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Abstract 
In this paper, a Negative Binomial (NB) Integer-valued Autoregressive model 
of order 1, INAR (1), is used to model and forecast the cumulative number of 
confirmed COVID-19 infected cases in Kenya independently for the three 
waves starting from 14th March 2020 to 1st February 2021. The first wave was 
experienced from 14th March 2020 to 15th September 2020, the second wave 
from around 15th September 2020 to 1st February 2021 and the third wave was 
experienced from 1st February 2021 to 3rd June 2021. 5, 10, and 15-day-ahead 
forecasts are obtained for these three waves and the performance of the 
NB-INAR (1) model analysed. 
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1. Introduction 

Coronaviruses (CoV) are a large family of zoonotic viruses that are transmitted 
from animal to human and cause symptoms ranging from sneezing, fever, head-
aches, pneumonia and severe breathing difficulties. The new strain of coronavi-
ruses, SARS-CoV-2, better known as COVID-19 was first identified in humans 
in December 2019 in Wuhan, China. The first COVID-19 positive case in Kenya 
was confirmed on 14th March 2020. The rise in positive cases resulted in en-
forcement of stringent measures such as closure of all social amenities, banning 
of both domestic and international flights, lockdown of the Nairobi metropoli-
tan area and Mombasa and a nationwide night curfew (1900 hrs - 0500 hrs) by 
the government of Kenya. 
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Though most infected cases are either asymptomatic or could be treated at 
home with the use of over the counter medicines, a few turn out to be tragic 
leading to death. Therefore, in order to protect oneself and others from COVID- 
19 infection, the world health organization (WHO) recommended that the gen-
eral public should:  

• Regularly and thoroughly wash their hands with soap and water, or use an 
alcohol-based hand sanitizer.  

• Maintain a distance of at least 1 meter (5 feet) from each other.  
• Stay at home or keep a social distance if one has COVID-19 symptoms such 

as coughing or sneezing and avoid mixing with others in a crowd.  
• Maintain good respiratory hygiene by covering the mouth and nose while 

coughing and sneezing with a handkerchief, tissue, or into a flexed elbow.  
• Suspend all public gatherings, meetings, religious crusades games events etc.  
• Attend religious services only if they provide sanitizing or hand washing.  
• Suspend all inter-school events, but keep schools open.  
• Ensure public transport providers provide hand sanitizers for their clients 

and regular cleaning of their vehicles.  
• Temporarily suspend prison visits.  
• Restrict oneself from traveling outside the country unless when it is abso-

lutely necessary and no travel to disease epicenter countries.  
With the visible negative impacts these measures had on the Kenyan economy, 

the GoK had to reduce some of these stringent measures. For instance, on 6th Ju-
ly 2020, the lockdown on the two major cities of Mombasa and Nairobi was re-
moved. In addition to this, the curfew hours were reduced such that they would 
be in effect every day from 2300 hrs to 0400 hrs. As at the time, Kenya had a to-
tal of 7886 confirmed COVID-19 positive cases and 160 deaths respectively. The 
international ban on flights was later on lifted in August 2020 and as of 11th No-
vember 2020, having no known vaccine for the SARS-CoV-2, 1,285,013 individ-
uals had lost their lives due to COVID-19 worldwide. In Kenya, the total number 
of confirmed positive cases and deaths as of the same date was 64,588 and 1154 
respectively. It was now evident that a second wave of the infection had hit all 
the areas of the world due to the relaxation of the stringent measures. This led to 
the need for researchers to come up with predictive mathematical models.  

Mathematical modeling and prediction of positive COVID-19 cases helps 
governments to know the expected severity of the disease in advance allowing 
them to promptly respond, prepare and give guidelines towards the mitigation 
and reduction of infections. Several COVID-19 models have been proposed to 
model different COVID-19 aspects so far. For example, [1] used different 
ARIMA models to estimate the COVID-19 prevalence in Italy, Spain and France 
for the period between 21st February 2020 and 15th April 2020. His fitted models 
had a mean absolute percentage error (MAPE) values ranging from 4.75% to 
5.63%. 

[2] used 3 different models: Grey (1, 1) model, Non-linear Grey Bernoulli (1, 1) 
model and the Fractional Non-Linear Grey Bernoulli (1, 1) model to forecast the 
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cumulative number of confirmed COVID-19 cases in Italy, UK and USA. They 
trained their model using data spanning from 19th March 2020 to 22nd April 2020 
and tested their model using remaining data spanning from 23rd April 2020 to 
22nd May 2020. Their MAPE values performed for the 1 month ahead forecasts 
for the three different countries were found to be 0.9%, 2.8% and 4.9% respec-
tively. 

[3] proposed an adaptive neuro-fuzzy inference system (ANFIS) using an en-
hanced flower pollination algorithm (FPA) by using a salp swarm algorithm 
(SSA) model to get a 7-day-ahead forecast of the number of confirmed COVID-19 
cases during the first phase of the pandemic from 11th February 2020 to 18th 
February 2020. They compared the forecasting power of their model FPASSA 
with several other models: ANN, KNN, SVR, ANFIS, PSO, GA, ABC, and FPA 
and found theirs to be the best model with a MAPE of 4.8%. 

[4] used an ARIMA model to estimate and forecast the number of confirmed 
COVID-19 cases for 5 countries: India, Brazil, Russia, Spain and USA. The 
MAPE values for the different countries were calculated from the 18-day-ahead 
forecasts from 1st July 2020 to 18th July 2020 and their values were found to be 
3.7%, 1.8%, 1.1%, 0.8% and 2.9% respectively. 

[5] used different time-series and curve estimation regression models to fore-
cast the number of COVID-19 new cases in 10 African countries: South Africa, 
Egypt, Morocco, Ethiopia, Nigeria, Algeria, Ghana, Kenya, Cameroon and 
Cote-divore. His forecast period was from 14th February 2020 to 6th September 
2020. The MAPE values for the different fitted models ranged from 14.6% to 
191.19% with the best Kenyan model having an in-sample MAPE of 57.39%. 

[6] forecasted the number of confirmed COVID-19 cases in Italy, Spain, 
France, China, Australia and USA using several models: RNN, GRU, LSTM, 
BiLSTM and VAE. The MAPE values of the different models were calculated 
from the 17 day-ahead forecasts from 1st June 2020 to 17th June 2020. The best 
model out of the five was found to be the VAE. The VAE MAPE values for the 
different countries were found to be 5.9%, 2.2%, 1.9%, 0.1%, 0.2% and 2.0% re-
spectively. 

[7] used different ARIMA models to project the COVID 19 prevalence pattens 
in Ethiopia, Djibouti, Sudan and Somalia. The dataset considered for the study 
was from 13th March 2020 to 30th June 2020. The MAPE values of the different 
fitted models ranged from 3.59% to 3.92%. 

[8] used a log-polynomial model to forecast the ratio of the number of daily 
new diagnosed cases combined with an INAR (1) model to forecast the number 
of confirmed new cases of COVID-19 in Italy for the period between 19th May 
2020 to 2nd June 2020. Their results were then compared with those of the 
ARIMA model. They found that their proposed model outperformed the 
ARIMA model. The mean absolute error (MAE) values of the fitted model 
ranged from 47.56 to 53.05 for the different h-days forecasts. 

In this paper, a first-order mathematical integer-valued autoregressive INAR 
(1) model is used to predict and forecast the evolution of the total number of 
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positive confirmed COVID-19 cases in Kenya across the first three waves for the 
period between 1st May 2020 to 31st March 2021. The INAR model first proposed 
by [9]; [10] is a Markov model used to model stationary count processes with 
discrete marginal distributions. Count data expresses the number of certain 
units or events in a specified context. Its possible outcomes are contained in the 
set of non-negative integers, { }0 0,1, 2,=  . The INAR model has extensive 
practical applications in different fields of science. Daily COVID-19 Kenyan data 
freely collected from the website:  
https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data was  
used in this research. 

2. Methods 
2.1. The Model 

Let X be a discrete count random variable with a range 0  and ( )0,1α ∈  be a 
random variable such that oXα  is given by:  

1

X

i
i

oX Zα
=

= ∑                          (1) 

arises from X by binomial thinning and iZ ’s are independent and identically 
distributed (iid) binary random variables with  

( )1iPr Zα = =                         (2) 

which are independent of X. 
Definition: First-Order Integer-Valued Autoregressive INAR (1) Model  
Let ( )

0tε 
 be an iid process with a range 0  such that  

[ ] ( ) 2andt tE Varε εε µ ε σ= =                   (3) 

and ( )0,1α ∈ , then a process ( )
0tX 

 of observations that follow the recur-
sion:  

1t t tX oXα ε−= +                          (4) 

is said to be a first-order integer valued autoregressive INAR (1) process if all 
thinning operations are performed independently of each other and of ( )

0tε 
. 

Remark. It should be noted that the possible outcomes of both the daily 
number of confirmed COVID-19 cases and the cumulative number of confirmed 
COVID-19 cases contain non-negative integer values, 0 . Therefore, to use the 
INAR (1) to model the total number of confirmed positive COVID-19 cases, the 
following assumptions were made: 

tX : Total population of people at time, t, that have tested positive for 
COVID-19. 

1tX − : Total population of people at time, t − 1, that have tested positive for 
COVID-19. 

tε : Population of people at time, t, that have tested positive for COVID-19.  
The conditional mean and variance of tX  given 1tX −  are:  
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[ ]1 1|t t tE X X oX εα µ− −= +                     (5) 

( ) ( ) 2
1 1| 1t t tVar X X X εα α σ− −= − +                  (6) 

Assuming that  

[ ] ( ) 2andt tE X Var Xµ σ= =                   (7) 

then;  

[ ]tE oXα αµ=                          (8) 

( ) ( )2 2 1tVar oXα α σ α α µ= + −                   (9) 

The unconditional mean and variance of tX  are:  

[ ] [ ]1t t tE X E oX εα ε µ αµ µ−= + = = +                 (10) 

Hence  

1
εµµ
α

=
−

                           (11) 

and  

( ) [ ] ( )2 2 2 2
1 1t t tVar X Var oX εα ε σ α σ α α µ σ−= + = = + − +        (12) 

Hence  
2

2
21

e εσ αµ
σ

α
+

=
−

                        (13) 

The autocorrelation function (ACF) of a stationary INAR (1) process is given 
by:  

( ) ( ), k
t t kk corr X Xρ α−= =                   (14) 

The 1-step transitional probabilities of an INAR (1) model is given by:  

( )| 1|k l t tp Pr X k X l−= = =                   (15) 

( )
( ) ( )

min ,

0
1

k l
l jj

t
j

l
P k j

j
α α ε−

=

 
= − ⋅ = − 

 
∑               (16) 

The index of dispersion of the innovations tε  is given by:  

( )
2

2 0,I ε
ε

ε

σ
µ

= ∈ ∞                        (17) 

such that if:  

1, the variable is equidispersed
1, the variable is underdispersed
1, the variable is overdispersed

I
I
I

ε

ε

ε

=
 <
 >

 

The index of dispersion of tX  is given by:  
2

1
I

I ε ασ
µ α

+
= =

+
                       (18) 

Hence  
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( )1eI I α α= + −                       (19) 

Remark. The innovations are usually used to determine the type of INAR 
model to be fitted.  

2.1.1. Poisson INAR (1) Model 
A Poisson ( ),α λ  INAR model is fitted to the data if the innovations, tε , are 
Poisson (λ) distributed. Poisson distributed random variables are usually equi-
dispersed hence I = 1 if ( )~ Poissontε λ . Under the Poisson model, the mean 
and variance of the innovations is given by:  

2
ε εµ σ λ= =                        (20) 

2.1.2. Negative Binomial INAR (1) Model 
A negative binomial ( ), ,r pα  INAR model is fitted to the data if the innova-
tions, tε , are negative binomially NB (r, p) distributed. Negative binomially 
distributed random variables are usually overdispersed, hence I > 1. Under the 
negative binomial model, the mean and variance of the innovations are given by:  

2
2andrp rp

q qε εµ σ= =                   (21) 

where 1q p= −   

2.1.3. Geometric INAR (1) Model 
A geometric ( ), pα  INAR model is fitted to the data if the innovations, tε , are 
geometrically (p) distributed,. Geometrically distributed random variables are 
usually underdispersed, hence 1I < . Under the geometric model, the mean and 
variance of the innovations are given by:  

2
2andq q

p pε εµ σ= =                   (22) 

2.2. Model Identification  

To identify the appropriate INAR (p) model, the following procedures must be 
undertaken.  

2.2.1. ACF Structure 
The ACF structure of the data is first analysed through the use of the autocorre-
lation (ACF) and partial autocorrelation (PACF) plots. Essentially, autocorrela-
tion measures the relationship between a variable’s current value and its past 
values. The sample autocorrelations of order k are calculated using the formula  

( )
( )( )

( ) ( )
{ }

1

2 2

1 1

1

; 0,1,2,
1 1

n
t t kt k

n n k
t t kt t k

X X X X
n kk k

X X X X
n n k

ρ
−= +

−
−= = +

− −
−= =

− −
−

∑

∑ ∑
  (23) 

where  

1

1 n

t
t

X X
n =

= ∑                          (24) 
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Partial autocorrelations measures the linear dependence of one variable after 
removing the effect of other variable (s) that affect both variables. The partial 
autocorrelation (PACF) of order k is obtained as a series of regressions of the 
form:  

{ }1 1 2 2 ; 0,1, 2,t k t k t kk t k tX X X X e kφ φ φ− − −= + + + + =   

         (25) 

where kiφ  is the ith PACF value for a data with k lags and  

t tX X X= −                          (26) 

The ACF and PACF plots are usually used to determine the moving average 
(MA) and autoregression (AR) orders respectively. 

2.2.2. Test for Stationarity 
The data is then tested for stationarity. The Augmented Dickey Fuller (ADF) test 
can be used to achieve this. The test hypotheses considered while performing the 
ADF test is usually given by:  

H0: Series is not stationary (There is a unit root) i.e. 0γ = ; 
H1: Series is stationary (There is no unit root) i.e. 0γ < . 
The ADF test statistic is given by:  

( )
ˆ

ADF
ˆSE

γ
γ

=                         (27) 

The null hypotheses is rejected when the p-value < α, where α is the level of 
significance. 

2.3. Parameter Estimation  

The parameters of the chosen INAR (1) model was estimated using the method 
of moments approach. 

Method of Moments (MOM) Approach 
Let 1 2, , , TX X X  be a time series from a stationary INAR (1) process. Un-

der the MOM method, the true moments are replaced by the corresponding 
sample moments. That is:  

ˆMM Xµ =                           (28) 

( )ˆ ˆ 1MMα ρ=                          (29) 

( )
( )

ˆ 1
ˆ 0
γ
γ

=                            (30) 

( ) ( )( ) 0
1

1ˆ ;
n

t t k
t k

k X X X X k
n

γ −
= +

= − − ∈∑               (31) 

where X  is the sample mean of the data as defined by Equation (24).  
• For a Poisson ( ),α λ  INAR (1) model;  

( )
( )

ˆ ˆ 1
ˆ ˆˆ 1

MM

MM MMXε

α ρ

λ µ α

=

= = −
                    (32) 

• For a Negative Binomial ( ), ,r pα  INAR (1) model;  
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( )

( )

ˆ ˆ 1
ˆ ˆ1

1ˆ ˆ

ˆ ˆ ˆ ˆ1

MM

MM MM

MM

MM MM MM

p q

q
I

I I
ε

ε

α ρ

α α

=

= −

=

= + −

 

( )

( )

2

22

1

ˆˆ
ˆ
1ˆ

ˆ ˆ
ˆ

ˆ1
ˆˆ 1

MM
MM

MM
T

MM t
t

MM
MM

MM

MM

I

X X
T

q
r

q
X

ε

ε

σ
µ

σ

µ

µ α

=

=

= −

×
=

−

= −

∑                       (33) 

2.4. Forecasting the INAR (1) Process  

Given the INAR (1) process, one can forecast the future outcomes of the process 

t hX +  forecast for some lag 1h ≥  using the observations { }1 2, , , TX X X . For 
real valued processes, one can use the conditional mean as it can yield an optim-
al value. Therefore, by applying the law of total expectation iteratively, it follows 
that the h-step ahead conditional mean is given by:  

[ ] 1|
1

h
h

t h t t eE X X X αα µ
α+

 −
= +  − 

                 (34) 

However, the main disadvantage of using this method is that it may lead to 
non-integers. 

2.5. Model Adequacy  

Model adequacy checks whether the fitted model is really adequate for the ana-
lyzed data. That is, if the resultant time series constitutes the typical realization 
of the considered model. This can be achieved using several procedures.  

2.5.1. ACF Structure 
The ACF structures of the test sample and the out-of-sample forecasts of the da-
ta can be compared. This was achieved by plotting their ACF and PACF values. 

2.5.2. Marginal Characteristics 
A comparison of the marginal characteristics of the test sample data and the 
out-of-sample forecasts can be performed for the mean and cumulative proba-
bilities. This can be done by comparing its mean and dispersion ratios. In addi-
tion to this, the actual and forecasted probability distributions can be compared 
using the two-sample Kolmogorov-Smirnov test. 

Kolmogorov Smirnov (K-S) Goodness of Fit Test 
The Kolmogorov Smirnov (K-S) goodness of fit test is a non-parametric test 

of equality that can be used to compare a sample with a reference probability 
distribution. The K-S test was first introduced by [11]. The test is based on the 
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maximum difference between an empirical and a hypothetical cumulative dis-
tribution. The test hypotheses under this test are:  

H0: The sample is drawn from the reference distribution; 
H1: The sample is not drawn from the reference distribution. 
Assuming that the empirical distribution function ( )nF x  for n indepen-

dently and identically distributed ordered observations iX  defined as  

( ) ( )
1

1 n

n i
i

F x I X
n =

= ∑                       (35) 

where  

( ) 1 if
0 elsewhere

i
i

X x
I X

≤
= 


                    (36) 

Then, the K-S test statistic for a given cumulative distribution function F (x) is 
given by: 

( ) ( )sup n
x

D F x F x= −                     (37) 

where supx is the supremum of the set of distances. 

The null hypothesis is rejected if the p-value < α or if ( ) 2D c
n

α>  where  

( ) 1ln
2 2

c αα  = − × 
 

                    (38) 

where n is the sample size.  

2.5.3. Normality Assumption 
According to the central limit theorem, if the data is large enough, then all di-
tributions tend towards the normal distribution. For a large dataset, the standar-
dized Pearson residuals of the fitted model against the test sample given by  

t
t

e

e e
R

s
−

=                          (39) 

can be analyzed to confirm that they are normally distributed with mean 0 and 
variance 1, where: 

e  is the sample mean residuals;  

es  is the sample residual standard deviation. 
To test for normality, the Shapiro Wilk (S-W) test is used. The S-W test hy-

potheses considered are usually:  
H0: Data is normally distributed.  
H1: Data is not normally distributed.  
The S-W test statistics is given by:  

( )( )
( )

2

1

2

1

n
i i

n
i

i

i

a X
W

X X

=

=

=
−

∑
∑

                     (40) 

where: 

( )iX : ith order statistic. 
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X : Sample mean. 

( )
T 1

1 2, , , n
m Va a a a

C

−

= =  

V: Covariance matrix. 

( )
1

T 1 1 2C m V V m− −=  

( )T
1 2, ,m m m=   

is the expected values of the order statistics. 
The null hypotheses is rejected when the p-value < α, where α is the level of 

significance. 

3. Main Results  

The cumulative total confirmed positive COVID-19 cases have been on the rise 
since the first COVID-19 case was identified on 14th March 2020. By 31st March 
2021, a total of 133,895 people had tested positive for COVID-19 in Kenya. Fig-
ure 1 below shows this evolution. 

The steady increase in the total number of positive COVID-19 cases can be 
attributed to the increase in the number of cases confirmed daily. Such increases 
or decreases in the daily number of cases are directly attributable to the lax of 
stringent measures given by the ministry of health to the people of Kenya. Fig-
ure 2 below is a plot of the number of confirmed positive COVID-19 cases each 
day from 14th March 2020 to 31st March 2021. 

From Figure 2, it can be seen that the first COVID-19 wave started from 
March 2020 and ended in mid-September 2020 where the curve was flattened. 
The second wave started in September 2020 to the first week of January 2021 
where the curve was flattened for the second time. The third wave started from 
January 2021 to date (31st March 2021) where the curve seems to be at its peak. 
The Kenyan COVID-19 dataset was therefore analyzed independently over the 
three waves from 1st May 2020 through to 31st March 2021. Throughout this pa-
per, a 5% significance level is assumed. 

 

 
Figure 1. Total cumulative confirmed positive 
COVID-19 cases in kenya. 
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Figure 2. Daily confirmed positive COVID-19 cases in kenya. 

3.1. Model Identification 

The Kenyan data used to train the model was sub-divided and used to model the 
cumulative COVID-19 positive cases for the three waves experienced so far. Da-
tasets for the period between 1st May 2020 to 11th September 2020, 22nd Septem-
ber 2020 to 23rd December 2020 and 3rd January 2021 to 1st March 2021 were 
used to train the first, second and third COVID-19 waves in Kenya. The appro-
priate INAR (p) model was considered for this study. 

Autocovariance Structures The ACF and PACF plots for the three waves 
were plotted to help us identify the respective AR and MA orders. Figure 3 be-
low shows these plots. 

From Figures 3(a)-(c) respectively, it can be seen that the ACF plots for the 
three waves decrease exponentially. However, there is one significant lag for the 
PACF plots. The cumulative COVID-19 positive confirmed cases data is an in-
teger valued time-series dataset and hence with the help of Figure 3, we con-
cluded that an INAR (1) model is appropriate to model the Kenyan scenario. 

3.2. Descriptive Statistics 

The descriptive Statistics of the train Kenyan data was as summarized in Table 1 
below.  

From the descriptive statistics given in Table 1, it can be seen that for all the 
three waves, the mean of the data is less than its variance. This meant that the 
cumulative COVID-19 positive confirmed cases in Kenya are over-dispersed. 
Hence, the choice of the negative binomial INAR (1) model was used to model 
the Kenyan COVID-19 data in this paper. 

3.3. Testing for Stationarity 

The ADF test described in Section 0.0.3 was used to test for the stationarity of 
the data. The tests were done for the three wave periods and the results summa-
rized in Table 2 below.  

According to the ADF test, the null hypothesis of non-stationarity is rejected 
whenever the p-value is less than 0.05. Hence, from the results given in Table 2, 
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the cumulative COVID-19 confirmed positive cases data for all the three waves 
in Kenya are second-order stationary. Therefore, the data had to be differenced 
twice before it was used for modeling. 

3.4. Estimated Model Parameters  

The negative binomial INAR (1) model was trained using the cumulative 
COVID-19 confirmed positive cases data for the three waves. The estimated 
model parameters for the three waves were independently calculated using the 
method of moment estimators given in Equation (33) and the results were as 
summarized in Table 3 below. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. ACF Structures for the Kenyan Cumulative COVID-19 Train Data. (a) ACF 
and PACF Wave 1 plots for the period between 1/5/2020 and 11/9/2020; (b) ACF and 
PACF Wave 2 plots for the period between 22/9/2020 and 23/12/2020; (c) ACF and PACF 
Wave 3 plots for the period between 3/1/2021 and 1/3/2021. 

 
Table 1. Descriptive statistics of the cumulative COVID-19 train data. 

Wave Period Mean Standard Deviation 

1 5/1/2020-11/9/2020 13,346 12,587 

2 22/9/2021-23/12/2020 63,049 20,422 

3 3/1/2021-1/3/2021 100,958 2518 
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Table 2. ADF test results of the cumulative COVID-19 train data. 

Period Order of Stationarity ADF Statistic P-value 

1/5/2020-11/9/2020 

I (0) −3.0204 0.1497 

I (1) −0.23895 0.9900 

I (2) −9.0810 0.0100 

22/9/2020-23/12/2020 

I (0) −2.0763 0.5448 

I (1) −1.5101 0.7782 

I (2) −10.2450 0.0100 

3/1/2021-1/3/2021 

I (0) −3.0204 0.1497 

I (1) −0.2390 0.9900 

I (2) −9.0810 0.0100 

 
Table 3. Estimated negative binomial INAR (1) parameters. 

Wave Training Period M̂Mr  ˆMMp  ˆMMα  

1 1/5/2020 to 11/9/2020 2 0.9964 0.9839 

2 22/9/2020 to 23/12/2020 2 0.9964 0.9772 

3 3/1/2021 to 1/3/2021 5 0.9700 0.9370 

3.5. Model Forecasts and Accuracy Analysis 

The fitted models from the three waves were tested where 5, 10, 15 and 30-day- 
ahead forecasts were done and compared with their counterpart test datasets. In 
this section, an independent wave by wave analysis was done to ascertain the 
accuracy of the model for a specific wave period. 

Wave 1: Forecasts 
5, 10, 15 and 30-days ahead forecasts from 12th September 2020 were done on 

the model. The n-day-ahead forecasts for the specific periods of study were then 
compared with their corresponding test sample counterparts. The mean of the 
actual and its corresponding n-ahead forecasted values were calculated and 
summarized in Table 4 below. 

Figure 4 below shows the plots of the Actual and Forecasted values. 
The mean absolute percentage errors (MAPEs) for the different n-day fore-

casts for the first wave for the 5 - 30 days ahead forecasts ranged from 0.23% to 
1.78% and were as summarized in Table 5 below.  

The ACF structures of the different n-ahead forecasted values were compared 
with the actual sample test values. Their respective ACF and PACF plots were as 
shown in Figure 5. 

The different ACF and PACF plots under Figure 5 show that when the ACF 
structures of the actual sample test data and the forecasted data are compared for 
the different forecasts, they look very similar. However, there is need to ascertain 
whether the distribution functions of the different n-ahead forecasts when com-
pared to their respective test sample counterparts are in deed statistically similar. 
To achieve this, the Kolmogorov-Smirnov (K-S) test was performed on the ac-
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tual and forecasted datasets for the same forecast periods. The K-S test results 
were as summarized in Table 6 below. 

From the K-S test results given in Table 6, it is clear that the 5, 10 and 15 days 
ahead forecasts have the same distribution function as the test sample data. 
However, the 30 day-ahead forecasts seem to be different from the actual test 
values. Hence, for the first wave, the negative-binomial INAR (1) model can 
adequately be used to calculate the 5, 10 and 15 day cumulative COVID-19 fore-
casts. However, it is not recommended to use this model for long-term modeling 
of the cumulative number of positive COVID-19 cases in Kenya in the first 
wave. 

Wave 2: Forecasts 
5, 10, 15 and 30-days ahead forecasts from 24th December 2020 were done on 

the model. The n-day-ahead forecasts for the specific periods of study were then 
compared with their corresponding test sample counterparts. The mean of the 
actual and its corresponding n-ahead forecasted values were calculated and 
summarized in Table 7 below. 

 
Table 4. Wave 1 mean comparison between actual and forecasted. 

    95% C.I. 

Forecast Period n-days ahead Actual Forecast L.C.I U.C.I 

12/9/2020-16/9/2020 5 36,056 35,991 33,860 38,122 

12/9/2020-21/9/2020 10 36,369 36,296 34,165 38,427 

12/9/2020-26/9/2020 15 36,702 36,576 34,445 38,707 

12/9/2020-11/10/2020 30 37,958 37,266 35,135 39,397 

 
Table 5. Wave 1 MAPE values for the different n-ahead forecasts. 

n-days ahead MAPE (%) 

5 0.2274 

10 0.2612 

15 0.3809 

30 1.7759 

 
Table 6. Wave 1 kolmogorov smirnov test results. 

n-days ahead K-S Statistic P-value 

5 0.4000 0.8186 

10 0.2000 0.9883 

15 0.2000 0.9251 

30 0.3667 0.0354 
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(a)                                (b) 

 
(c)                                (d) 

Figure 4. Wave 1 (5, 10, 15 and 30) day-ahead forecasts from 12th September 2020. 
(a) 5 days ahead forecast from 12/9/2020 to 16/9/2020; (b) 10 days ahead forecast 
from 12/9/2020 to 21/9/2020; (c) 15 days ahead forecast from 12/9/2020 to 26/9/2020; 
(d) 30 days ahead forecast from 12/9/2020 to 11/10/2020. 

 

 
(a)                                                (b) 
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(c)                                                   (d) 

Figure 5. Wave 1 n-day-ahead Test Data ACF Structure Comparison Plots. (a) 5 days ahead ACF and PACF forecast data; (b) 10 
days ahead ACF and PACF forecast data; (c) 15 days ahead ACF and PACF forecast data; (d) 30 days ahead ACF and PACF 
forecast data. 
 

Table 7. Wave 2 mean comparison between actual and forecasted. 

    95% C.I. 

Forecast Period n-days ahead Actual Forecast L.C.I U.C.I 

24/12/2020-28/12/2020 5 95,617 96,001 91,850 100,152 

24/12/2020-2/1/2021 10 95,941 96,629 92,478 100,780 

24/12/2020-7/1/2021 15 96,304 97,023 92,872 101,174 

24/12/2020-22/1/2021 30 97,501 96,805 92,654 100,956 

 
Figure 6 shows the plots of the Actual and Forecasted values. 
The mean absolute percentage errors (MAPEs) for the different n-day fore-

casts for the second wave for the 5 - 30 days ahead forecasts ranged from 0.40% 
to 1.44% and was as summarized in Table 8 below.  

The ACF structures of the different n-ahead forecasted values were compared 
with the actual sample test values. Their respective ACF and PACF plots were as 
shown in Figure 7. 

The different ACF and PACF plots under Figure 7 show that when the ACF 
structures of the actual sample test data and the forecasted data are compared for 
the different forecasts, they look very similar. However, there is need to ascertain 
whether the distribution functions of the different n-ahead forecasts when com-
pared to their respective test sample counterparts are in deed statistically similar. 
To achieve this, the Kolmogorov-Smirnov (K-S) test was performed on the ac-
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tual and forecasted datasets for the same forecast periods. The K-S test results 
were as summarized in Table 9 below.  

 
Table 8. Wave 2 MAPE values for the different n-ahead forecasts. 

n-days ahead MAPE (%) 

5 0.4007 

10 0.7150 

15 0.7451 

30 1.4400 
 

Table 9. Wave 2 kolmogorov smirnov test results. 

n-days ahead K-S Statistic P-value 

5 0.6000 0.3571 

10 0.6000 0.0525 

15 0.4667 0.0755 

30 0.4667 0.0025 
 

 
(a)                                (b) 

 
(c)                                (d) 

Figure 6. Wave 1 (5, 10, 15 and 30) day-ahead forecasts from 24th December 2020. 
(a) 5 days ahead forecast from 24/12/2020 to 28/12/2020; (b) 10 days ahead forecast 
from 24/12/2020 to 2/1/2021; (c) 15 days ahead forecast from 24/12/2020 to 7/1/2021; 
(d) 30 days ahead forecast from 24/12/2020 to 22/1/2021. 
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(a)                                                   (b) 

 
(c)                                                   (d) 

Figure 7. Wave 2 n-day-ahead Test Data ACF Structure Comparison Plots. (a) 5 days ahead ACF and PACF forecast data; (b) 10 
days ahead ACF and PACF forecast data; (c) 15 days ahead ACF and PACF forecast data; (d) 30 days ahead ACF and PACF 
forecast data. 

 
From the K-S test results given in Table 9, it is clear that the 5, 10 and 15 days 

ahead forecasts have the same distribution function as the test sample data. 
However, the 30 day-ahead forecasts seem to be different from the actual test 
values. Hence, for the second wave, the negative-binomial INAR (1) model can 
adequately be used to calculate the 5, 10 and 15 day cumulative COVID-19 fore-
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casts. However, it is not recommended to use this model for long-term modeling 
of the cumulative number of positive COVID-19 cases in Kenya in the second 
wave. 

Wave 3: Forecasts 
5, 10, 15 and 30-days ahead forecasts from 2nd March 2021 were done on the 

model. The n-day-ahead forecasts for the specific periods of study were then 
compared with their corresponding test sample counterparts. The mean of the 
actual and its corresponding n-ahead forecasted values were calculated and 
summarized in Table 10 below.  

Figure 8 below shows the plots of the Actual and Forecasted values.  
The mean absolute percentage errors (MAPEs) for the different n-day fore-

casts for the first wave for the 5 - 30 days ahead forecasts ranged from 0.56% to 
6.01% and were as summarized in Table 11 below. 

The ACF structures of the different n-ahead forecasted values were compared 
with the actual sample test values. Their respective ACF and PACF plots were as 
shown in Figure 9. 

The different ACF and PACF plots under Figure 9 show that when the ACF 
structures of the actual sample test data and the forecasted data are compared for 
the different forecasts, they look very similar. However, there is need to ascertain 
whether the distribution functions of the different n-ahead forecasts when com-
pared to their respective test sample counterparts are in deed statistically similar. 
To achieve this, the Kolmogorov-Smirnov (K-S) test was performed on the ac-
tual and forecasted datasets for the same forecast periods. The K-S test results 
were as summarized in Table 12 below.  

From the K-S test results given in Table 12, it is clear that the 5, 10 and 15 
days ahead forecasts have the same distribution function as the test sample data. 
However, the 30 day-ahead forecasts seem to be different from the actual test 
values. Hence, for the third wave, the negative-binomial INAR (1) model can 
adequately be used to calculate the 5, 10 and 15 day cumulative COVID-19 fore-
casts. However, it is not recommended to use this model for long-term modeling 
of the cumulative number of positive COVID-19 cases in Kenya in the third 
wave. 

 
Table 10. Wave 3 mean comparison between actual and forecasted. 

    95% C.I. 

Forecast  
Period 

n-days ahead Actual Forecast L.C.I U.C.I 

2/3/2021-6/3/2021 5 107,175 106,572 105,824 107,220 

2/3/2021-11/3/2021 10 108,424 107,125 106,477 107,773 

2/3/2021-16/3/2021 15 110,026 107,744 107,096 108,392 

2/3/2021-31/3/2021 30 117,446 110,001 109,353 110,649 
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Table 11. Wave 3 MAPE values for the different n-ahead forecasts. 

n-days ahead MAPE (%) 

5 0.5606 

10 1.1881 

15 2.0414 

30 6.0088 

 
Table 12. Wave 3 kolmogorov smirnov test results. 

n-days ahead K-S Statistic P-value 

5 0.6000 0.3571 

10 0.6000 0.0525 

15 0.4667 0.0755 

30 0.5000 0.0009 

 

 
(a)                                (b) 

 
(c)                                (d) 

Figure 8. Wave 3 (5, 10, 15 and 30) day-ahead forecasts from 4th March 2021. (a) 5 
days ahead forecast from 2/3/2021 to 6/3/2021; (b) 10 days ahead forecast from 
2/3/2021 to 11/3/2021; (c) 15 days ahead forecast from 2/1/2021 to 16/3/2021; (d) 30 
days ahead forecast from 2/1/2021 to 31/1/2021. 
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(a)                                                  (b) 

 
(c)                                                  (d) 

Figure 9. Wave 3 n-day-ahead Test Data ACF Structure Comparison Plots. (a) 5 days ahead ACF and PACF forecast data; (b) 10 
days ahead ACF and PACF forecast data; (c) 15 days ahead ACF and PACF forecast data; (d) 30 days ahead ACF and PACF 
forecast data.  

4. Conclusions 

In this paper, our main interest was in modeling the cumulative number of posi-
tive COVID-19 cases in Kenya using an appropriate INAR (1) model. In our 
analysis, the data was sub-divided to cater for the three COVID-19 waves Kenya 
has suffered so far. The cumulative positive COVID-19 cases data used was 

https://doi.org/10.4236/ojmsi.2023.111002


C. Wamwea et al. 
 

 

DOI: 10.4236/ojmsi.2023.111002 35 Open Journal of Modelling and Simulation 
 

found to be over-dispersed and hence the negative-binomial INAR (1) model 
was considered to be a more appropriate consideration for modeling the integ-
er-valued dataset. In addition to this, the cumulative COVID-19 data considered 
to train the model was found to be second order stationary. 

5, 10, 15 and 30 day-ahead out of sample forecasts were performed on the data 
for the three waves independently. To ascertain the model accuracy of the fore-
casted values, different parameters were considered. First and foremost, the ACF 
structures for the out of sample forecasts were analyzed and compared with 
those of the test dataset. The ACF and PACF plots of the n-days ahead fore-
casted values were found to be identical to their counterpart test values for all 
three waves. Hence, the INAR (1) model seemed to be appropriate to model the 
different COVID-19 waves regardless of the number of days ahead considered. 

To be certain of the similarity between the forecasted values and the test val-
ues, the distribution functions of the different n-ahead forecasts were compared 
to those of the test dataset. This was achieved using the two-sample Kolmogorov 
Smirnov test. The results of this test showed that the 5, 10, and 15 day-ahead 
COVID-19 forecasts for the three different waves were statistically similar to 
each other at 5% level of significance. However, the 30 day ahead forecasts were 
found to be statistically different from each other. It was therefore concluded 
that the negative binomial INAR (1) model is appropriate for short-term 
COVID-19 forecasting. 
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