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Abstract: To overcome shortcomings of Exact Matching Method (EMM) and Substitute Description 
Method (SDM), an Ontology and Concept Lattice Based Inexact Matching Method (OCLIMM) is intro-
duced. This method, firstly, describes resources information with Ontology languages to get Resource On-
tology Descriptions (RODs); then, infers Substantiality Concept Lattices and Property Concept Lattices 
from ROD; lastly, computes Formal Concept Distance between  the required resource and each of existing 
resources based on Concept Lattices, and selects resources by formal concept distances and thresholds. The 
results of experiments indicate: firstly, OCLIMM improves EMM at the aspect of matching count when in-
puts are same, and the more count of input properties is, the more degree of improvement is when their pa-
rameters are uniform, i.e., OCLIMM can utilize fully resources discovered than EMM; then, OCLIMM is 
averagely 4.55 times as large as EMM at the aspect of matching count even if the threshold is zero; at last, 
OCLIMM can adapt more smartly than SDM to the condition of lots of resources and properties being in 
pervasive computing environment. 
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1 Introduction 
Devices in Pervasive Computing Environment have some 
features such as large-scale, mobility, alterability; these 
features bring galactic frustration to manual resources con-
figuration, resources discovery and interaction with re-
sources. To users’ views devices in Pervasive Computing 
environment should disappear into the background (be “in-
visible”), the devices should automatically be configured, 
managed, discovered, and used by other devices with a 
minimum of manual effort, not intrude on users’ con-
sciousness [1]. Resource Discovery and Interaction (RDI) 
technologies are developed to remove this frustration and to 
fulfil the “disappearance”. Selecting resources from re-
sources discovered is one important goal of RDI technolo-
gies. Many of the existing RDI technologies are based on 
Exact Matching Method (EMM), such as Intentional Nam-
ing System (INS), Salutation, Jini, UPnP; EMM supports an 
attribute-based discovery as well as a simple name lookup 
to select resources [2][3]. For example, a user needs “a 
printer printing A4 paper”, and there are three resources in 
pervasive computing environment: “R1, a printer printing 
A3 paper”, “R2, a printer printing A4 paper”, “R3, a plotter 
printing A1 paper”, then, EMM will select R2 for the user; 
If there are only R1 and R3 in the environment EMM will 
select nothing for user, although R1 satisfies truly user’s 
need and R3 can satisfy the need at a certain extent. 

To overcome the shortcoming of EMM which cannot 
utilize fully resources discovered, there is an intuitionistic 
method: Substitute Description Method (SDM). SDM re-

cords “Substitute” relations, i.e., describes “a printer print-
ing A3 paper” as a substitute of “a printer printing A4 pa-
per”, then, when there are no printers required SDM can 
find a substitute to answer the need. But this method is not 
perfect, it requires that we should describe relations of sub-
stitute in advance, that’s very difficult in pervasive com-
puting environment for the environment is mobile, alter-
able. 

To overcome shortcomings of EMM and SDM, and to 
utilize fully resources discovered this paper introduces an 
Ontology and Concept Lattice Based Inexact Matching 
Method (OCLIMM); This method assumes that there are no 
semantic conflicts (i.e., Naming conflicts, domain conflicts, 
structural conflicts, Metadata conflicts [4]) in RDI, though 
these semantic conflicts are needed to solved this paper 
don’t discuss them. 

2 OCLIMM 
2.1 Outline 

This method, firstly, describes resources information (such 
as resources, resource properties, relations between re-
sources, relations between resource properties) with Ontol-
ogy languages to get Resource Ontology Descriptions 
(RODs); then, infers Substantiality Concept Lattices and 
Property Concept Lattices from RODs; lastly, computes 
Formal Concept Distance between the required resource 
and each of existing resources based on Concept Lattices, 
and selects resources by Formal Concept Distances and 
thresholds. Following description follows the above-men-
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tioned procedure. 
<owl:Class rdf:ID="Resource"/> 
<owl:Class rdf:ID="Output"> 
  <rdfs:subClassOf rdf:resource="#Resource"/> 
</owl:Class> 
… 
<owl:Class rdf:ID="Hardcopy"> 
  <rdfs:subClassOf rdf:resource="#Output"/> 
</owl:Class> 
… 
<rdfs:Class rdf:ID="Printer"> 
  <rdfs:subClassOf rdf:resource="#Hardcopy"/> 
</rdfs:Class> 
… 
<rdf:Property rdf:ID="HardcopySize"> 
  <rdfs:domain rdf:resource="#Hardcopy"/> 
</rdf:Property> 
<rdf:Property rdf:ID="HardcopySizeA1"> 

2.2 Resources Ontology 

2.2.1 Ontology and Semantic Web 
In the domain of knowledge management, ontology is re-
ferred as the shared understanding of some domains, which 
is often conceived as a set of entities, relations, axioms and 
instances. It has four significations: conceptualization, ex-
plicit, formal, share. There are several reasons for develop-
ing RODs based on ontologies: ① Knowledge Sharing. 
RODs enable computational entities in pervasive computing 
environments to have a common set of concepts about con-
dition and to avoid misconceiver; ② Logic Inference. 
Based on ontology, RDIs can deduce high-level, conceptual 
knowledge from low-level, raw resource descriptions; ③ 
Knowledge Reuse. We can build new Ontologies based on 
reusing well-defined Ontologies without starting from 
scratch. 

  <rdfs:subPropertyOf rdf:resource="#HardcopySize"/>   
</rdf:Property> 
<rdf:Property rdf:ID="HardcopySizeA3"> 
  <rdfs:subPropertyOf rdf:resource="#HardcopySizeA1"/>   
</rdf:Property> 
<rdf:Property rdf:ID="HardcopySizeA4"> 
  <rdfs:subPropertyOf rdf:resource="#HardcopySizeA3"/>   
</ f:Property> rd
… 

Figure 1. Part of RDF/RDFS/OWL description of re-
sources ontology 

The Semantic Web provides a common framework that 
allows data to be shared and reused across application, en-
terprise, and community boundaries. It is designed for use 
by applications that need to process the content of informa-
tion instead of just presenting information to humans [5]. It 
has a set of standards, among these standards, RDF is a 
datamodel for objects and relations between them, provides 
a simple semantics for this datamodel; RDF Schema is a 
vocabulary for describing properties and classes of RDF 
resources, with a semantics for generalization hierarchies of 
such properties and classes; OWL adds more vocabulary for 
describing properties and classes.  OWL is based on de-
scription logic (DL), which allows OWL to exploit DL rea-
soning. We will describe resource ontology with 
RDF/RDFS/OWL. 

2.2.2 ROD and Ontology Reasoning 
Resource Ontology is structured around a set of abstract 
entities, which are physical or conceptual objects. Each 
entity (rdfs:Class) is associated with its attributes (rdf: 
Property) and associated with other entities. The built-in 
rdfs: subClassOf and rdfs:subPropertyOf allows to hierar-
chically structure sub-class and sub-property respectively 
(Figure 1). 

The equivalence of OWL and description logic allows 
OWL to exploit DL reasoning to meet important logical 
requirements, which include concept satisfiability, class 
subsumption, class consistency, and instance checking) to 
carry out experiments. We use Jena2 Semantic Web 
Framework [6] to reason RODs and to get Substantiality 
Concept Lattices and Property Concept Lattices; Jena2 
supports rule-based inference over OWL/RDF graphs. 

2.3. Concept Lattices 

To describe this paper expediently, we firstly get following 
definitions: 

 
 
Definition 1. Formal Context 
A formal context (context) is a triple [7,8]: 

K = (G, M, I) 
G is a finite set of objects; M is a finite set of properties. I 

is a binary relation between G and M: I  G  M. 
Let X  G and Y  M. The mappings: 

(X) = {m  M | g  X: (m, g)  I} 
the common properties of X, and 

(Y) = {g  G | m  Y: (m, g)  I} 
the common objects of Y, form a Galois connection. 
Definition 2. Formal Concepts 
A formal concept (concept) is a pair of sets: a set of ob-

jects (the extent) and a set of properties (the intent) (X, Y) 
such that: 

Y = (X) and X = (Y) 
Therefore a concept is a maximal collection of objects 

sharing common properties. 
Definition 3. Concept Lattices 
In the following we denote b(K)y  or (G, M, I) the set 

of all concepts of the context K. We now define a binary 
relation  (to be read as “is a subconcept of”) on the set (K) 
of all concepts of K as follows: 

If (X0, Y0) and (X1, Y1) are concepts of K, then (X0, Y0)  
(X1, Y1) (i.e. the concept (X0, Y0) is a subconcept of the 
concept (X1, Y1) ) if and only if, X0  X1 (or Y1  Y0), and 
(X1, Y1) is then also called superconcept of the concept (X0, 
Y0). 

With the subconcept-superconcept relation “” on the set 
(K), we get ordered set ((K), ), and the ordered set is 
then called the “concept lattice” of K. 
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Definition 4. Substantiality Formal Concept Distance 
In the following, let a context S = (E, D, R), E and D are 

a finite set of substantialities respectively, E = D, R is a 
binary relation of parent class between E and D: R = {(e, d) 
| e  E, d  D and e is a parent class of d}, S is then called 
Substantiality Formal Context. For example, E = D = {Re-
source, Input, Output, Voice, Scaner, …}, R= {(Resource, 
Resource), (Resource, Input), (Resource, Output), Resource, 
Voice), (Resource, Scaner), (Input, Input), (Iinput, Voice), 
(Input, Scaner), …}. 

Printer 

Printer 

Plotter 

Plotter 

Projector

Projector

Monitor

Monitor

Hardcopy 

Hardcopy 

Voice 

Voice 

Scaner 

Scaner 

Clock 

Clock 

Agent 

Agent 

Input 

Input 

Process 

On the concept lattice ((S), ) (Figure 2 (a)), set two 
substantialities o  E and p D, the Substantiality Formal 
Concept Distance between o and p is defined by: 

FCDS (o, p) = max (|A - B|, |B – A|) / max (|A|, |B|) 
Process 

Resource 

Resource 

Display

Display

Output 

Output 

(a) Substantiality Concept Lattice 

Inkjet 

Inkjet 

Ribbon 

Ribbon 

Laser 

Laser 

Method 

Method 

Card 

Card 

A = ((o)), B= ((p)); |A|, |B|, |A - B|, |B – A| are the 
cardinalities of sets A, B, A – B, B – A respectively; max 
(x, y) returns the larger one from x and y. 

Explanation: 
(1) 0  FCDS (o, p)  1; 
(2) FCDS (o, p) = 0, o is p, the substantiality formal con-

cept distance between o and p is smallest; 
(3) FCDS (o, p) = 1, there are no relation of parent class 

between o and p, the substantiality formal concept dis-
tance between o and p is largest; 

(4) FCDS(o, p) = FCDS(p, o); 
(5) FCDS (o, p) > FCDS (m, n), the substantiality formal 

concept distance between o and p is larger than it be-
tween m and n. 

Definition 5. Property Formal Concept Distance 
In the following, let a context P = (E, D, R), E and D are 

a finite set of properties respectively, E = D, R is a binary 
relation of compatibility between E and D: R = {(e, d) | e  
E, d  D and e is compatible with d}, P is then called Prop-
erty Formal Context. For example, E = D = {Size, A1, A3, 
A4, B4}, R={(Size, Size), (Size, A1), (Size, A3), (Size, A4), 
(Size, B4), (A1, A1), (A1, A3), (A1, A4) , (A1, B4), (A3, 
A3), (A3, A4), (A3, B4), (A4, A4), (B4, B4)}. 

On the concept lattice ((P), ) (Figure 2 (b)), set two 
properties o  E and p D, the Property Formal Concept 
Distance between o and p is defined by: 


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
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


1||||/|B|

1||1
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BA     BA 

BA                 
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

 

A = ((o)), B= ((p)); |B|, |B – A|, |A  B| are the 
cardinalities of sets B, B – A, A  B respectively. 
  Explanation: 
(1) 0  FCDP (o, p)  1; 
(2) FCDP (o, p) = 0, o is p, or p is compatible with o, the 

property formal concept distance between o and p is 
smallest; 

(3) FCDP (o, p) = 1, there are no relation of compatibility 
between o and p, the property formal concept distance 
between o and p is largest; 

(4) FCDP(o, p) is not always equal to FCDP(p, o); 
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(b) Six Property Concept Lattices of Substantiality Hardcopy 
Figure 2. Concept Lattices infered from Resource Ontology 
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(5) FCDP (o, p) > FCDP (m, n), the property formal con-
cept distance between o and p is larger than it between 
m and n. 

Definition 6 . Property Tuple Formal Concept Dis-
tance 
  Assume that one property tuple is Ti = (i1, i2, i3, …, in), 
another property tuple is Tj = (j1, j2, j3, …, jn); ik  Ek, jk  
Dk; Pk= (Ek, Dk, Rk), Ek, = Dk; Property Tuple Formal Con-
cept Distance between Ti and Tj is defined by: 

2/1

1

2)),((),( 




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 



n
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Wk is the weight of property formal context Pk, 

and . 1
1




n

k
kw

Explanation: 

(1) 0  FCDP (o, p)  1; 

(2) FCDPT (Ti, Ti) = 0; 

(3) FCDPT (Ti, Tj) is not always equal to FCDPT (Tj, Ti). 
 

 

 

2.4. Arithmetic of OCLIMM 

We assume that Ont is a ROD, then, we can get a substanti-
ality concept context S and a corresponding concept lattice 
((S), ), and a group of property formal context P = (P1, P2, 
P3, …, Px) and relevant concept lattices; REQ is the de-
scription of a resource which a user required and it com-
prises substantiality REQS, Property Tuple REQPT = (i1, i2, 
i3, …, ix); The resources in Pervasive Computing environ-
ment are SOU = (S1, S2, S3, …, Sn) and SOUk comprises 
Concept SOUSk, Property Tuple SOUPTk; We assume that 
weight of substantiality formal concept distance is Weith-
tOfS and property formal concept distance is Weight Of PT 
= (W1, W2, W3, …, Wx), and threshold of holistic formal 
concept distance is T. The pseudocode of OCLIMM is 
shown in Figure 3. Asymptotic time complexity of comput-
ing holistic formal concept distance in OCLIMM is O(n). 

3. Experiments and analysis of results 
3.1 Experiments design 

Experiments settings: there are three resources in the ex-
periment computing environment: ① R1, Printer, Laser, 
Black and white (B & W), plain paper, A3, 1200dpi, 50ppm; 
② R2, Printer, Inkjet, Color, plain paper, A4, 1440dpi, 
22ppm; ③ R3, Plotter, Inkjet, Color, plain paper, A1, 
1200dpi, 0.2ppm. 

Source[] OCLIMM(Ontology Ont,Source REQ,Source[] SOU,float Weigh-

tOfS,float[] WeightOfPT,float T){ 

  float FCDS=1,FCDPT=1,FCDW=1;   

  Souce[] selected;    
Experiments procedure: firstly, we get all possible print-

ers combination according to substantiality “Hardcopy” and 
all its properties; Then, we take each of these printers com-
bination as a resource which a user requires to match re-
sources (three) in computing environment by OCLIMM and 
EMM; Last, we can select resources according to threshold. 

  Ont.Inference()->S,P;//Infering Ontology 

  for(int k=0;k<SOU.length;k++){ 

    FCDS=getFCDS(S,REQ.REQS,SOU[k].SOUS);    

FCDPT=getFCDPT(P,REQ.REQPT,SOU[k].SOUPT,WeightOfPT);    

FCDW=WeightOfP*FCDS+(1-WeightOfP)*FCDPT; 

    if(FCDW<=T){selected.add(SOU[k]); } 

  } return selected; 

Experiments parameters: We have following groups: ① P 
= 1, T = 0; ② P = 1, T = 0.4; ③ P = 0.5, T = 0; ④ P = 0.5, T 
= 0.2; ⑤ P = 0.5, T = 0.4. 

} 

float getFCDS(Context S,Substantiality o,Substantiality p){ 

  if(o==p) return 0;   

  HashSet A= S .getCommonObj(S .getCommonPer(o)); 

3.2 Analysis of results   HashSet B= S .getCommonObj(S .getCommonPer(p)); 

  int tempn=Max(getBase(Difference(A,B)),getBase(Difference(B,A))); 

The results of experiments (Table 1) indicate: ① If the in-
puts are same OCLIMM improves EMM at aspect of 
matching count, and the more count of properties of input is, 
the more degree of improvement is when their parameters 
are uniform; The reason of this result is: OCLIMM utilizes 
the relation of subconcept – superconcept described in each 
property concpet lattice, and the subconcept’s correspond-
ing property can satisfy the superconcept’s corresponding 
property affirmatively, for example (Figure 2 (b)), there are 
superconcept ({A3, A1, Size}, {A3, A4, B4}) and subcon-
cept({A1, Size}, {A1, A3, A4, B4}),and their correspond-
ing property are A3 and A1, then, the Size A1 can satisfy 
A3 predicatively; ② Even if T is zero (i.e. resources se-
lected can fulfill entirely the requirements), OCLIMM is 
averagely 4.55 times as large as EMM at the aspect of 
matching count; ③ If we adopt SDM we need to store 
many relations, the count of relations will increase multi-

  int tempd=Max(getBase(A),getBase(B));  

return tempn/tempd;   

} 

float getFCDPT(Context[] P,Property[] ,Property[] SOUPT, float[] Weigh-

tOfPT){ 

  float temp=0; 

  for(int i=0;i<P.length;i++){temp = temp + WeightOfPT[i] * Math.pow 

(getFCDP(P[i], REQPT[i], SOUPT[i]), 2); } 

  return Math.sqrt(temp); 

} 

float getFCDP(Context Pi,Property o,Property p){ 

  if(o==p) return 0; 

  HashSet A= Pi .getCommonObj(Pi .getCommonPer(o)); 

  HashSet B= Pi .getCommonObj(Pi .getCommonPer(p));  

  if(getBase(Intersection(A,B))<=1) return 1;     

  return getBase(Difference(B,A))/getBase(B); 

} 

 
Figure 3. Pseudocode of OCLIMM Arithmetic
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plicatively according to the increase of properties count, the 
reason is: “Degree of improvement about matching count 
from OCLIMM to EMM” × “matching count of EMM” = 
“count of relations needed to store”. This shows that SDM 
does not adapt to the condition of lots of resources and 
properties being in pervasive computing environment, and 
OCLIMM will do contrarily. 
 

Table 1. Experiment results of EMM and OCLIMM 

Input Para1 Resu1 P Para2 Resu2 Resu3
2 1 0 2 0.00 

Prn + 0 Per 1 
 1 0.4 3 0.50 

12 0.5 0 19 0.58 
 0.5 0.2 35 1.92 Prn + 1 Per 17 
 0.5 0.4 39 2.25 

30 0.5 0 72 1.40 
 0.5 0.2 171 4.70 Prn + 2 Per 119 
 0.5 0.4 297 8.90 

40 0.5 0 139 2.48 
 0.5 0.2 451 10.28Prn + 3 Per 439 
 0.5 0.4 965 23.13

30 0.5 0 145 3.83 
 0.5 0.2 604 19.13Prn + 4 Per 900 
 0.5 0.4 2412 79.40

12 0.5 0 78 5.50 
 0.5 0.2 442 35.83Prn + 5 Per 972 
 0.5 0.4 2612 216.67
2 0.5 0 17 7.50 
 0.5 0.2 120 59.00Prn + 6 Per 432 
 0.5 0.4 1104 551.00

Note: 
Para1: Count of input combination 
Para2: threshold T 
Resu1: Matching count of EMM 
Resu2: Matching count of OCLIMM 
Resu3: Degree of improvement about matching count from OCLIMM to 
EMM 
Prn: Printer 
Per: Properties 

4. Conclusion 

To overcome the shortcomings of EMM and SDM 

OCLIMM is presented. The method firstly, describes re-
sources information with Ontology languages to get RODs, 
then, infers Substantiality Concept Lattices and Property 
Concept Lattices from RODs; lastly, computes Formal 
Concept Distance between the required resource and each 
of existing resources based on Concept Lattices, and selects 
resources by formal concept distances and thresholds. The 
results of experiments indicate: firstly, OCLIMM improves 
EMM at the aspect of matching count when inputs are same, 
and the more count of properties of input is, the more de-
gree of improvement is when their parameters are uniform, 
i.e., OCLIMM can utilize fully resources discovered than 
EMM; then, OCLIMM is averagely 4.55 times as large as 
EMM at the aspect of matching count even if the threshold 
is zero; last, OCLIMM can adapt more smartly than SDM 
to the condition of lots of resources and properties being in 
pervasive computing environment. 
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