended the IBM to in-
clude variable transaction costs and derived a partial differential equation (PDE) 
for valuing a Bermudan call option on an asset driven by the Lévy Random 
Bridge information process. This is the first attempt to incorporate transaction 
costs under the IBM and allow for the possibility of pricing an early exercise op-
tion. The transaction costs are assumed to be a non-increasing function of the 
change in the number of shares traded and the LRB-market information process. 
Specifically, transaction costs are taken to be either exponential or linear non- 
increasing functions. In the presence of transaction costs, the option cannot be 
completely hedged thus a closed-form solution is not feasible. Instead, the Ber-
mudan option price is formulated as the value function of an optimal stopping 
problem which is solved by application of stochastic optimal control. 

The Lévy Random Bridge-Information-Based-Model partial differential equa-
tion (LRB-IBM-PDE) derived is non-linear due to modified volatility which is a 
function of time, the underlying stock price, the option price, transaction cost 
rates and the information process. The non-linear volatility makes it difficult to 
solve the equation analytically, hence numerical approaches can be explored. 
Many articles have been published on the numerical approximation of non- 
linear partial differential equations arising in pricing options. The numerical 
approaches include tree methods [9] [10] [11], Monte-Carlo methods [12] [13] 
[14], spectral methods [15] [16] [17] [18], finite element discretization [19] [20] 
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and finite difference schemes [21] [22] [23] [24]. In particular, numerical ap-
proximations of the Black-Scholes type equations with non-linear volatility has 
been performed using finite difference method (FDM) because of its simplicity 
[25] [26] [27] [28]. For this work, we apply the finite difference method for 
ease of implementation and faster convergence, since it is the first attempt to 
represent the option price under the information-based model in the form of a 
non-linear PDE. 

The rest of the paper is organized as follows. In Section 2, the Bermudan call 
option price equation with variable transaction costs under the information- 
based model is introduced in detail. In Section 3, the finite difference scheme for 
the LRB-IBM-PDE is presented. In Section 4, a simulation study is performed to 
demonstrate the practicability and validity of the FDM in approximating the 
price of the Bermudan call option. The numerical approximation and results of 
the option Greeks for the Bermudan call option are then presented in Section 5. 
Finally, some concluding remarks and direction for future work are given in 
Section 6.  

2. Option Pricing under the LRB-Information Based Model 

Consider a financial market consisting of three assets: a risk free asset B which 
acts as a bank account and grows according to the risk free rate of interest r, a 
risky asset S which is a stock and an option with the value V. Consider the time 
interval [ ]0,T , T ∈  such that 0 t T≤ ≤ . The risky asset S is assumed to 
generate cash flows tX  such that the sequence { }1 2, , ,t TS X X X=   of ran-
dom variables can be modeled as measurable mappings :tS Ω→ . In addi-
tion, tX  is assumed to be integrable and has a priori continuous distribution 
ν . The uncertainty is modeled by the risk-neutral probability space ( ), ,tΩ  . 
The value of X over the time interval [ ]0,T  is completely determined by the 
information available in the market. X

t  is termed as the market filtration, 
which is the information generated by observing X over the time interval [ ]0,t  
and is cadlag. Therefore, the process tX  is adapted to the filtration X

t . Un-
der the information-based framework, the filtration { }t  is constructed expli-
citly where the market information process that provides information about TX  
is assumed to be a Lévy Random Bridge process defined by  

for 0t T ttX t Tξ λ β= + ≤ ≤                      (1) 

where t
T

=λ  is the rate of information flow to market participants, { }tβ  de-

notes a Brownian bridge process with mean zero and variance 
( )t T t

T
−

  

and TX  is the terminal cash flow. It follows that, { } { }( )0t s s t≤ ≤
= σ ξ  i.e. { }t  

is a σ-algebra generated by { }0s s t≤ ≤
ξ . Given the new market filtration tξ , the 

stock price process S is shown in [7] to evolve according to the following sto-
chastic differential equation (SDE)  

d d dtS S t W= +µ σ                         (2) 
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where 0>µ  is the mean return of the stock, W is a weiner process defined as  

( )
0

1 d
t

t t T sW tX s
T s

= − −
−∫ξ λ ξ                    (3) 

and tσ  is the diffusion parameter defined as  

( )( )expt t
Tr T t V

T t
= − −

−
λσ                      (4) 

where tV  is the conditional variance of tX  with the following dynamics  
2

2 2d d dt t t t
T TV V t K W

T t T t
 = − + − − 

λλ                 (5) 

with tK  denoting the conditional skewness of tX  
Suppose the a priori distribution of tX  is normal, then the solution to the 

SDE in Equation (2) is derived in [6] as  

( )
2

0 2 2

1 1exp
2 2 1 1

t t
t t t

T
S S rt T

t

 
 = − + +
 + + 

σ λκσ
σ ξ

λ κ λ κ
           (6) 

where tT
T t

=
−

κ . 

The no-arbitrage call option price at time t is then given by  

( ) ( )( ), |t tV S t S K += − ξ                      (7) 

for a strike price K. The exact solution of Equation (7) for a European option is 
derived in [29] and given by the following closed-form formula  

( ) ( ) ( )
21

2
0 1 2, eV S t S d K d

+
= Φ − Φ −

ψ δ
                 (8) 

where ( ).Φ  is the cumulative distribution function of the standard normal dis-
tribution and  

0

1

log S
Kd

  + 
 = +

ψ
δ

δ
                       (9) 

2 1d d= −δ                            (10) 

2
2

1 1
2 2 1

t
t

T
rt T= − +

+
σ

ψ σ
λ κ

                    (11) 

( )
( )

2

2 2 2
2 1

t t T tT
t

Tt

  −  = +  +   

λκσ
δ λ

λ κ
                (12) 

Equation (8) can only be used to price a European call option under the assump-
tions of no-arbitrage and in a frictionless market. To include transaction costs 
into the IBM and allow for the possibility of pricing early exercise options, the 
delta hedging strategy is applied so that we have the LRB-IBM-PDE for pricing 
an option similar to the BSM type equations. 

Consider a Bermudan call option with a maturity at time T. The option can be 
exercised at 1P ≥  discrete times or stages that are equally spaced. This means  
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that 1 2, 2 , , Pt t t t t P t T= ∆ = ∆ = ∆ = , with Tt
P

∆ =  and 1 2 Pt t t< < <  for  

[ ]0,pt T∈ ; 1,2, ,p P= ∈  . When 1P = , the Bermudan call corresponds to a 
European call option with only one exercise date at maturity. For 1P > , the 
valuation of the Bermudan option transforms to an optimal stopping problem 
which involves finding the optimal stopping time for exercising the option. 

Let the stopping time τ  be defined as { } pp tt= ∈τ ξ . The optimal stopping 
problem is formulated as  

( ) ( ) ( ), max e |p

p
p

r t
p tt T

V S t S K− − +

≤ ≤
 = − τ

ττ
ξ               (13) 

and the optimal stopping time by Snell Envelope theorem (see in [30]) for dis-
crete time is defined as  

( ) ( ){ }ˆ min 0; ,
pp p tt V S t S K

+
= ≥ ≤ −τ                (14) 

The optimal stopping problem in Equation (13) is transformed to a stochastic 
control problem such that the option price ( ), pV S t  satisfies the discrete Bell-
man equation:  

( ) ( ) [ ]

( ) ( )

,
, 0 0,

, ,
p

p
p p

p t

V S t
V S t t T

t

V S t S K S
+

∂
 + = ∀ ∈ ∂
 = − ∀ ∈ 


              (15) 

where ( ) ( ),
pp tV S t S K

+
= −  is called the exercise or the stopping region, 

( ),a
p

V V S t
t

∂
− =
∂

  is the continuation region and   is the partial differential  

operator of the LRB-Information based pricing model. The subscript p in pt  is 
dropped henceforth, for ease of notation. The partial differential operator is de-
rived in [8] for a call option with variable transaction costs and given as  

2
2

2

1 ˆ
2 trS rV

S S
∂ ∂

= + −
∂ ∂

 σ                     (16) 

with the LRB-IBM-PDE defined by  
2

2
2

1 ˆ 0
2 t

V V VrS rV
t SS

∂ ∂ ∂
+ + − =

∂ ∂∂
σ                   (17) 

where S evolves according to the dynamics in Equation (2) and the non-linear 
volatility ˆtσ  is defined as  

( )2 2 0
1

2 2

2 2 2

ˆ 1 exp
2

1 2
2

t t T
t

t

t T tSC
C tX

Tdt

V VC sign
S Sdt

  − = − − +     

  ∂ ∂ 
−   π ∂ ∂  

σ σ λ
σ

σ
             (18) 

for non-increasing exponential transaction costs of the form  

( ) 1 2
0, e t SC C

S tC C − − ∆Π∆Π = ξξ                     (19) 
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or  

( )
2 2

2 2
0 1 22 2

2ˆ 1t t T
t

S V Vsign C C tX SC
dt S S

  ∂ ∂
= − − +   ∂ ∂  π 

σ σ λ
σ

        (20) 

for non-increasing linear transaction costs of the form  

( ) 0 1 2,S t t SC C C C∆Π = − − ∆Πξ ξ                  (21) 

where SΠ  is the number of shares of the underlying stock, 0 0C >  denotes 
the constant cost of trading, 1 0C ≥  denotes the reduced cost per unit time as 
t T→  due to increased information about the value of the terminal cash flow 
and 2 0C ≥  denotes the reduced cost per amount of share traded.  

3. Numerical Approximation of the LRB-Information-Based 
Model 

Finding a numerical approximation to the solution of the non-linear LRB-IBM- 
PDE can be challenging. The numerical scheme must converge and be stable to 
ensure the numerical solution is close to the exact solution. The finite difference 
method is used to approximate the solution of the LRB-IBM-PDE because it is 
able to achieve high precision with less computational power as long as some 
stability and convergence conditions are met. The convex nature of the value 
function associated with the LRB-IBM-PDE ensures convergence of the scheme, 
which in turn guarantees stability. Thus, a price-time mesh (uniform grid) as 
displayed in Figure 1 is created to implement the finite difference method on the 
LRB-IBM-PDE defined in Equation (17). The horizontal axis represents the time 
while the vertical axis represents the stock price. Each node on the grid has a ho-
rizontal index i and vertical index j such that a node represents the option price 
for a given stock price and time. 

The uniform grid consists of M and N equally spaced points satisfying  

0 1 max0 MS S S S< < < < =  and 1 20 Nt t t T< < < < =  respectively, where  

maxS  represents the underlying price unlikely to be reached. The step size is de-
fined as 1j jS S S+= −δ  for the spatial domain and 1i it t t+= −δ  for the time 
domain. For each node, j Sδ  is equal to the stock price, i tδ  is equal to the 
time and the grid notation for the option price is defined as ( ),j

iV V j S i t= δ δ .  
 

 
Figure 1. Illustration of price-time mesh used for 
implementing finite difference method. 
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Applying the FDM on the derivatives of the LRB-IBM-PDE on the uniform 
grid created gives the following approximations of the derivatives: 

Forward approximation 
1i i

j jV VV
t t

+ −∂
=

∂ δ
                        (22) 

Backward approximation 
1i i

j jV VV
t t

−−∂
=

∂ δ
                        (23) 

Central approximation 
1 1

2

i i
j jV VV

t t

+ −−∂
=

∂ δ
                       (24) 

1 1

2

i i
j jV VV

S S
+ −−∂

=
∂ δ

                       (25) 

( )

2
1 1

2 2

2i i i
j j jV V VV

S S
+ −− +∂

=
∂ δ

                    (26) 

These approximations of derivatives can be used to rewrite the LRB-IBM-PDE 
using the explicit, implicit or Crank-Nicholson (CN) methods. The explicit me-
thod uses a forward approximation for time and central approximation for spa-
cial derivative (FTCS). It is least computational intensive but conditionally stable 
as long as small time steps are used [31]. The implicit method uses Backward 
Time Centered Space (BTCS) scheme and is more stable than the explicit me-
thod but computationally intensive. Lastly, the Crank-Nicholson method com-
bines both the implicit and the explicit methods making it the most stable with 
the fastest convergence rate especially for larger time steps. The FTCS is used for 
solving the LRB-IBM-PDE because of its high accuracy with less computational 
time but with careful selection of the time-step size to ensure stability of the 
scheme. 

The following three boundary conditions are imposed on the grid so that the 
call option price can be approximated.  

( ) ( )

( )

( ) ( ) ( )max max

, max ,0

0, 0

, exp

V S T S K

V t

V S t S K rt

= −

=

= − −

                (27) 

First, there exists a terminal boundary condition such that the option price must 
be equal to the payoff function. Second, for the lower boundary condition, the 
stock price is set to be equal to zero such that the option value is also zero. Third, 
the upper boundary where the option value for the maximum stock value, maxS , 
in the mesh is approximated. maxS  is chosen large enough so that the option 
value is equivalent to the discounted value of the payoff function for all times in 
the mesh. The option price is then calculated for each time step backwards from 
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t T=  until the value at time 0t =  is approximated. The three boundary con-
ditions are applicable for the case of the Bermudan call option with 1P =  cor-
responding to a European call option. 

For ( ]1,P∈  , the exercise boundary conditions as specified in the Bellman 
Equation (15) for each exercise point p is introduced together with optimal stop-
ping rule such that  

( ) ( ), max
pp tV S t S K

+
≤ −                     (28) 

For a Bermudan call option with finitely many exercise points equivalent to an 
American option, the following free boundary condition at all time points is in-
troduced  

( ) ( )( )max , , tV S t S K +−                     (29) 

The two conditions are necessary because the Bermudan or American call op-
tion can be greater than its European counterpart because of the possibility of 
early exercise. 

Applying the FTCS scheme on the derivatives of the LRB-IBM-PDE in the 
uniform grid gives the following discretization of the modified volatility  

( )

( ) ( )

2 2 0
1

1 1 1 1
2 2 2

ˆ 1 exp
2

2 21 2
2

t t T
t

i i i i i i
j j j j j jt

t T tSC C tX
Tdt

V V V V V V
C sign

dt S S

σ σ λ
σ

σ
δ δ

+ − + −

  − = − − +      

  − + − +  −     



π 

      (30) 

for the case of non-increasing exponential transaction costs and  

( )
( )

( )

1 12 2
0 12

1 1
2 2

22ˆ 1

2

i i i
j j j

t t T
t

i i i
j j j

V V VS sign C C tX
dt S

V V V
SC

S

σ σ λ
σ δ

δ

+ −

+ −

  − +
  = − −

   

−

π

+
+



       (31) 

for non-increasing linear transaction cost function. Consequently, the approxi-
mation of the option price with variable transaction costs is given as  

( )

1
1 1 1 12

2

21 ˆ 0
2 2

i i i i i i i
j j j j j j j i

t j

V V V V V V V
rj S rV

t S S

+
+ − + −− − − +

+ + − =δ σ
δ δ δ

       (32) 

This is simplified to  

( ) ( )

( )

2 2
1

12 2

2

12

ˆ ˆ11
2

ˆ1
2

i i it t
j j j

it
j

V t r V t rj V
S S

t rj V
S

σ σδ δ
δ δ

σδ
δ

+
−

+

    
    = + + + −

        
  
  + − +

    

          (33) 

changing from 1i
jV +  to i

jV  yields  
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( ) ( )

( )

2 2
1 1
12 2

2
1
12

ˆ ˆ1 1
2

ˆ1
2

i i it t
j j j

it
j

V t rj V t r V
S S

t rj V
S

σ σδ δ
δ δ

σδ
δ

− −
−

−
+

    
    = − + + +

        
  
  + − +

    

          (34) 

Equation (34) implies that approximation of the option price at T t−δ  is expli-
citly dependent on known information. Let the coefficients of 1 1

1 ,i i
j jV V− −
−  and 

1
1

i
jV −
+  be defined as ,j ja b  and jc  respectively such that  

( )

( )

( )

2

2

2

2

2

2

ˆ1
2

ˆ
1

ˆ1
2

t
j

t
j

t
j

a t rj
S

b t r
S

c t rj
S

σδ
δ

σδ
δ

σδ
δ

 
 = −
 
 
 
 = + +
 
 
 
 = − +
 
 

                    (35) 

The option price at each point in the grid is given by the linear equation  
1 1 1
1 1

i i i i
j j j j j j jV a V b V c V− − −

− += + +                    (36) 

Equation (36) can be formulated in matrix form and solved numerically. The 
matrix notation is given by  

1i iV BV −=                           (37) 
where  

1

2

1

i

i
i

i
M

V
V

V

V −

 
 
 =  
 
  



                         (38) 

1 1

2 2 2

3 3

2

1 1

0 0
0

= 0

0 0
M

M M

b c
a b c

B a b
c

a b
−

− −

 
 
 
 
 
 
  





 

   



                 (39) 

The matrix B is tridiagonal and can be solved efficiently using the Thomas algo-
rithm [32]. The option value at time 0 is interpolated for a given underlying 
share price.  

4. Simulation Results 

In this section, we present the simulation results to demonstrate the numerical 
solution of the LRB-IBM-PDE. The initial values are arbitrarily chosen and set as 
follows: 0 $10S = , 4.5%r = , T = 1, 14TX = , trading days = 252, 1 252dt =  
and assume that the apriori distribution of the process tX  is a normal distribu-
tion, say ( )~ 10,0.5tX N . The interval [ ]0,1  is divided into N = 252 equally 
spaced sub-intervals of length tδ . The trading days is chosen as the time step  
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such that 1
252

t =δ . With a current share price of 10, the strike prices can be  

constructed as 8, 9, 10, 11, and 12. The price of the underlying asset takes values 
from the unbounded interval [ )0,∞ . We use an artificial limit of max 25S =  
which is chosen to be around two to three times the exercise price. The interval 
[ ]max0, S  is also divided into M = 252 equal sub-intervals of length Sδ  such 
that 0.1S =δ . The choice of N = M is for simplicity, however, higher values 
may be used. From the literature, values of N, M ≥ 30 lead to convergence of the 
finite difference scheme. For comparison, the call prices under the exact solution 
of the IBM are also computed based on the same initial values to validate the 
numerical approximation. The comparison is also made with the commonly 
used Longstaff-Schwartz Least-Squares Monte Carlo Method for pricing Ber-
mudan options for assets evolving according to the Black-Scholes Model. All re-
sults are calculated using Matlab version R2019a.  

4.1. Simulation of Stock Price Process under LRB-IBM 

Given the starting values previously stated, we simulate the sample path for the 
information process, volatility without transaction costs, and asset price process 
under the IBM. All simulations are based on Euler discretization. Figure 2 dis-
plays the sample path of the LRB-information process, tξ . It can be observed 
that the information process increases with time as a result of the information 
flow rate parameter λ  which strictly increases with time. At time T, all market 
participants have full information about the value of the cash flow such that 

T TX=ξ . The minimal upward and downward fluctuations observed represent 
market rumors brought about by the Brownian Bridge process.  
 

 
Figure 2. Sample path for the LRB information process ξt with XT = 14. 
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Next, the simulation of stochastic volatility requires that the initial conditional 
variance 0V  in Equation (5) is carefully chosen. Simulation tests suggest that 
values between 0 and 0.1 lead to stable values of the stochastic volatility. The op-
timal initial variance chosen was 0.03. Figure 3 shows the sample path of the 
volatility of the stock price.  

The results demonstrate that stochastic volatility increases with time as a con-
sequence of the information process which is an increasing diffusion process as 
given in Equation (1). The huge spike towards the end can be linked to the in-
creased amount of information related to the value of the cash flow at time T. 
From a buyer’s perspective, more information about the price of the stock would 
lead to increased purchases which would in turn cause a sharp increase in the 
stock price. From a seller’s perspective, more information about the price of the 
stock would lead to more sales which in turn result in a sharp decrease in the 
stock price. Using the simulated values of stochastic volatility, the stock price 
process is simulated and presented in Figure 4. The price path looks like a rea-
sonable presentation of a random price process showing trend and fluctuations 
over time.  

4.2. Option Price without Transaction Costs 

The price of a Bermudan call option without transaction costs for an asset under 
the LRB-IBM-PDE as simulated in Section 4.1 is computed. In this case, the 
transaction cost rates are all zero with 0 1 2 0C C C= = =  for the pricing Equation 
(17) such that the market is complete with the stochastic volatility equivalent to 
Equation (4).  
 

 
Figure 3. Sample path for the volatility process σt. 
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Figure 4. Sample path for the stock price St under LRB-IBM. 

4.2.1. European-Style Exercise Rights 
For P = 1, the Bermudan call option has a European exercise style. Using the 
uniform grid, the price of the option is calculated through backward iteration in 
time with the boundary conditions stated in Equation (27) imposed on the grid. 
The option price is 1.1928 when it is at the money (ATM), that is when K = 10. 
Figure 5 illustrates the European call option price surface as a function of the 
initial asset price and the time to maturity with zero transaction costs under the 
LRB-IBM-PDE. The option surface indicates that the option price increases as 
the stock price increases. Similarly, the call value increases as t T→ , because as 
the maturity time approaches, there is more information about the price of the 
asset and the call price must go up to reflect the possibility of profit.  

The accuracy of the FDM for solving the LRB-IBM-PDE is checked by com-
paring the results with the exact solution of the IBM and the BSM under zero 
transaction costs and for the same initial values. Since BSM assumes constant 
volatility, the option prices are simulated for different values of volatility. For il-
lustration, we use volatility values of 20%, 30%, 40% and 50%. Table 1 summa-
rizes the call prices under the LRB-IBM-PDE, closed-form IBM and BSM for 
different strike prices.  

The call prices are observed to reduce as the strike prices increases. The simu-
lated option prices under LRB-IBM-PDE are very close to the exact solution of 
the IBM with a percentage error within 1%, hence, validating the finite differ-
ence approximation. However, the BSM prices vary for different strike prices but 
are generally slightly lower than the approximated IBM prices. This is expected 
because of the assumption of constant volatility which leads to some discrepan-
cies in the theoretical price of the BSM such as overpricing ATM options and  

https://doi.org/10.4236/jmf.2023.131006


M. Odin et al. 
 

 

DOI: 10.4236/jmf.2023.131006 101 Journal of Mathematical Finance 
 

Table 1. Prices for a Bermudan call option without transaction costs, with one exercise date, under the LRB-IBM-PDE, closed-form 
IBM and Black Scholes models. The parameters used are T = 1, S0 = 10, XT = 14, r = 4.5%. 

Strike IBM-PDE IBM-CLOSED BSM (20%) BSM (30%) BSM (40%) BSM (50%) 

8 3.0003 3.0002 2.4589 2.6462 2.8976 3.1793 

9 2.0462 2.0454 1.6699 1.9697 2.2985 2.6373 

10 1.1928 1.1919 1.0451 1.4231 1.8023 2.1793 

11 0.7264 0.7270 0.6040 1.0020 1.4004 1.7962 

12 0.4042 0.4039 0.3247 0.6904 1.0806 1.4783 

 

 
Figure 5. European call option price under LRB-IBM. 

 
under pricing ITM and OTM options. It is also observed that the option is most 
expensive when it is in the money (ITM), followed by ATM and least expensive 
when it is out of the money (OTM).  

4.2.2. Early-Exercise Premium 
The finite difference scheme is also applied in solving the price of an early exer-
cise option for the case when P > 1. The option prices are computed for different 
values of P. For illustration, we randomly select four values of P to represent a 
Bermudan call option that can be exercised semi-annually, quarterly, monthly, 
and daily such that ( )2, 4,12, 252P = , respectively. When P = 252, the option 
can be considered to be an approximation of an American style option that can 
be exercised on any day within the life of the option. The simulated call prices 
under the LRB-IBM-PDE are then compared to simulated values obtained using 
the Longstaff-Schwartz least squares method for an underlying evolving accord-
ing to the BSM. The BSM prices are calculated based on a volatility of 20%, 
which is closest to the IBM prices obtained when P = 1. This early exercise pre-
mium is calculated using the function optstockbyls() in Matlab.  
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Table 2 displays the call premiums under LRB-IBM-PDE and BSM for Ber-
mudan option with different exercise times. The call premiums increase with an 
increase in the number of possible exercise dates under both models. The early 
exercise priviledge for the Bermudan option with P > 1 makes it more expensive 
as compared to the European style option. These results are consistent with the 
literature such that the price of the Bermudan option is higher than the Euro-
pean option but lower than the American option. 

To illustrate the early exercise value (EV) and continuation values (CV) of the 
option, we consider P = 4 where that option can be exercised at four equal times 
apart. The continuation values are calculated directly from the PDE at the exer-
cise points on the grid. At each exercise date, one needs to compare the imme-
diate exercise value with the continuation value and decide to exercise as soon as 
the exercise value is greater than or equal to the continuation value as given in 
Equation (14). Table 3 displays the continuation values and exercise values for 
the Bermudan call option at each of the four possible exercise dates. 

 
Table 2. Prices for a Bermudan call option without transaction costs, expiry T = 1 with 2, 
4, 12 and 252 exercise times, under the LRB-IBM-PDE and Black Scholes models. 

Strike  P = 2 P = 4 P = 12 P = 252 

8 
IBM 3.0005 3.0011 3.0015 3.0017 

BSM 2.5180 2.5356 2.5516 2.5725 

9 
IBM 2.0463 2.0469 2.0473 2.0475 

BSM 1.6904 1.7541 1.7828 1.7962 

10 
IBM 1.1929 1.1934 1.1938 1.1940 

BSM 1.0868 1.1127 1.1757 1.1805 

11 
IBM 0.7265 0.7269 0.7273 0.7275 

BSM 0.6379 0.6636 0.6708 0.6740 

12 
IBM 0.4043 0.4047 0.4051 0.4053 

BSM 0.3583 0.3738 0.3845 0.3897 

 
Table 3. Continuation values and exercise values for Bermudan call option without 
transaction costs and with four possible exercise dates for an asset under IBM. 

Moneyness  t1 t2 t3 t4 

ITM CV 2.7637 2.5162 2.2631 2 

K = 8 EV 2.3043 2.7788 2.6616 4.6717 

ATM CV 0.9452 0.6861 0.4141 0 

K = 10 EV 0.3043 0.7788 0.6616 2.6717 

OTM CV 0.2610 0.1310 0.0303 0 

K = 12 EV 0 0 0 0.6717 
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When the option is ITM or ATM, the results indicate that the option holder 
may exercise the option early at t2 which is the smallest time when the exercise 
value is greater than the continuation value. While this is the smallest optimal 
time to exercise the Bermudan option, it may not be the best since the option is 
worth more as it approaches maturity. However, when the option is OTM, it is 
only optimal to exercise it at maturity.  

4.3. Option Price with Variable Transaction Costs 

From Section 4.2, it is observed that option prices approximated using the finite 
difference scheme under zero transaction costs compare with the closed-form 
IBM prices, demonstrating accuracy of the numerical approximation. Therefore, 
the option prices are also approximated for the pricing equation in the presence 
of variable transaction costs (TC). The transaction costs rates are such that 
{ }0 1 2, , 0C C C ≥  for the pricing Equation (17) and the modified stochastic vola-
tilities are defined in Equation (18) and Equation (20) for non-increasing expo-
nential transaction costs and non-increasing linear transaction costs respectively. 
The numerical approximation of the modified volatilities is respectively given in 
Equation (30) and Equation (31). 

The simulation experiment is done for a Bermudan option with 4 exercise 
dates and with initial values as previously stated: 1T = , 4.5%r = , 0 10S = . 
The transaction cost rates, C0, C1 and C2 are chosen arbitrarily while keeping the 
cumulative transaction costs at 10% to account for taxes, brokerage fees, bid-ask 
spreads, stamp duties, and exchange fees [33]. The call values are obtained for 
different transaction costs rates and strike prices. The constant cost of trading, 
C0 is used as the basis and is examined at 1%, 5% and 10% in order to determine 
the effect of changing transaction costs rates on call premium. 

Under the non-increasing exponential transaction cost function, different 
values of C1 and C2 are arbitrarily chosen to examine the behavior of the option 
prices. As long as 0 0C ≥ , any value of [ ]1 2, 0,1C C ∈  can be chosen to yield 
reasonable values of transactions costs. On the other hand, under the linear 
transaction cost function, the following values of C1 and C2 result in reasonable 
values for transaction costs given the constant cost of trading C0. Any values 
above the limits lead to negative transaction costs.  

For 0 1%C =  1 2, 0.06%C C ≤  

For 0 5%C =  1 2, 0.3%C C ≤  

For 0 10%C =  1 2, 0.6%C C ≤  

Table 4 and Table 5 display the Bermudan call prices with 4 exercise dates, under 
the non-increasing exponential transaction cost function and linear transaction 
cost function respectively, for different transaction costs rates and exercise prices.  

The results show that transaction costs have a negative relationship with the 
price of the Bermudan call option. The call prices reduce when the option is 
ATM and OTM as one increases the constant cost of trading from 1% to 10%.  
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Table 4. Bermudan call prices for different transactions costs rates under the non-increasing 
exponential transaction cost function for P = 4, T = 1, r = 4.5% and S0 = 10. 

Transaction Costs Rates 
Moneyness of the Option 

ITM (K = 8) ATM (K = 10) OTM (K = 12) 

C0 = C1 = C2 = 0 3.0011 1.1934 0.4047 

C0 = 1%, C1 = 5%, C2 = 0% 3.0003 1.1796 0.3887 

C0 = 1%, C1 = 0%, C2 = 5% 3.0003 1.1787 0.3869 

C0 = 1%, C1 = C2 = 0% 3.0003 1.1780 0.3863 

C0 = 1%, C1 = 5%, C2 = 3% 3.0003 1.1796 0.3887 

C0 = 1%, C1 = C2 = 5% 3.0003 1.1794 0.3889 

C0 = 1%, C1 = 3%, C2 = 5% 3.0003 1.1790 0.3878 

C0 = 5%, C1 = 5%, C2 = 3% 3.0003 1.1319 0.3205 

C0 = 5%, C1 = 5%, C2 = 5% 3.0003 1.1316 0.3201 

C0 = 5%, C1 = 3%, C2 = 5% 3.0003 1.1284 0.3145 

C0 = 10%, C1 = 5%, C2 = 3% 3.0002 1.0996 0.2288 

C0 = 10%, C1 = 5%, C2 = 5% 3.0002 1.0993 0.2286 

C0 = 10%, C1 = 3%, C2 = 5% 3.0002 1.0943 0.2148 

 
Table 5. Bermudan call prices for different transactions costs rates under the non-increasing 
linear transaction cost function for P = 4, T = 1, r = 4.5% and S0 = 10. 

Transaction Costs 
Moneyness of the Option 

ITM (K = 8) ATM (K = 10) OTM (K = 12) 

C0 = C1 = C2 = 0 3.0011 1.1934 0.4046 

C0 = 1%, C1 = C2 = 0.06% 3.0011 1.1934 0.4046 

C0 = 1%, C1 = 0.06%, C2 = 0% 3.0011 1.1934 0.4046 

C0 = 1%, C1 = 0%, C2 = 0.06% 3.0011 1.1934 0.4045 

C0 = 1%, C1 = C2 = 0% 3.0011 1.1934 0.4045 

C0 = 5%, C1 = C2 = 0.3% 3.0011 1.1932 0.4040 

C0 = 10%, C1 = C2 = 0.6% 3.0011 1.1930 0.4034 

 
From a holder’s perspective, the portfolio wealth of an investor will be eroded 
the more the cost of hedging increases. These costs are compensated through a 
decrease in the price of the call option. Thus, it is observed that as the rate of 
transaction costs increases the call option value will decrease. On the other hand, 
the value when the option is ITM is not very sensitive to changes in the transac-
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tion costs rates since the price difference is negligible. The results also show that 
the option price changes differently for different values of C1 and C2 for the ex-
ponential case. The call prices are higher for 1 2C C>  as compared to when 

2 1C C>  or 1 2C C= . This means that information flow to market traders has a 
significant role in lowering transaction costs of trading which in turn, increase 
the call prices. However, the call prices under the linear transaction cost function 
are not very sensitive to changes in transaction cost rates as they are much closer 
to the prices under zero transaction costs. For instance, the prices when the op-
tion is ITM under the linear transaction cost function are indifferent for all val-
ues of C0. 

For illustration, consider the ATM option (K = 10) with 0 1 2 5%C C C= = =  
for the exponential transaction function and 0 10%C = , 1 2 0.6%C C= =  for 
the linear transaction function. For the same initial values, 1T = , 0 10S = , 

14TX = , 4.5%r = , and 4P = , Figure 6 displays the price of the Bermudan 
call option with variable transaction costs under the Information-based model. It 
considers the effect of the two transaction cost functions on the price of a Ber-
mudan call option from the holder’s perspective. Generally, the option price in-
creases as the stock price increases which is consistent with the literature. The 
option prices are lower under the exponential transaction cost function as com-
pared to the linear case but converge as the share price increase.  

The continuation values (CV) in the presence of transaction costs also de-
crease at all exercise points as illustrated in Table 6. The smallest optimal time to 
exercise the option is still at the second exercise point where the exercise value 
(EV) is greater than the continuation value.  

 

 
Figure 6. ATM Bermudan option price with variable transaction costs under the LRB-IBM. 
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Table 6. Continuation values and exercise values for an ATM Bermudan call option with 
variable transaction costs and with four possible exercise dates for an asset under IBM. 

 t1 t2 t3 t4 

CV-Without TC 0.9452 0.6861 0.4141 0 

CV-Exponential TC 0.8798 0.6197 0.3556 0 

CV-Linear TC 0.9450 0.6859 0.4139 0 

EV 0.3043 0.7788 0.6616 2.6717 

5. Numerical Approximation of Bermudan Option Greeks 
under the LRB-Information Based Model 

The Greeks provide a means of measuring the sensitivity of the price of an op-
tion to quantifiable factors. The finite difference scheme is also applied in esti-
mating the Greeks associated with the Bermudan call price under the IBM. The 
most common Greeks used include delta, vega, gamma, theta, and rho. Delta 
measures the sensitivity of the value of the option with respect to changes in 
price of the asset S. The notation s∆  is used to differentiate the options delta 
from change in a variable. Delta for the Bermudan call option is numerically ap-
proximated as  

( ) ( ), ,s V S S t V S tV
S S

+ ∆ −∂
∆ = =

∂ ∆
                 (40) 

where S∆  represents a unit change in the underlying stock price and ( ).V  is 
the option price approximated using the FTCS for a given stock price at time 
zero. Gamma measures the rate of change of delta with respect to a unit change 
in the price of the underlying asset. It is obtained directly from delta as the stock 
price moves either up or down. The numerical gamma is approximated as fol-
lows:  

( )0.5

s s
up down

up downS S S

∆ −∆∂∆
Γ = =

∂ ∗ −
                   (41) 

where upS  and downS  denote the unit upward and downward movement in the 
stock price respectively, and s

up∆  and s
down∆  are estimated using the finite dif-

ference method in Equation (40). Vega measures the sensitivity of the option 
price relative to the expected volatility of the underlying asset. Volatility under 
the IBM is stochastic hence the initial variance is bumped by 1% to determine 
the change in the option price. The numerical approximation for vega is given by  

( ) ( )ˆ ˆ, ,
ˆ ˆ

t t
new old

t t

V S t V S tV −∂
= =
∂ ∆

σ σ

ν
σ σ

                 (42) 

where ( ) ˆ, t
newV S t σ  is the option price estimated under the bumped volatility and 

( ) ˆ, t
oldV S t σ  is the option price under the initial volatility. Theta measures the 

sensitivity of the option value relative to the option’s time to maturity. It is nega-
tive for long positions and positive for short positions. For the Bermudan option, 
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theta quantifies the risk that time poses to an option holder when the exercise 
dates are increased or reduced. It is defined as  

( ) ( )1, ,p p

p p

V S t V S tV
t t

+ −∂
= =
∂ ∆

θ                   (43) 

Rho measures the sensitivity of option value relative to changes in interest rate r. 
Its numerical approximation is obtained as  

 

 
Figure 7. Option Greeks for Bermudan call with variable transaction costs under the LRB-IBM. 
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( ) ( ), ,new oldr rV S t V S tV
r r

−∂
= =
∂ ∆

ρ                  (44) 

Simulation tests shows that the numerical approximations give reasonable re-
sults for the option sensitivities under the LRB-IBM. For illustration, the option 
Greeks are simulated for the Bermudan call option with four exercise dates un-
der non-increasing exponential transaction costs where 1 2 3 5%C C C= = = . 
Figure 7 displays the Greeks as a function of asset price and time for the Ber-
mudan call option with 4 exercise dates, strike at $10, 4.5%r =  and 1T = . 
Delta is positive as expected and increases as the stock price gets closer to the 
strike price. The values of delta oscillate around 0 if option is OTM, 0.5 for ATM 
and 1 if it is ITM. This implies that the option premium is expected to rise if the 
stock price increases over the contract period causing delta to be higher for ITM 
option. 

Consequently, the rate of change of delta measured by gamma, is also positive. 
The results show that gamma is highest when the option is ATM and as it ap-
proaches maturity. This implies greatest volatility because every single move in 
the underlying asset will change the value of delta. The value of vega is also 
highest if the option is ATM as compared to ITM and OTM because of the high 
volatility expected. In addition, the shape for theta implies that the effect of time 
decay is higher when the option is ATM because of the highest volatility poten-
tial. Lastly, rho is positive for the Bermudan call option and increases with time 
and price of the underlying. Thus, the call option is more favorable in a high in-
terest environment. Overall, the patterns displayed by the different Greeks are 
consistent with the literature on option sensitivities under standard models such 
as Black Scholes and Heston models.  

6. Conclusions and Further Research 

Finite difference schemes have been shown to be straightforward in obtaining 
the numerical approximation of partial differential equations used to model the 
price of options with non-linear volatility. In this paper, we implement the ex-
plicit finite difference scheme to obtain the numerical solution of the non-linear 
information-based model partial differential equation arising in pricing when 
variable transaction costs are taken into account. Specifically, we consider the 
numerical approximation of the price of a Bermudan call option for an asset 
driven by Lévy Random Bridge market information process within the informa-
tion-based framework where transaction costs are either exponentially or linear-
ly non-increasing. A uniform grid with small time and space steps is chosen for 
ease of implementation and to ensure the convergence and stability of the expli-
cit finite difference scheme. Simulation tests are performed to show the practi-
cability of the finite difference scheme on the LRB-IBM-PDE and the results 
compared to the exact solution of the IBM and the BSM prices. The numerical 
approximation of the Bermudan option Greeks derived from the estimated op-
tion prices is also presented. 
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The simulation results of the study can be summarized as follows. Firstly, the 
computed option prices approximated by the finite difference scheme are close 
to the closed-form solution of the information-based model with zero transac-
tion costs, thus verifying the accuracy of the numerical approximation. Secondly, 
the IBM prices are slightly higher than the Black Scholes prices. This can be at-
tributed to the assumption of constant volatility under BSM which leads to un-
der pricing of ITM and OTM options. Thirdly, the results indicate that transac-
tion costs decrease the call value and the change in transaction costs rates is sen-
sitive to the call value when the option is ATM or OTM. However, the option is 
insensitive to changes in transaction costs rates when it is ITM. In general, the 
non-increasing exponential transaction costs give lower values of the call as 
compared to the linear case. The continuation values of the Bermudan option 
are also reduced in the presence of transaction costs. Furthermore, the findings 
show that information flow to market participants has a significant role in de-
creasing transaction costs of trading. Finally, the simulated option Greeks under 
the IBM with variable transaction costs are consistent with call option sensitivity 
movements in the literature. 

For future work, other numerical methods such as spectral methods and Monte- 
Carlo methods can be explored in obtaining the numerical solution of the LRB- 
information based model equation with variable transaction costs in order to 
compare their convergence rate and accuracy power. Moreover, further research 
can be focused on applying the finite different scheme or other numerical ap-
proximation methods on the LRB-IBM-PDE to real options data, specifically in 
pricing exchange-traded American or European options which are special forms 
of the Bermudan options. 
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