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Abstract 
When : E F→  is a linear differential operator of order q between the 
sections of vector bundles over a manifold X of dimension n, it is defined by a 
bundle map ( ) 0: qJ E F FΦ → =  that may depend, explicitly or implicitly, 
on constant parameters , , ,a b c  . A “direct problem” is to find the generat-
ing compatibility conditions (CC) in the form of an operator 1 0 1: F F→ . 
When   is involutive, that is when the corresponding system ( )qR ker= Φ  is 
involutive, this procedure provides successive first order involutive operators 

1, , n  . Though 1 0=   implies ( ) ( )1 0ad ad =   by taking the 

respective adjoint operators, then ( )ad   may not generate the CC of 

( )1ad   and measuring such “gaps” led to introduce extension modules in 
differential homological algebra. They may also depend on the parameters 
and such a situation is well known in ordinary or partial control theory. 
When qR  is not involutive, a standard prolongation/projection (PP) proce-

dure allows in general to find integers ,r s  such that the image ( )s
q rR +  of the 

projection at order q r+  of the prolongation  

( ) ( ) ( ) ( )( )r s q r s q q r s r s qR J R J E J J Eρ + + + + += ∩ ⊂  is involutive but it may 

highly depend on the parameters. However, sometimes the resulting system 
no longer depends on the parameters and the extension modules do not de-
pend on the parameters because it is known that they do not depend on the 
differential sequence used for their definition. The purpose of this paper is to 
study the above problems for the Kerr ( ),m a , Schwarzschild ( ),0m  and 

Minkowski ( )0,0  parameters while computing the dimensions of the inclu-

sions ( ) ( ) ( ) ( )( )3 2 1
1 1 1 1 1R R R R J T X⊂ ⊂ = ⊂  for the respective Killing opera-

tors. Other striking motivating examples are also presented. 
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1. Introduction 

With standard notations of differential geometry, let ( ), ,E F   be vector bun-
dles over a manifold X with dimension n with sections ( ), ,ξ η  , tangent bundle 
T and cotangent bundle *T . We shall denote by ( )qJ E  the q-jet bundle of E 
with sections qξ  transforming like the q-derivatives ( )qj ξ . If ( ): qJ E FΦ →  
is a bundle morphism, we shall consider the system ( ) ( )q qR ker J E= Φ ⊂  of 
order q on E. The r-prolongation ( ) ( ) ( ) ( )( )r q r q q r r qR J R J E J J Eρ += ∩ ⊂  
obtained by differentiating formally r times the given ordinary (OD) or partial 
(PD) defining equations of qR  will be the kernel of the composite morphism 

( ) ( ) ( )( ) ( ):r q r r q rJ E J J E J Fρ +Φ → → . The symbol  
( )*

q r q r q r q rg R S T E J E+ + + += ∩ ⊗ ⊂  of q rR +  is the r-prolongation of the sym-
bol qg  of qR  and the kernel of the composite morphism  

( ) * *:r q r rS T E S T Fσ +Φ ⊗ → ⊗  obtained by restriction. The Spencer operator 

( )*
1 1 1 1: :q q q q qd R T R jξ ξ ξ+ + +→ ⊗ → −  is obtained by using the fact that  

( ) ( )1 1 1q q qR J R J E+ += ∩  and that ( )1 qJ R  is an affine vector bundle over qR  
modelled on *

qT R⊗ . We shall always suppose that Φ  is an epimorphism and 
introduce the vector bundle ( )0 q qF J E R= . The system qR  is aid to be for-
mally integrable (FI) if 1r +  prolongations do not bring new equations of or-
der q r+  other than the ones obtained after only r prolongations, for any 

0r ≥ , that is all the equations of order q r+  can be obtained by differentiating 
r times only the given equations of order q for any 0r ≥ . The system is said to be 
“involutive” if it is FI and the symbol qg  is involutive, a purely algebraic property. 

The next problem is to define the CC operator 1 0 1: :F F η ζ→ →  in such 
a way that the CC of ξ η=  is of the form 1 0η = . As shown in many books 
([1]-[7]) and papers ([8] [9] [10] [11]), such a problem may be quite difficult 
because the order of the generating CC may be quite high. Proceeding in this 
way, we may construct the CC 2 1 2: F F→  of 1  and so on. When the sys-
tem qR  or the operator   are involutive, the successive CC operators can 
only be at most 1, , n   which are first order and involutive operators. 

A second problem shown on the motivating examples is that “jumps” in the 
successive orders may appear, even on elementary examples. Now, if the map 
Φ  depends on constant (or variable) parameters ( ), , ,a b c  , then the study of 
the two previous problems becomes much harder because the ranks of the ma-
trices ( )rρ Φ  and/or ( )rσ Φ  may also highly depend on the parameters as we 
shall see. The case of the Killing operator for the Minkowski metric is well 
known but the study of the Killing operator for the Schwarzschild and Kerr me-
trics is rather recent and striking as it proves that both the numbers of generat-
ing second order CC and the numbers of generating third order CC may change 
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[12] [13] [14] [15]. We provide a few reasons for which we totally disagree with 
these publications, in particular with ([13]), as we already explained in the In-
troduction of ([11]). 

1) Our first doubts came after a look at the core of ([12]) containing 10 pages 
(plus 2 pages in Appendix A) of awfully technical computational notations that 
we have never seen after more than 40 years dealing with systems of PDE. 
Looking at the details it is clear that the authors always try to bring any differen-
tial complex back to the de Rham (or Poincaré in France) complex for the exte-
rior derivative in order to avoid dealing with the Spencer δ-cohomology. 

2) Our second doubts came from the systematic reference to certain specific 
purely physical tools such as Teukolsky scalars, Cartan/Penrose/Weyl complex 
spinors, Newman-Penrose formalism or Killing Yano tensors, despite the claim 
that the search for CC has nothing to do with GR and is a purely mathematical 
problem of formal integrability that we explained to the authors when lecturing 
at the AEI (Albert Einstein Institute, Potsdam) in 2017. 

3) Our third doubts came from an elementary example (See [11], end of In-
troduction) that we shall revisit in the following motivating examples. Indeed, a 
(difficult) theorem of homological algebra is saying that the only intrinsic con-
cept that can be attached to a module is made by the extension modules that do 
not depend on the resolution used for their computation. In the present situa-
tion, the two ( ),m a  parameters in the Kerr metric just disappear in the final 
system provided by the Theorem 1.1 below, exactly like in the example just 
quoted. Hence we could not get more information than by using the tensor 
product of the Poincaré sequence by the Lie algebra of 2-dimensional transla-
tions, that is nothing because the parameters no longer appear. 

4) Last but not least and “cherry on the cake”, if we agree with the numbers of 
second order CC, we disagree with the numbers of third order CC. It was thus a 
challenge for computing these numbers independently of any relativistic argu-
ment. It has also been a surprise to discover that the long recent preprint (arXiv: 
2207.12959) was again taking for granted the results of ([13]). 

The purpose of this paper is thus to revisit these works by using new homo-
logical techniques ([4] [5] [7] [16]). It is a matter of fact that they do not agree 
with the previous ones for the third order CC. In order to escape from such an 
unpleasant situation, we have written this paper in such a way that we are only 
using elementary combinatorics and diagram chasing. However, an equally im-
portant second purpose is to question the proper target of the quoted publica-
tions. Indeed, important concepts such as extension modules have been intro-
duced in homological algebra and can be extended to the differential framework. 
Thanks to a quite difficult theorem ([4] [17]), they are the only intrinsic results 
that could be obtained independently of the differential sequence that could be 
used, provided that ( )kerΘ =   is the same, that is even if one is using another 
system with the same solutions. Equivalently, this amounts to say, in a few words 
but a more advanced language, if we are keeping the same differential module M 
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but changing its presentation. 
However, as we shall see, there are even simple academic systems depending 

on parameters but such that a convenient system (say involutive) may no longer 
depend on the parameters. Also, in a totally independent way still not acknowl-
edged, E. Vessiot has shown in ([18]) that certain operators may depend on 
geometric objects satisfying non-linear structure equations that are depending 
on certain Vessiot structure constants c. The simplest example is the condition 
of constant Riemannian curvature ([1] [19]) which is necessary in order that the 
Killing system becomes FI but we shall prove that the case of contact structures 
is similar. In such situations, we shall prove that the extension modules only de-
pend on these constants. 

We now recall the main results and definitions that are absolutely needed for 
the applications. 

With canonical epimorphism ( ) ( )0 0: q q qJ E J E R F FΦ = Φ ⇒ = = , the var-
ious prolongations are described by the following commutative and exact “in-
troductory diagram” used in the sequel: 

( )

( )
( )

( )

( )
( )

( )

1

1

* *
1 1 1 0 1

1 1 1 0 1

0

0 0 0

0 0

0 0

0 0

0 0 0

r

r

r

q r q r r r

q r q r r r

q r q r r r

g S T E S T F h

R J E J F Q

R J E J F Q

σ

ρ

ρ

+

+

Φ

+ + + + + +

Φ

+ + + + + +

Φ

+ +

↓ ↓ ↓

→ → ⊗ → ⊗ → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓

 
Chasing along the diagonal of this diagram while applying the standard 

“snake” lemma, we obtain the useful “long exact connecting sequence” also often 
used in the sequel: 

1 1 1 10 0q r q r q r r r rg R R h Q Q+ + + + + + +→ → → → → → →  
which is thus connecting in a tricky way FI (lower left) with CC (upper right). 

A key step in the procedure for constructing differential sequences will be to 
use the following (difficult) theorems and corollary (For Spencer cohomology 
and acyclicity or involutivity (See [1] [3] [5] for details and compare to [20] 
[21]) (See [7] [8] [11] for more details): 

THEOREM 1.1: Let a system ( )q qR J E⊂  be given and set  
( ) ( ) , , 0s q r s
q r q r q r sR R r sπ + +
+ + + += ∀ ≥ . If 1qg +  is a vector bundle and qg  is 2-acyclic, 

then we have ( )( ) ( )1 1 , 0r q q rR R rρ += ∀ ≥ . Accordingly, there is a finite Prolonga-
tion/Projection (PP) algorithm providing two integers , 0r s ≥  by successive 
increase of each of them such that the new system ( )s

q rR +  has the same solutions 
as qR  but is FI with a 2-acyclic or involutive symbol and thus first order CC. It 
follows that the maximum order of 1  is thus equal to 1r s+ +  as we used 
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r s+  prolongations but it may be lower because certain CC may generate the 
higher order ones as will be seen in the motivating examples. 

DEFINITION 1.2: A differential sequence is said to be formally exact if it is 
exact on the jet level composition of the prolongations involved. A formally ex-
act sequence is said to be strictly exact if all the operators/systems involved are 
FI (See [22] for more details). A strictly exact sequence is called canonical if all 
the operators/systems are involutive. 

When ( ) ( ) ( )*
1 1 1 1: :q q q q qd J E T J E jξ ξ ξ+ + +→ ⊗ → −  is the Spencer opera-

tor, we have: 
PROPOSITION 1.3: If ( )q qR J E⊂  and ( )1 1q qR J E+ +⊂  are two systems of 

respective orders q and 1q + , then ( )1 1q qR Rρ+ ⊂  if and onlty if  

( )1
1

q
q q qR Rπ +

+ ⊂  and *
1q qdR T R+ ⊂ ⊗ . 

DEFINITION 1.4: Let us “cut” the preceding introductory diagram by means 
of a central vertical line and define ( )( ) ( )0r r rR im J Fρ′ = Φ ⊆  with 0 0R F′ = . 
Chasing in this diagram, we notice that ( ) ( )1

1 0 0:r
r r rJ F J Fπ +

+ →  induces an 
epimorphism 1

1: , 0r
r r rR R rπ +

+′ ′→ ∀ ≥ . However, a chase in this diagram proves 
that the kernel of this epimorphism is not ( )( )1rim σ + Φ  unless qR  is FI 
(care). For this reason, we shall define it to be exactly 1rg +′ . 

THEOREM 1.5: ( )1 1r rR Rρ+′ ′⊆  and ( )( ) ( )1 1r rdim R dim Rρ +′ ′−  is the num-
ber of new generating CC of order 1r + . 

COROLLARY 1.6: The system ( )0r rR J F′ ⊂  becomes FI with a 2-acyclic or 
involutive symbol and ( ) ( )1 1 1 0r r rR R J Fρ+ +′ ′= ⊂  when r is large enough. 

2. Motivating Examples 

EXAMPLE 2.1: Let 2, 1n m= =  and introduce the trivial vector bundle E 
with local coordinates ( )1 2, ,x x ξ  for a section over the base manifold X with 
local coordinates ( )1 2,x x . Let us consider the linear second order system  

( )2 2R J E⊂  defined by the two linearly independent equations 22 0d ξ = ,  

12 1 0d adξ ξ+ =  where a is an arbitrary constant parameter. Using crossed de-
rivatives, we get the second order system ( )1

2 2R R⊂  defined by the PD equa-
tions 22 0d ξ = , 12 1 0d adξ ξ+ = , 2

1 0a d ξ =  which is easily seen not to be in-
volutive. Framing essential results and Janet tabulars, we have two possibilities: 
• 0a = : We obtain the following second order homogeneous involutive sys-

tem: 

( ) ( )
2

1 22
2 2 2 1

12

1 2
1

d
R R J E

d

ξ η

ξ η

 == ⊂  •=  
with the only first order homogeneous involutive CC 2 1

1 2 0d dη η− =  leading 
to the Janet sequence: 

1

0 12 1
0 0E F F→Θ→ → → →



 
We let the reader check as an easy exercise that ( )ad   which is of order 2 does 

not generate the CC of ( )1ad   which is of order 1 and thus ( )1 0ext M ≠ . 
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• 0a ≠ : We obtain the second order system ( )1
2R  defined by 22 0d ξ = ,  

12 0d ξ = , 1 0d ξ =  with a strict inclusion ( )1
2 2R R⊂  because 3 4< . We may 

define 2 1 1
1 2d d aη η η η= − +  and obtain the involutive and finite type system 

in δ-regular coordinates: 

( ) ( )

2
22

1
12

2
2 2

11 12

1 2

1 2
1

1
1

1

1

d

d
a

R J E
d d

a

d
a

ξ η

ξ η η

ξ η

ξ η

 =

 = − •
⊂ 

= •

 = • •  

Counting the dimensions, we have the following strict inclusions by compar-
ing the dimensions: 

( ) ( ) ( )2 1
2 2 2 2 , 2 3 4 6R R R J E⊂ ⊂ ⊂ < < <  

LEMMA 2.2: The symbol 2 rg +  is involutive with ( )2 1, 0rdim g r+ = ∀ ≥ . More- 

over, we have ( )2 4, 0rdim R r+ = ∀ ≥ . 

Proof: Using jet notation, the 4 parametric jets of 2R  are ( )1 2 11, , ,ξ ξ ξ ξ . The 

4 parametric jets of 3R  are now ( )2 11 111, , ,ξ ξ ξ ξ  and so on. Accordingly, the 
dimension of 2 rg +  is 1 because the only parametric jet is 1....1ξ . We have the 

short exact sequence ( )1
2 2 10 0r r rg R R+ + +→ → → →  and the symbol of 2R  is 

involutive. It follows from the (difficult) Theorem 1.1 (See [1], Theorem 2.4.5 p 

70 and proposition 2.5.1 p 76 with 2q = ) that ( )( ) ( )1 1
2 2 , 0r rR R rρ += ∀ ≥  with 

( )( )1
1 3rdim R + = , a result leading to ( )2 3 1 4rdim R + = + =  by counting the dimen-

sions. As ( )1
2R  does not depend any longer on the parameter, the general solu-

tion is easily seen to be of the form 2cx dξ = +  and is thus only depending on 
two arbitrary constants, contrary to what could be imagined from this lemma 

but in a coherent way with the fact that ( )( )2
2 2, 0rdim R r+ = ∀ ≥ .   

After differentiating twice, we could be waiting for CC of order 3. However, 
we obtain the 4 CC: 

( )

1 2 1
2 2 1 12 1 12

1
2 1 12 2

1 1 10, 0,

1 1 10, 0

d d d d d d
a aa

d d d
aa a

η η η η η η

η η η η η

− − = − + =

− + = − =
 

The last CC that we shall call “identity to zero” must not be taking into ac-
count. The second CC is just the derivative with respect to 1x  of the third CC 
which amounts to 

( ) ( )2 1 1 2 1 2 1 1
12 22 2 1 2

2 1 2
12 22 1

0

0

d d ad a a d d a

d d ad

η η η η η η η

η η η

− + − + − + =

⇔ − + =  
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which is a second order CC amounting to the first. Hence we get the only gene-
rating CC operator ( )1 2 2 1 2

1 12 22 1: , d d adη η η η η ζ→ − + =  which is thus for-
mally surjective. 

For helping the reader, we recall that basic elementary combinatorics argu-
ments are giving ( )* 1qdim S T q= +  while ( )( ) ( )( )1 2 2qdim J E q q= + +  be-
cause 2n =  and ( ) 1m dim E= = . 

( )

( )

*
2 2 0

2 2 0

1 1

0 0 0

0 0

0 0

0 0

0 0

g S T E F

R J E F

R J E

↓ ↓ ↓
→ → ⊗ → →

↓ ↓
→ → → →

↓ ↓ ↓
→ → →

↓ ↓



 

0 0 0

0 1 3 2 0

0 4 6 2 0

0 3 3 0

0 0

↓ ↓ ↓
→ → → →

↓ ↓
→ → → →

↓ ↓ ↓
→ → →

↓ ↓



 

( ) ( )

( )

* *
3 3 0 1

3 3 1 0 1

2 2 0

0 0 0

0 0

0 0

0 0

0 0

g S T E T F h

R J E J F Q

R J E F

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓

 

0 0 0

0 1 4 4 1 0

0 4 10 6 0

0 4 6 2 0

0 0

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓
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( ) ( )

( ) ( )

* *
4 4 2 0 2

4 4 2 0 2

3 3 1 0

0 0 0

0 0

0 0

0 0

0 0

g S T E S T F h

R J E J F Q

R J E J F

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓

 

0 0 0

0 1 5 6 2 0

0 4 15 12 1 0

0 4 10 6 0

0 0

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓

 

Using these diagrams, we obtain successively till we stop: 

( ) ( ) ( ) ( ) ( )0 0 1 1 0 1 1 2 0 2 1 1 3 1 2R F R J F R J F R R R Rρ ρ ρ′ ′ ′ ′ ′ ′ ′= ⇒ = ⇒ = ⇒ ⊂ ⇒ =  
Hence, the number of generating CC of order 1 is zero and the number of gene-

rating CC of strict order 2 is ( )( ) ( ) ( )1 1 2 12 15 4 12 11 1dim R dim Rρ ′ ′− = − − = − =  
in a coherent way. 

Setting 1 2F Q=  with ( )2 1dim Q = , we obtain the commutative diagram: 

( ) ( ) ( )

( ) ( )

* * *
5 5 3 0 1

5 5 3 0 1 1

4 4 2 0 1

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T E S T F T F

R J E J F J F

R J E J F F

↓ ↓ ↓ ↓

→ → ⊗ → ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓

 
with dimensions: 

0 0 0 0

0 1 6 8 2 0

0 4 21 20 3 0

0 4 15 12 1 0

0 0 0

↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓
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The upper symbol sequence is not exact at *
3 0S T F⊗  even though the two 

other sequences are exact on the jet level. As a byproduct we have the exact se-
quences 0r∀ ≥ : 

( ) ( ) ( )4 4 2 0 10 0r r r rR J E J F J F+ + +→ → → → →  

Such a result can be checked directly through the identity: 

( )( ) ( )( ) ( )( )4 5 6 2 2 3 4 2 1 2 2 0r r r r r r− + + + + + − + + =  

We obtain therefore the formally exact sequence we were looking for, namely: 

1

0 12 2
0 0E F F→Θ→ → → →



 

The surprising fact is that, in this case, ( )ad   generates the CC of ( )1ad  . 
Indeed, multiplying by the Lagrange multiplier test function λ  and integrating by 
parts, we obtain the second order operator ( )1 2

22 12 1,d d adλ λ µ λ λ µ→ − = − =  
and thus 2 1 2 2

1 1 2a d d d aλ µ µ µ− = + + . Substituting, we finally get the only 
second order CC 1 2 1

12 22 1 0d d adµ µ µ+ − = . 
In the differential module framework over the commutative ring [ ]1 2,D K d d=  

of differential operators with coefficients in the trivially differential field ( )K a=  , 
we have the free resolution: 

1 2

2 2
0 0D D D M→ → → → →

 

 

of the differential module M with ( )1 0ext M =  and Euler-Poincaré characte-
ristic ( ) 1 2 1 0Drk M = − + = . We recall that ( ),KR R hom M K∞= =  is a diffe-
rential module for the Spencer operator * *

1: : q qd R T R R T R+→ ⊗ → ⊗  (See 
[7] [23] for more details). Only “fingers” could have been used! 

The two following examples will show how the differential extension modules 
may depend on the Vessiot structure constants. 

EXAMPLE 2.3: With 2, 1,m n q K ω= = = =   and ( ),ω α β=  with  
*Tα ∈ , 2 *Tβ ∈∧ , let us consider the Lie operator  

( ) ( ) ( )( ): : ,T A Bξ ξ ω ξ α ξ β→Ω → = = =    . The corresponding first 
order system: 

0, 0r r r r
i r i r i r rA Bα ξ ξ α β ξ ξ β≡ ∂ + ∂ = ≡ ∂ + ∂ =  

is involutive whenever 0β ≠  and d cα β=  where now d is the exterior de-
rivative and c cst= . 

We notice that ω  and ω  provide the same system of Lie equations if and 

only if aα α= , bβ β=  with , 0a b ≠  and thus ac c
b

= , a result showing 

that the only critical value of c is 0c = . 
We have the formally exact differential sequence: 

1* 2 * 2 *0 0XT T T T→Θ→ → × ∧ →∧ →


 

or the resolution: 
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1 3 20 0
p

D D D M→ → → → →
 

 
Multiplying ( )1 2, ,A A B  respectively by ( )1 2 3, ,µ µ µ , we obtain ( )ad   in 

the form: 

( ) ( )
( ) ( )

1 2 3 2 1
1 1 2 1

1 2 3 1 2
2 1 2 2

,c

c

α µ µ β µ µ ν

α µ µ β µ µ ν

− ∂ + ∂ − ∂ − =

− ∂ + ∂ − ∂ + =
 

Then, multiplying 1 2 2 1A A cB∂ − ∂ −  by λ , we obtain ( )1ad   as: 
1 2 3

2 1, , cλ µ λ µ λ µ∂ = − ∂ = − =  
We have therefore to consider the two cases: 

• 0c = : We have the new CC 1 2
1 2 0µ µ∂ + ∂ =  and 3 0µ = . It follows that 

the torsion module ( )1 0ext M ≠  is generated by the residue of 3µ ν ′=  
because 0α ≠  and we may thus suppose that 1 0α ≠ . As for ( )2ext M , 
this torsion module is just defined by the system 2 10, 0λ λ∂ = ∂ =  for λ  
and thus ( )2 0ext M ≠ . 

• 0c ≠ : We must have the new CC: 
3 2 3 1 1 2

1 2 1 20, 0 0c cµ µ µ µ µ µ∂ − = ∂ + = ⇒ ∂ + ∂ =  
It follows that ( )1ext M  is now generated by the residue of 1 2

1 2µ µ ν ′∂ + ∂ = . 
Finally, ( )( )1ker ad   is defined by 0λ =  and thus ( )2 0ext M = . 

Hence, both ( )1ext M  and ( )2ext M  highly depend on the Vessiot structure 
constant c. 

EXAMPLE 2.4: (Contact transformations) 
With ( )1 2 33, 1, , ,m n q K x x x= = = =   or simply ( )x , we may introduce 

the 1-form 1 3 2 *dx x dx Tα = − ∈  and consider the system of finite Lie equations 
defined by ( ) ( ) ( )1

1j f xα ρ α− = . Eliminating the factor ρ  and linearizing at 
the q-jet of the identity, we obtain a first order system ( )1 1R J T⊂  made by 1η  
and 2η  below which is not even formally integrable (using ∂  instead of d): 

( )

1 3 2 2
3 3

21 3 2 3 1 3 2 3 1
2 2 1 1

1 2 3
1 2

x

x x x

ξ ξ η

ξ ξ ξ ξ ξ η

∂ − ∂ =
 •∂ − ∂ + ∂ − ∂ − =  

with one equation of class 3 and one equation of class 2. Strikingly, the symbol 

1g  is involutive with characters 1 2 3
1 1 13, 2, 2α α α= = = , a result leading to  

( )1 3 2 2 7dim g = + + = , ( ) ( ) ( )2 3 2 2 3 2 13dim g = + × + × =  and more generally 
( ) ( ) ( )( ) 2

1 3 2 1 1 2 5 7, 0rdim g r r r r r r+ = + + + + + = + + ∀ ≥ . However, the system 

1R  is not formally integrable and thus not involutive. The PP procedure brings 
3 2 1 3 2

2 3 1xη η η η= ∂ − ∂ + ∂  below and we get the involutive system ( )1
1 1R R⊂  of 

infinitesimal Lie equations having the same solutions, which is already in 
δ-regular coordinates: 

( )

3 2 1 3 2 3
3 2 1 1

1 3 2 2
3 3

21 3 2 3 1 3 2 3 1
2 2 1 1

2 1 2 3

1 2 3

1 2

x

x

x x x

ξ ξ ξ ξ η

ξ ξ η

ξ ξ ξ ξ ξ η

∂ + ∂ − ∂ + ∂ =

∂ − ∂ =


•∂ − ∂ + ∂ − ∂ − =
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with two equations of class 3, one equation of class 2 and thus one CC of order 1 
described by the trivially involutive first order operator  

1 2 3 2 3
1 3 2 1: xη η η η η ζ→ ∂ −∂ − ∂ + = . 
The link existing between these two approaches is not evident as it highly de-

pends on the fact that ( )( ) ( )1 1
1 1r rR Rρ += , according to the (quite difficult) theorem 

2.4.5 of (See [7], p 70) that must be compared to [5] [24]. Setting  
( ) ( ) ( )1

1 1 1 0: J T J T R FΦ → =  with ( )0 3dim F =  and  
( ) ( )1 1 1 0: J T J T R F′ ′Φ → =  with ( )0 2dim F ′ = , the inclusion ( )1

1 1R R⊂  induc-
es an epimorphism 0 0 0F F ′→ →  and we have the commutative diagram when 

2r ≥  and ( )( )1 1F coker ρ= Φ : 

( )

( )
( )

( )

( ) ( )
( )

( ) ( )
1

* *
1 1 0

1 1 0

1
1 0 2 1

0 0 0

0

0 0

0 0

0 0

r

r

r

r r r

r r r

r r r r

g S T T S T F

R J T J F

R J T J F J F

σ

ρ

ρ −

′Φ

+ +

′Φ

+ +

Φ

− −

↓ ↓ ↓

′→ → ⊗ → ⊗
↓ ↓ ↓

′→ → → →
↓ ↓ ↓

→ → → → →
↓ ↓

 
The operator 1j′ ′= Φ   is formally surjective, a snake chase proves that the 

columns are exact and the bottom sequence is exact as it is just providing the 
formally exact Janet sequence: 

1

0 11 1
0 0T F F→Θ→ → → →



 

Hence, it remains to check that the central row is also exact. For this, we no-
tice that: 

( )( ) ( )( )( ) ( )( ) ( )( )

( )( )

1

2

1 2 3 2 1 2 2 1 1 6

1 8 18

rdim R r r r r r r r r r

r r r

= + + + − + + + − +

= + + +
 

( ) ( )( )( ) ( )( )( )
( )( )( )

1 2 3 4 2 1 2 3 3

2 3 10 6
rdim R r r r r r r

r r r
+ = + + + − + + +

= + + +  

and check that ( ) ( )( ) ( )1
1 1r r rdim R dim R dim g+ +− = , a result leading to the se-

quence: 

01
0 0T F

′
′→ Θ→ → →



 

( ) ( )1 2 3 1 2, , , 0ξ ξ ξ η η
′

→ →


 
Now, it is well known that this contact operator   allowing to define the 

contact module M admits an injective parametrization by one arbitrary potential 
function φ  as follows: 
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( ) ( )3 1 2 3 3 1 3 2
1 3 3 2 1: , ,x x x liftφ φ φ ξ φ ξ φ φ ξ ξ ξ φ− → − ∂ + = − ∂ = ∂ + ∂ = ⇒ − =

 
and thus M D . We have obtained the following locally exact differential se-
quence ([8]): 

( ) ( )1 11 2 3 1 2 30 , , , , 0φ ξ ξ ξ η η η ζ
−

→ → → → →
 

 
which is not a Janet sequence because the first operator is not involutive. 

We obtain therefore a resolution of M ([22]): 

1 3 30 0D D D M→ → → → →
 

 
but also a resolution which is not strictly exact because 1R  is not even formally 
integrable ([22]): 

2 3 2 30 0D D M M D D
′

→ → → → ⇒ ⊕ 



 
As M is free and thus projective, the respective adjoint sequences are also ex-

act. Applying ( ),Dhom D• , we obtain a split exact sequence of free right (care) 
differential modules. Passing from right to left differential modules by using the 
side changing procedure ( )* ,n

D D K DN N N hom T N→ = = ∧ , it follows that the 
adjoint sequence is exact too, though not strictly exact. As such a result does not 
depend on the differential sequence used, according to a (difficult) general theo-
rem in homological algebra, we shall prove it directly through a (delicate) tech-
nical explicit computation for the first of the two previous ones and let the read-
er prove it similarly for the other. 

For this, let us multiply ζ  by a test function λ  and integrate by parts in 
order to obtain: 

( )

1
3

3 2
1 2 1

3

:ad x

λ µ

λ λ λ µ

λ µ

−∂ =
→ ∂ + ∂ =
 =



 
This operator is injective but not involutive as the corresponding system 

( )1 1R J λ⊂  is far from being even formally integrable. In a coherent way with 
the standard second Spencer sequence ([1] [2]), the corresponding involutive 
operator is 1j  as follows, with 6 first order CC for itself but first and second 
order for µ  after substitution, that is a second order system which is not FI. 

1
3

2 3 3
2 1

1 3
1 1

3

1 2 3

1 2
:

1
x

j

λ µ

λ µ µ
λ

λ µ

λ µ

∂ = −


•∂ = − ∂→ 
• •∂ = ∂

 • • •=  
• 1 identity to zero 3 3

1 1 0µ µ∂ − ∂ = . 
• 2 first order CC, namely 3 3 1

3 0ν µ µ− ≡ ∂ + = ,  

( )2 3 1 3 3 3 2
2 1 0x xν ν µ µ µ− + ≡ ∂ + ∂ − =  which are differentially independent 

because, when 3µ  is given arbitrarily, the first is providing 1µ  while the 
second is providing 2µ . 
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• 2 second order CC that are just prolongations of the two previous first order 
ones. 

• 1 second order CC 2 3 3 3 1
3 13 1 2 0xµ µ µ µ∂ − ∂ − ∂ + ∂ = . 

Using the previous second order CC 3 1
13 1 0µ µ∂ + ∂ = , we finally get the new 

first order CC 1 2 3 1 1 3
3 1 2 1 0xν µ µ µ µ− ≡ ∂ + ∂ + ∂ − ∂ =  which is a differential 

consequence of the two previous first order CC because we have (by chance!) the 
involutive system: 

( )

3 1 3
3

2 3 1 1 3 1
3 1 2 1

3 3 3 2 2 3 1
2 1

1 2 3
1 2 3
1 2

x

x x

µ µ ν

µ µ µ µ ν

µ µ µ ν ν

∂ + = −
∂ + ∂ + ∂ − ∂ = −
 •∂ + ∂ − = − +  

providing the only first order CC: 

( ) ( )1 2 3 3 1 1 2 3 3 3
1 3 3 2 1: , , 2ad x xν ν ν ν ν ν ν ν θ− → ∂ + + ∂ − ∂ − ∂ =

 
As a byproduct, we can find the formally exact differential sequence: 

( )
( )

( )
( )

( )1 1
1 2 3 1 2 30 , , , , 0

ad ad ad

θ ν ν ν µ µ µ λ
−

← ← ← ← ←
  

 
which is exactly the adjoint of the first differential sequence we have provided. 

Coming back to the Vessiot structure equations, we notice that α  is not in-
variant by the contact Lie pseudogroup and cannot be considered as an asso-
ciated geometric object. We have shown in ([2], pp. 684-691) that the corres-
ponding geometric object is a 1-form density ω  leading to the system of infi-
nitesimal Lie equations in Medolaghi form: 

( )( ) 1 0
2

r r r
i r i i r r ii

ξ ω ω ξ ω ξ ξ ωΩ ≡ ≡ ∂ − ∂ + ∂ =
 

that may be also written as: 

( ) ( )1
2

r r r
i r i r r i i r iω ξ ω ξ ξ ω ω∂ − ∂ + ∂ − ∂ = Ω

 
and to the only Vessiot structure equation, still not known today: 

( ) ( ) ( )1 2 3 3 2 2 3 1 1 3 3 1 2 2 1 cω ω ω ω ω ω ω ω ω∂ − ∂ + ∂ − ∂ + ∂ − ∂ =
 

with the only structure constant c. In the present contact situation, we may 
choose ( )31, ,0xω = −  and get 1c =  but we may also choose ( )1,0,0ω =  
and get 0c = , these two choices both bringing an involutive system. Let us 
prove that the situation becomes completely different with the new system: 

3 2 1 1 1
1 3 2 1 2 2 3 32 0, 0, 0ξ ξ ξ ξ ξ− Ω ≡ ∂ + ∂ − ∂ = Ω ≡ ∂ = Ω ≡ ∂ =  

having the only CC 2 3 3 2 0d dΩ − Ω = . 
Multilying the three previous equations by the three test functions µ , the 

only CC by the test function λ  and integrating by parts, we get the adjoint op-
erators: 

1 2 3
3 20 , ,µ λ µ λ µ= ∂ = − ∂ =  

1 2 3 1 1 2 1 3
1 2 3 2 3, ,µ µ µ ν µ ν µ ν∂ − ∂ − ∂ = − ∂ = − ∂ =  
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It follows that ( )10 D t M Mξ≠ = ⊂  with a strict inclusion and ( )1 0ext M ≠ . 
Similarly, ( )( )1ker ad   is defined by 2 30, 0λ λ∂ = ∂ =  and thus  

( )2 0ext M ≠ . 
Our problem will be now to construct and compare the differential sequences: 

1 1

Cφ ξ
−

→ →Ω→
 

 
( ) ( ) ( )1 1ad ad ad

θ ν µ λ
−

← ← ←
  

 
For this, linearizing the only Vessiot structure equation, we get the CC opera-

tor 1  and the corresponding system 1 CΩ =  in the form: 

( ) ( ) ( )
( ) ( ) ( )

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3 C

ω ω ω

ω ω ω ω ω ω

∂ Ω −∂ Ω + ∂ Ω −∂ Ω + ∂ Ω −∂ Ω

+ ∂ − ∂ Ω + ∂ − ∂ Ω + ∂ − ∂ Ω =  
Multiplying on the left by the test function λ  and integrating by parts, we 

get the operator ( )1ad   in the form: 

( )
( )
( )

1
1 3 2 2 3 2 3 3 2

2
2 1 3 3 1 3 1 1 3

3
3 2 1 1 2 1 2 2 1

2

2

2

ω λ ω λ ω ω λ µ

ω λ ω λ ω ω λ µ

ω λ ω λ ω ω λ µ

Ω → ∂ − ∂ + ∂ − ∂ =
Ω → ∂ − ∂ + ∂ − ∂ =

Ω → ∂ − ∂ + ∂ − ∂ =  

We obtain the crucial formula 2 i
icλ ω µ=  showing how the previous se-

quences are essentially depending on the Vessiot structure constant c. Indeed, if 
0c ≠ , then 0 0µ λ= ⇒ =  and the operator ( )1ad   is injective. This is the 

case when ( )31, ,0 1 0x cω λ= − ⇒ = ⇒ = . On the contrary, if 0c = , then the 
operator ( )1ad   may not be injective as can be seen by choosing ( )1,0,0ω = . 
Indeed, in this case we get a kernel defined by 3 20, 0λ λ∂ = ∂ = . 

Finally, in order to exhibit the generating CC of ( )1ad   when 0c ≠ , we 
just need to substitute ( )1 2 i

icλ ω µ=  in the previous equations ( )1ad λ µ= . 
On the other side, multiplying the equations ξ = Ω  by test functions iµ  
and integrating by parts, we get ( )ad µ ν=  in the form: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1
1 1 1

1 2
2 2 2

1 3
3 3 3

1
2
1
2
1
2

i i i
i i i

i i i
i i i

i i i
i i i

ξ ω µ ω µ ω µ ν

ξ ω µ ω µ ω µ ν

ξ ω µ ω µ ω µ ν

 → −∂ + ∂ + ∂ =

 → −∂ + ∂ + ∂ =



→ −∂ + ∂ + ∂ =  
We let the reader check, as a tricky exercise, that we have indeed  
( ) ( )1 0ad ad ≡   and it remains to prove that ( )ad   generates the CC of 
( )1ad  . It is in such a situation that we can measure the usefulness of homo-

logical algebra and we only prove this result directly when ( )31, ,0 1x cω = − ⇒ = . 
In this case, the kernel of ( )ad   is easily seen to be defined by: 

( )

1 2 3 3 2
1 2 3 1

23 2 3 1 1 3 2 3
1 1 2 2

1 3 2 2
3 3

1 1 0
2 2

2 0

3 0

x

x x x

x

µ µ µ µ

µ µ µ µ µ

µ µ µ

 ∂ + ∂ + ∂ + ∂ =

− ∂ + ∂ + ∂ − ∂ + =
∂ − ∂ − =  
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while, setting now 1 3 22 xλ µ µ= −  and substituting, the CC of ( )1ad   seem 
to be only defined by the two PD equations: 

( )

1 3 2 2
3 3

21 3 2 3 2 3 1 3
2 2 1 1

3 0

2 0

x

x x x

µ µ µ

µ µ µ µ µ

∂ − ∂ − =

∂ − ∂ − ∂ + ∂ + =  

The strange fact is that such a system is not formally integrable and one has to 
differentiate the second PD equation with respect to 3x  and substract the first 
PD equation differentiated with respect to 2x  in order to get the additional PD 
equation: 

3 2 3 2 1
3 2 1 1

1 1 0
2 2

xµ µ µ µ∂ + ∂ + ∂ + ∂ =
 

and find an isomorphic involutive system, a result showing that the differential 
sequence and its formal adjoint are both formally exact though not strictly exact. 
We conclude this example with the following striking result ([arXiv: 1803.09610]): 

THEOREM 2.5: The contact differential sequence and its formal adjoint are 
both split long exact sequences of free and thus projective modules, if and only if 

0c ≠ . 
Proof: As we have just proved that ( )ad   was generating the CC of 
( )1ad  , we may look for the CC of ( )ad   in order to recover the parametri-

zation of   given at the beginning of this example. 
First of all, as proved in [2], two geometric objects ω  and ω  provide the 

same system ( )1 1R J T⊂  if and only if aω ω=  for a constant parameter 
a cst= , a result providing 2c a c= . Accordingly, the only possible critical value 
of the Vessiot structure constant is 0c = . 

Now, as already noticed, we have 2i
i cω µ λ=  and ( )1ad   is injective if 

and only if 0c ≠ . It follows that the differential module defined by 1  is pro-
jective and the sequences split if we are able to construct 1−  and to prove that 
it is an injective operator. For this, changing slightly our previous notations, we 
notice that the symbol map of ( )ad   is (using d instead of ∂ ) 

1
2

r r
i r r i id dω µ ω µ ν− + + =

 

Using standard notations of classical geometry, we may rewrite it as: 

( ) ( ). 0A B Aω ν ω ν ω ν− +∇ ⋅ + = ⇒ ∧ ∇ + = ∇∧ ⇒ ⋅ ∇ ∧ + =
   

     

  

 

Hence, after one prolongation on the symbol level, we get the only CC: 

( ) ( ) ( )1 3 2 2 3 2 1 3 3 1 3 2 1 1 2 0d d d d d dω ν ν ω ν ν ω ν ν− + − + − + =  

After substitution and a tedious computation, one finally obtains: 

( ) ( ) ( )
( ) ( ) ( )

1 3 2 2 3 2 1 3 3 1 3 2 1 1 2

2 3 3 2 1 3 1 1 3 2 1 2 2 1 32 2 2

d d d d d dω ν ν ω ν ν ω ν ν

ω ω ν ω ω ν ω ω ν θ

− + − + −

+ ∂ − ∂ + ∂ − ∂ + ∂ − ∂ =  
We may thus obtain 1−  in the form: 
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( )
( )
( )

1
2 3 3 2 2 3 3 2

2
3 1 1 3 3 1 1 3

3
1 2 2 1 1 2 2 1

ω φ ω φ ω ω φ ξ

ω φ ω φ ω ω φ ξ

ω φ ω φ ω ω φ ξ

 ∂ − ∂ + ∂ − ∂ =
 ∂ − ∂ + ∂ − ∂ =


∂ − ∂ + ∂ − ∂ =  
and this operator is injective whenever 0c ≠  because we have the lift r

r cω ξ φ= . 
The situation is similar in arbitrary dimension 2 1n p= +  with 1-form  

1
pndx x dxα α
αα
=

= −∑  as we have again one Vessiot structure constant c and the 
injective parametrization: 

( ), ,n
nx x

x x x x
β α α α

β α α

φ φ φ φφ ξ ξ ξ φ α ξ∂ ∂ ∂ ∂
− = − = + = ⇒ =

∂ ∂ ∂ ∂  
We have the locally exact split differential sequence: 

21 1 20 *
0 1 20 0

n

nT T F F F
−−

−→ ∧ → → → → → →

  

 
with ( ) ( ) ( )! 2 ! 2 !rdim F n r n r= + − −  and we refer again to ([2]) because, when 

5n ≥ , we have to use a 2-contravariant skewsymmetric tensor density. 
It follows that contact geometry must be entirely revisited in the light of these 

new results.   
EXAMPLE 2.6: (Macaulay examples revisited). 
With [ ]1 2 33, 1, 2, , , ,n m q K D K d d d= = = = = , let us consider the linear 

homogeneous second order operator  

( )1 2 3
33 23 11 22: , ,d d d dξ ξ η ξ ξ η ξ η→ = − = =  with corresponding system  

( )2 2R J E⊂  which is trivially formally integrable (FI). It is easy to check that 
( )2 3dim g = , ( )3 1dim g = , 4 0g = . Hence, 2R  and thus 3R  are FI but not in-

volutive. Then 4R  is trivially involutive with ( )3 2 8, 0n
rdim R r+ = = ∀ ≥  and a 

full basis of parametric jets is ( )1 2 3 11 12 13 111, , , , , , ,ξ ξ ξ ξ ξ ξ ξ ξ . We have proved in 
([6]) that there are three second order CC with only one second order CC. The 
corresponding formally exact differential sequence is: 

1 2

2 2 2
0 0ξ η ζ τ→Θ→ → → → →

 

 
and the minimum free differential resolution of the corresponding differential 
module M is: 

2 13 30 0
p

D D D D M→ → → → → →
  

 
where p is the canonical projection. The situation is much more tricky if we con-
sider now the new third order differential operator  

( ) ( )
3

3 3 3 3:
j

j E J E J E R
Φ

′ = Φ → →  with ( )3 1 2R Rρ= . Indeed, it is easy to 
check that the sequence: 

2 * 3 *
3 20 0T g T g

δ
→ ∧ ⊗ →∧ ⊗ →  

is exact because both bundles have the same dimension equal to 3. It follows that 

3g  is 3-acyclic and it follows that the 21 CC are described by an operator of or-
der 1. However, the corresponding system has a symbol which is not 2-acyclic. 
We have proved in ([6]) that the next CC are of order 2, and so on. By chance, it 
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happens that the next operator 2′  is involutive and we may start a Janet se-
quence with first order involutive operators 3 4 6, ,′ ′ ′    in the differential se-
quence: 

3 51 2 4'

3 1 2 1 1 1
0 1 12 21 46 72 48 12 0

D ′ ′′ ′′

→ Θ→ → → → → → → →
  

 
in which we have specified the dimensions of the bundles and the orders of the 
successive operators. We finally notice again that  

( ) 1 12 21 46 72 48 12 0Drk M = − + − + − + = . 
We invite the reader to consider the similar example when 2n = . Indeed, if 

we consider the second order system 22 0d ξ = , 12 11 0d dξ ξ− = , we have  
( )2 1dim g = , 3 0g =  and ( ) ( )2 3 2 4ndim R dim R= = =  with the basis of pa-

rametric jets ( )1 2 11, , ,ξ ξ ξ ξ . In this case, 2R  is FI but not involutive while 3R  
is trivially involutive with Janet sequence 

3 1 1
0 1 6 7 2 0→Θ→ → → → →  and  

( ) 1 6 7 2 0Drk M = − + − = . 

3. Kerr Metric 

Let us recall a few facts from Riemannian geometry. A metric ( ) *
2ij S Tω ω= ∈  

with ( ) 0det ω ≠  is providing the Christoffel symbols ( )k
ijγ γ=  as geometric 

objects according to the forgotten work of E. Vessiot in 1903 ([1] [18] [19]). The 
Riemann tensor 2 * 2 * *

, 1
k
l ij T g T T Tρ ∈∧ ⊗ ⊂ ∧ ⊗ ⊗  is a section of the Spencer 

δ-cohomology vector bundle ( )2
1H g  because it is also killed by the Spencer 

surjective map 2 * 3 * *
1: T g T T Tδ ∧ ⊗ → ∧ ⊗ ⊗  and has thus  

( ) ( )( ) ( )22 2 2 21 4 1 2 6 1 12n n n n n n n− − − − = −  components because  

( ) ( )1 1 2dim g n n= −  and 2 0g = . Needless to say that these definitions are far 
from the ones that can be found in any place (books or papers) dealing with GR 
([7] [8]). 

Now, the linearization ( ) *
2ij S TΩ = Ω ∈  of ω  induces a linearization  

*
2

k
ij S T TΓ = Γ ∈ ⊗  and a linearization ( ) 2 *

,
k
l ijR R T T= ∈∧ ⊗ . With ∂  for ob-

jects and d for their linearization, we have: 

,
k k k r k r k
l ij i lj j li lj ri li rjρ γ γ γ γ γ γ= ∂ − ∂ + −  

and thus, because *
2S T TΓ∈ ⊗  is a tensor:: 

( ) ( )
,
k k k r k r k k r k r
l ij i lj j li lj ri li rj ri lj rj li

k r k k r k r k k r
i lj li rj ri lj j li lj ri rj li

k k
i lj j li

R d d

d d

γ γ γ γ

γ γ γ γ

= Γ − Γ + Γ − Γ + Γ − Γ

= Γ − Γ + Γ − Γ − Γ + Γ

= ∇ Γ −∇ Γ  
by introducing the covariant derivative ∇ . We recall that 0, , ,r ij r i jω∇ = ∀  or, 

equivalently, that ( ) ( ) 1, : ,k k k r
i irid T Rγ ξ ξ ξ γ ξ− ∈ → = − ∈  is a 1R -connection 

with s s
sj ir is jr r ijω γ ω γ ω+ = ∂ , a result allowing to move down the index k in the 

previous formulas (See [17] [18] [22] for more details). 
We may thus take into account the Bianchi identities implied by the cyclic 
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sums on ( )ijr  

( ), , , , 0 0kl ijr r kl ij i kl jr j kl ri cycl
β ρ ρ ρ β ρ γρ≡ ∇ +∇ +∇ = ⇔ ≡ Σ ∂ − =  

and their respective linearizations , 0kl ijrB =  as described below. Both β  and 
B are sections of the Spencer cohomogy vector bundle ( )3

1H g  defined by the 
short exact sequence: 

( )3 3 * 4 *
1 10 0H g T g T T

δ
→ → ∧ ⊗ →∧ ⊗ →  

( )( )
( )( )( ) ( )( ) ( )( )( )( )
( )( )

3
1

2 2

1 2 6 1 2 1 2 3 24

1 2 24

dim H g

n n n n n n n n n n

n n n

= − − − − − − −

= − −

 

that is 20 when 4n =  because ( ) ( )1 1 2dim g n n= −  and the coboundary 
bundle is ( )3

1 0B g = . 
Such results cannot be even imagined by somebody not aware of the δ-acyclicity 

([9] [10] [11]). 
We have the linearized cyclic sums of covariant derivatives both with their 

respective symbolic descriptions, not to be confused with the non-linear corres-
ponding ones: 

( )
( )

( ) ( )

, , , , 0

0
kl rij r kl ij i kl jr j kl ri

cycl

cycl cycl

B R R R mod

dR R

B R

γ ρ

ρ

≡ ∇ +∇ +∇ = Γ

⇔ Σ − − Γ =

⇔ ≡ Σ ∇ = Σ Γ
 

In order to recapitulate these new concepts obtained after one, two or three 
prolongations, we have successively ω γ ρ β→ → →  and the respective linea-
rizations R BΩ→Γ→ → . 

The purpose of this section will be to consider the Killing operator  
( )*

2: :T S T ξ ξ ω→ →   and the corresponding Killing system ( )1 1R J T⊂  
when ω  is the Kerr metric. In particular, we shall exhibit the successive inclu-
sions ( ) ( ) ( ) ( )3 2 1

1 1 1 1 1R R R R J T⊂ ⊂ = ⊂  with dimensions 2 4 10 10 20< < = <  by 
means of elementary combinatorics and diagram chasing exactly like in the pre-
vious motivating examples. 

We now write the Kerr metric in Boyer-Lindquist coordinates: 

( )

( ) ( )

22 2
2 2 2 2 2

2 2

2 2
2 2 2 2

2

2 sin
d d d d d d

sin
sin d

amrmrs t r t

ma r
r a

θρ ρ ρ θ φ
ρ ρ

θ
θ φ

ρ

−
= − − −

∆

 
− + +  
   

where ( )2 2 2 2 2 2, cosr mr a r aρ θ∆ = − + = +  as usual and we recover the 
Schwarschild metric when 0a = . We notice that t or φ  do not appear in the 
coefficients of the metric. We shall simplify the coordinate system by using the 
so-called “rational polynomial” coefficients as follows: 
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( )( ) ( )

( ) ( )

0 1 2 3 2

22 2 2

, , cos , d sin d

d 1 d

x t x r x c x x

x c

θ φ θ θ

θ

= = = = = ⇒ = −

⇒ = −
 

We obtain over the differential field ( )( ) ( )( ), , , , ,K a m t r c a m xφ= =  : 

( )

( ) ( )

22 2 2
2 2 2 2

2 2 2

2 2
2 2 2 2

2

2 1
d d d d d d

1

1
1 d

amr cmrs t r c t
c

ma r c
c r a

ρ ρ ρ φ
ρ ρ

φ
ρ

−−
= − − −

∆ −

 −
 − − + +
 
   

with now 2 2r mr a∆ = − +  and 2 2 2 2r a cρ = + . For a later use, it is also possi-

ble to set ( ) ( ) ( )( )( ) ( )22 2 2 2 2 2 2 2 2 2
33 1 1c r a a c a mr r r a cω = − − + − − − + +  and 

( ) ( )22 2 2det r a cω = − + . 

Framing the leading derivatives and setting = i
iξ ξ∂ ∂ , we obtain: 

( )

( )

( )

3 0
33 33 3 03 3 33

3 0 2
23 33 2 03 2 22 3

2
22 22 2 22

3 0 1
13 33 1 03 1 11 3

2 1
12 22 1 11 2

1 1
1

11 11 1 11

3 0 3 0
03 33 0 03 0 3 00 3 03

2 0
02 22 0 00 2 03 2

2 0

0

2 0

0

0

2 0

0

R J T

ω ξ ω ξ ξ ω

ω ξ ω ξ ω ξ

ω ξ ξ ω

ω ξ ω ξ ω ξ

ω ξ ω ξ

ω ξ ξ ω

ω ξ ω ξ ξ ω ξ ξ ω

ω ξ ω ξ ω ξ

Ω ≡ + + ∂ =

Ω ≡ + + =

Ω ≡ + ∂ =

Ω ≡ + + =

Ω ≡ + =
⊂

Ω ≡ + ∂ =

Ω ≡ + + + + ∂ =

Ω ≡ + +

( )

3

1 0 3
01 11 0 00 1 03 1

0 3
00 00 0 03 0 00

0

0

2 0

ω ξ ω ξ ω ξ

ω ξ ω ξ ξ ω

















 =

Ω ≡ + + =

Ω ≡ + + ∂ =
  

Looking at the symbol *
1g T T⊂ ⊗ , elementary linear combinatorics allow to 

prove ([10] [11]): 

( )

( )

( )

3 0
33 3 03 3

3 0
33 0 00 3

0 0
33 0 03 3

0 ,

0 ,

0

mod

mod

mod

ω ξ ω ξ ξ

ω ξ ω ξ ξ

ω ξ ω ξ ξ

+ =

+ =

− =
 

Then, multiplying 22Ω  by 11ω , 11Ω  by 22ω  and adding, we finally obtain: 

( )( ) ( )1 2
11 22 1 2 11 222 0ω ω ξ ξ ξ ω ω+ + ∂ =

 
Using the rational coefficients in the differential field ( )( ), ,K m a r c=  , the 

nonzero components of the corresponding Riemann tensor can be found in 
textbooks. Among them, we have: 
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( )( )( )
( )
( )

( )( )( )
( ) ( )( )( )

( ) ( )
( )( )

2 2 2 2 2 2

03,03 32 2 2

2 2 2

12,12 2 2 2 2 2 2

2 4 2 2 2 2 2 4 2 4 2 2 2 2 2

13,13 32 2 2 2 2

4 2 2 2 2 2 4 2 4 2 2 2 2

23,23

1 3

2

3

2 1

1 2 4 2 3 2 1 3

2

2 5 3 1 3

mr c r mr a r a c

r a c

mr r a c

c r a c r mr a

c mr r a c r a r a c a a mr c r a c

r a c r mr a

mr r a c r a r a c a a mr c r a

ρ

ρ

ρ

ρ

− − + −
=

+

−
= −

− + − +

− − − + − + − − −
=

+ − +

− + − + − − −
=

( )
( )

( )( )
( )

( )( )
( )

( )
( )

2

32 2 2

2 2 2 2 2 2 2

01,23 32 2 2

2 2 2 2 2 2 2

02,31 32 2 2

2 2 2

03,12 22 2 2

2

2 3 3

2

2 3 3

2

3

2

c

r a c

amc r a c a r a c

r a c

amc r a c a r a c

r a c

amc r a c

r a c

ρ

ρ

ρ

















+

 − + −
 =
 +

 − + −
 = −
 +
 − = −

+  
As they will be used in the sequel, we also provide a few components vanish-

ing for the S-metric: 

( )
( )
( )( )

( )
( )( )( )

( )
( )( )( )

( ) ( )

2 2 2 2

02,10 32 2 2

2 2 2 2 2

02,32 32 2 2

2 2 2 2 2 2 2

13,23 32 2 2

2 2 2 2 2 2

01,13 32 2 2 2 2

3 3

2

3 3 3

2

3 1 3

2

1 3 3 2 3

2

a mc r a c

r a c

amr r mr a r a c

r a c

a mc c r a r a c

r a c

amr c r a mr r a c

r a c r mr a

ρ

ρ

ρ

ρ

 −
 =
 +

 − + − =
 +


− + −
= −

+

 − + − −
 =
 + − +  

We finally exhibit the 8 vanishing components of the Riemann tensor: 

01,03 01,12 02,03 02,12 03,13 03,23 12,13 12,230, 0, 0, 0, 0, 0, 0, 0ρ ρ ρ ρ ρ ρ ρ ρ= = = = = = = =  
Introducing the formal Lie derivative ( )1R L ξ ρ=  and using the fact that 

2 * * *T T Tρ ∈∧ ⊗ ⊗  is a tensor, the system ( ) ( ) ( )2 1
1 1 1 1R R R J T⊂ = ⊂  contains 

the new equations: 

, , , , , , 0r r r r r
kl ij rl ij k kr ij l kl rj i kl ir j r kl ijR ρ ξ ρ ξ ρ ξ ρ ξ ξ ρ≡ + + + + ∂ =  

but we have to take into account the ten identities to zero obtained because 
0ijρ = , namely: 

0r r r
ij rj i ir J r ijR ρ ξ ρ ξ ξ ρ≡ + + ∂ =  
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We check the identity 01,23 02,31 03,12 01,23 02,31 03,120 0R R Rρ ρ ρ+ + = ⇒ + + =  
and we have: 

( )
( )
( )

0 3
03,03 03,03 0 3 03,03

1 2
12,12 12,12 1 2 12,12

0 1 2 3
01,23 01,23 0 1 2 3 01,23

2 0

2 0

0

R

R

R

ρ ξ ξ ξ ρ

ρ ξ ξ ξ ρ

ρ ξ ξ ξ ξ ξ ρ

 ≡ + + ∂ =

 ≡ + + ∂ =


≡ + + + + ∂ =  
We obtain therefore ( )( )12,12 11 22 0ξ ρ ω ω∂ =  but we have also  

( )( )03,03 12,12 0detξ ρ ρ ω∂ = . 
The following invariants are obtained successively in a coherent way: 

( )
( )( ) ( )

( )
( )

22 2 2 2 2 2

11 22 12,12 11 22 32 2 2 2 2 2

3

1 2

r a c mr r a c

c r mr a r a c
ω ω ρ ω ω

+ −
= ⇒ =

− − + +
 

Also, as a K∈ , then 01,23ρ  and 02,13ρ  can be both divided by a and we get 
the new invariant: 

2 2 2 2

01,23 03,12 2 2 2

2 3r a c a
r a c

ρ ρ − +
=

+  
These results are leading to 1 0ξ = , 2 0ξ = , thus to 1

1 0ξ = , 2
2 0ξ =  

and 0 3
0 3 0ξ ξ+ =  after substitution. In the case of the S-metric, we have only 

1 0ξ =  as an equation of zero order. 
The following relations allow to keep only the four parametric jets  

( )1 2 1 2
0 0 3 3, , ,ξ ξ ξ ξ  on the right side: 

11 0 00 1 03 1 11 3 03 1 33 1
1 0 3 1 0 3

22 0 00 2 03 2 22 3 03 2 33 2
2 0 3 2 0 3

0, 0
0, 0

ω ξ ω ξ ω ξ ω ξ ω ξ ω ξ
ω ξ ω ξ ω ξ ω ξ ω ξ ω ξ
 + + = + + =


+ + = + + =  
if we use the fact that ( )( )203

03 00 33 03ω ω ω ω ω= − −  in the inverse metric. 

Taking now into account that ( ),
rs

ij ri sjR R modω= Ω , we have proved in 
([10]) that the 6 second order equations , 0ij ijR =  are only depending on the 3 
equations 01,01 0R = , 02,02 0R = , 01,13 0R =  by using 0iiR =  and 03 0R = . We 
obtain in particular the two equations: 

( )

( )

0 1 3 2
01,01 01,01 0 1 01,31 0 01,02 1

0 2 3 1
02,02 02,02 0 2 02,32 0 01,02 2

1 0
2
1 0
2

R

R

ρ ξ ξ ρ ξ ρ ξ

ρ ξ ξ ρ ξ ρ ξ

 ≡ + + + =

 ≡ + + + =
  

Using the fact that we have now: 
2 1 11 2 22 1

22 1 11 2 1 20 0ω ξ ω ξ ω ξ ω ξ+ = ⇔ + =  
We may multiply the first equation by 11ω , the second by 22ω  and sum in 

order to obtain: 

( ) ( )11 22 0 11 22 3
01,01 02,02 0 01,31 02,32 0 0ω ρ ω ρ ξ ω ρ ω ρ ξ+ + + =

 
Using the previous identities for 00 0R =  and 03 0R = , we obtain therefore: 

33 0 03 3 33 0 03 3 0 3
03,03 0 03,03 0 0 0 00 0 03 00 0 0ω ρ ξ ω ρ ξ ω ξ ω ξ ω ξ ω ξ− = ⇒ − = ⇔ + =  
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As this relation was satisfied ( )mod ξ , we must introduce the new equation: 

( ) ( )0 1 3 3 0 2
01,13 01,13 0 1 3 13,13 0 01,01 3 01,23 02,13 12 0R ρ ξ ξ ξ ρ ξ ρ ξ ρ ρ ξ≡ + + − − + + =

 
As we have 0 3

0 3 0ξ ξ+ =  and 1
1 0ξ = , we obtain therefore a linear equation of 

the form: 

( )3 0 2
13,13 0 01,01 3 01,23 02,13 1 0ρ ξ ρ ξ ρ ρ ξ+ − + =

 
Similarly, we have also: 

( ) ( )0 1 2 3 1 2
01,02 01,02 0 1 2 01,23 02,13 0 01,02 2 01,02 12 0R ρ ξ ξ ξ ρ ρ ξ ρ ξ ρ ξ≡ + + − + + + =

 
and we obtain therefore a linear equation of the form: 

( )0 3 1 2
01,02 0 01,23 02,13 0 01,01 2 01,02 12 0ρ ξ ρ ρ ξ ρ ξ ρ ξ− + + + =

 
In the case of the S-metric, that is when 0a = , we obtain respectively 0

3 0ξ =  
and 1

2 0ξ =  as in [18] because 0 0
0 3ξ ξ . The previous linear system has thus a 

rank equal to 2 and we obtain therefore because 3 0 2 1
0 3 1 2,ξ ξ ξ ξ  : 

0 1 3 2 0 3
3 2 0 1 0 30 , 0 0 , 0 , 0 , 0ξ ξ ξ ξ ξ ξ= = ⇔ = = = =

 
It remains to study the following 4 linear equations, namely ([10]): 

01,03 03,23 03,13 02,030, 0, 0, 0R R R R= = = =  
THEOREM 3.1: The rank of the previous system with respect to the 4 jet 

coordinates ( )1 2 1 2
0 0 3 3, , ,ξ ξ ξ ξ  is equal to 2, for both the S and K-metrics. We have 

the two striking identities: 

( )2
03,13 01,03 02,03 03,232 21 0, 0aR a c R R R

r a
+ − = + =

+  
We may define the so-called algebroid bracket for sections ( ),q q qJ Tξ η ∈  by 

setting ([1] [2] [3] [6]): 

{ } ( ) ( ) ( )1 1 1 1, ,q q q q q q qi d i d J Tξ η ξ η ξ η η ξ+ + + +  = + − ∈   
In this formula, “ ( )i ” is the interior multiplication of a 1-form by a vector 

and we let the reader check that the right member does not depend on the re-
spective lifts when the algebraic bracket is defined by linearity from the standard 
bracket of vector fields by the formula: 

( ) ( ){ } [ ]( ) ( )1 1, ,q q q qj j j J Tξ η ξ η+ + = ∈
 

Now, we know that if ( )q qR J T⊂  is a system of infinitesimal Lie equations, 
then we have the algebroid bracket and its link with the prolongation/projection 
(PP) procedure ([1] [2] [6] [7]): 

( ) ( ) ( ), , , , , 0s s s
q q q q r q r q rR R R R R R q r s+ + +

   ⊂ ⇒ ⊂ ∀ ≥     

As ( ) ( )1 2
1 1 2 1R R Rπ= = , it follows that ( ) ( )2 3

1 1 3R Rπ=  is such that  
( ) ( ) ( )2 2 2
1 1 1,R R R  ⊂   with ( )( )2

1 20 16 4dim R = − =  because we have obtained a 

total of 6 new different first order equations. Using the first general diagram of 
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the Introduction, we discover that the operator defining 1R  has 10 4 14+ =  
CC of order 2, a result obtained totally independently of the specific GR technic-
al objects (Teukolski scalars, Killing-Yano tensors) introduced in ([12] [13] [14] 
[15]). 

We have on sections (care) the 16 (linear) equations ( )( )2mod j Ω  of ( )2
1R  

as follows ([11]): 

( ) ( )
( )
( )

1 2 0 3 1 1 2
00 1 03 1 11 0 1 2

1 2
2 1

1 1 2 0 3 1
3 0 0 03 1 33 1 11 32

1 1 1
2 1 2 0 3 2
3 0 0 00 2 03 2 22 0

0 3 2
03 2 33 2 22 3

0 3 0 3
3 0 0 3

0, 0 0, 0, 0

0 0

, 0 0

, 0 0,

0

0 0, 0, 0

lin
R R J T

lin

ξ ξ ω ξ ω ξ ω ξ ξ ξ

ξ ξ

ξ ξ ξ ω ξ ω ξ ω ξ

ξ ξ ξ ω ξ ω ξ ω ξ

ω ξ ω ξ ω ξ

ξ ξ ξ ξ

 = = ⇒ + + = = =

 = ⇒ =

 + = ⇒ + + =⊂ ⊂ 

+ = ⇒ + + =

 + + =

= ⇒ = = =



 
The coefficients of the linear equations lin  involved depend on the Riemann 

tensor as in ([11]). Accordingly, we may choose only the 2 parametric jets 

( )1 2
0 0,ξ ξ  among ( )1 1 2 2

0 3 0 3, , ,ξ ξ ξ ξ  to which we must add ( )0 3,ξ ξ  in any case as 
they are not appearing in the Killing equations. 

The system is not involutive because its symbol is finite type but non-zero. 
Using one more prolongation, all the sections (care again) vanish but 0ξ  

and 3ξ , a result leading to ( )( )3
1 2dim R =  in a coherent way with the only 

nonzero Killing vectors { },t φ∂ ∂ . We have indeed: 

1 2 1 2 0 3 0 3
0 0 3 3 1 1 2 20 , 0 0, 0 0, 0, 0, 0ξ ξ ξ ξ ξ ξ ξ ξ= = ⇒ = = ⇒ = = = =

 
Taking therefore into account that the metric only depends on  

( )( )1 2, cosx r x c θ= = =  we obtain after three prolongations the first order sys-
tem ( ) ( ) ( ) ( )3 2 1

1 1 1 1 1R R R R J T⊂ ⊂ = ⊂  which is trivially involutive because all the 
first order jets vanish but ( )0 3,ξ ξ . 

Surprisingly and contrary to the situation found for the S metric, we have now an 
involutive first order system with only solutions ( )0 1 2 3, 0, 0,cst cstξ ξ ξ ξ= = = =  
and notice that ( )3

1R  does not depend any longer on the parameters ( ),m a K∈ . 
The difficulty is to know what second members must be used along the proce-
dure met for all the motivating examples. In particular, we have again identities 
to zero like 1 1

0 0 0d ξ ξ− = , 2 2
0 0 0d ξ ξ− =  and thus at least 6 third order CC 

coming from the 6 following components of the Spencer operator, namely: 
1 1 1 1 1 1 2 2 2 2 2 2

1 1 2 2 3 3 1 1 2 2 3 30, 0, 0, 0, 0, 0d d d d d dξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ− = − = − = − = − = − =
 

a result that cannot be even imagined from ([12] [13] [14] [15]). Of course, pro-
ceeding like in the motivating examples, we must substitute in the right members  

the values obtained from ( )2j Ω  and set for example 1
1 11

11

1
2

ξ ξ ω
ω

= − ∂  while  

replacing 
1ξ  and 2ξ  by the corresponding linear combinations of the Riemann 

tensor already obtained for the right members of the two zero order equations. 
Along with the examples, we recall below all the diagrams that must be intro-
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duced successively: 

( )

( )
( )

( )

( )

1

1

* * *
2 2

*
2 2 1 2

*
1 1 2

0 0

0 0

0 0

0 0

0 0 0

S T T T S T

R J T J S T

R J T S T

σ

ρ

Φ

Φ

Φ

↓ ↓

→ ⊗ → ⊗ →

↓ ↓ ↓

→ → → →

↓ ↓ ↓

→ → → →

↓ ↓ ↓

 

0 0

0 40 40 0

0 10 60 50 0

0 10 20 10 0

0 0 0

↓ ↓
→ → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓

 

( )

( )
( )

( )

( )
( )

( )

2

2

1

* * *
3 2 2 2

*
3 3 2 2 2

*
2 2 1 2

0 0

0 0

0 0

0 0

0 0

S T T S T S T h

R J T J S T Q

R J T J S T

σ

ρ

ρ

Φ

Φ

Φ

↓ ↓

→ ⊗ → ⊗ → →

↓ ↓ ↓ ↓

→ → → → →

↓ ↓ ↓ ↓

→ → → →

↓ ↓

 

0 0

0 80 100 20 0

0 4 140 150 14 0

0 10 60 50 0

0 0

↓ ↓
→ → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓
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( )

( )
( )

( )

( )
( )

( )

3

3

2

* * *
4 3 2 3

*
4 4 3 2 3

*
3 3 2 2 2

0 0

0 0

0 0

0 0

0 0 0

S T T S T S T h

R J T J S T Q

R J T J S T Q

σ

ρ

ρ

Φ

Φ

Φ

↓ ↓

→ ⊗ → ⊗ → →

↓ ↓ ↓ ↓

→ → → → →

↓ ↓ ↓ ↓

→ → → → →

↓ ↓ ↓

 

0 0

0 140 200 60 0

0 2 280 350 72 0

0 4 140 150 14 0

0 0 0

↓ ↓
→ → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓

 
Applying the Spencer δ-map to the top sequence, we get the commutative di-

agram in which the two central columns are exact: 

* *
4 3 0 3

* * * * *
3 2 0 2

2 * * 2 * *
2 0

3 * 3 * * 3 *
1 0

4 * 4 *

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F h

T S T T T S T F T h

T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓

→ ⊗ → ⊗ → →

↓ ↓ ↓

→ ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓

→ ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ = ∧ ⊗ →

↓ ↓



 

Using a (delicate) snake chase, we obtain the long exact sequence: 
* 3 * 4 *

3 2 10 0 ,

0 60 80 24 4 0

h T h T g T T→ → ⊗ → ∧ ⊗ → ∧ ⊗ →

→ → → → →  
and the long exact connecting diagram: 
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( )

( )

* * * 3
4 3 0 2 1

* *
1 2 3 0 2 1

0 0

0 0

0 0

0 0 0

S T T S T F T h H g

g S T F T Q Qρ

↓ ↓
→ ⊗ → ⊗ → ⊗ → →

↓ ↓ ↓
′ ′→ → ⊗ → ⊗ → →

↓ ↓ ↓



 
allowing to compare the geometry of the Kerr metric (lower sequence) to the 
classical geometry of the Minkowski metric (upper sequence). In the later case 
we recall that the Bianchi indentities provide a section ( )3

1B H g∈ . Moreover, 
we have ( ) ( )( )3

1 1 20dim Q dim H g′ ≤ =  if we define 1Q′  by the following 
commutative and exact diagram obtained by cutting the fundamental diagram 
and going one step further on in the sequences in order to replace the R and Q 
by R′  and Q′ : 

( )
( )

( ) ( )
( )

( )

( )

1

1

* *
1 2 3 0 2 1

1 2 3 0 1 2 1

2 2 0 2

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T F T Q h

R J F J Q Q

R J F Q

σ

ρ

ρ

ρ

Ψ

Ψ

Ψ

↓ ↓ ↓ ↓

′ ′→ → ⊗ → ⊗ → →
↓ ↓ ↓ ↓

′ ′→ → → → →
↓ ↓ ↓ ↓

′→ → → →
↓ ↓ ↓



 
with dimensions: 

0 0 0 0

0 144 200 56 0

0 280 350 70 0

0 136 150 14 0

0 0 0

x x

x x

↓ ↓ ↓ ↓
→ + → → → →

↓ ↓ ↓
→ + → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓

 

 
Accordingly, the number 14 of second order CC plus the number of differen-

tially independent third order CC obtained by one prolongation of these second 
order CC is equal to 70 x− . However, if we denote by y the number of new ge-
nerating CC of third order that are not differential consequences of the CC of 
second order already found, we must have 72 70y x− = −  and thus 2y x= + . 

As we have 4 divergence identities for the Einstein operator, we obtain there-
fore 4 2 6y = + = , contrary to ([12] [13] [14] [15]). We have already provided 
these new third order CC as 6 components of the Spencer operator. 
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Similarly, in the case of the S-metric, we have ( ) ( ) ( ) ( )3 2 1
1 1 1 1 1R R R R J T⊂ ⊂ = ⊂  

with respective dimensions 4 5 10 10 20< < = <  and we obtain: 

( ) ( )1 2 30, 15, 74 74 75 1 3Q dim Q dim Q y x y x= = = ⇒ − = − ⇒ = − =  
1 1 1 1 1 1

1 1 2 2 3 30, 0, 0d d dξ ξ ξ ξ ξ ξ− = − = − =
 

In the case of the M-metric (See [1] [6] [7] for more details), we have  
( ) ( ) ( ) ( )3 2 1
1 1 1 1 1R R R R J T= = = ⊂  with respective dimensions  

10 10 10 10 20= = = <  and we obtain: 

( ) ( ) ( )1 2 3 10, 20, 80, 20 20, 0
80 100

Q dim Q dim Q dim Q x y
y x

′= = = = ⇒ = =

⇒ − = −  
in a coherent way with the number of components of the Riemann tensor (20) 
and the number of Bianchi identities (20) when 4n = . The corresponding Kill-
ing system is FI if and only if the following Vessiot structure equations  

( ),
k k k
l ij i lj j licρ δ ω δ ω= −  with the only constant c are satisfied, that is the well 

known constant Riemannian curvature condition ([19]). 

4. Conclusion 

E. Vessiot discovered the so-called Vessiot structure equations as early as in 1903 
and, only a few years later, E. Cartan discovered the so-called Maurer-Cartan 
structure equations. Both are depending on a certain number of constants like 
the single geometric structure constant of the constant Riemannian curvature for 
the first and the many algebraic structure constants of Lie algebra for the second. 
However, Cartan and followers never acknowledged the existence of another 
approach which is therefore still totally ignored today, in particular by physicists 
([11] [19]). Now, it is well known that the structure constants of a Lie algebra 
play a fundamental part in the Chevalley-Eilenberg cohomology of Lie algebras 
and their deformation theory ([6]). It was thus a challenge to associate the Ves-
siot structure constants with other homological properties related to systems of 
Lie equations, namely the extension modules determined by Lie operators. As a 
striking consequence, such a possibility opens a new way to understand and re-
visit the various contradictory works done during the last fifty years or so by 
different groups of researchers, using respectively Cartan, Gröbner or Janet 
bases while looking for a modern interpretation of the work done by C. Lanczos 
from 1938 to 1962. However, the reader must not forget that the Weyl tensor 
was not known by Lanczos, even as late as in 1967, and that it was not possible to 
discover any solution of the parametrization problem by potentials through 
double duality before 1990/1995, that is too late for the many people already en-
gaged in this type of research ([16]). As for the study of the Killing operator, the 
intrinsic understanding of such a technical problem that we achieved has strictly 
nothing to do with GR. Indeed, thanks to a difficult theorem of homological al-
gebra, the intrinsic properties of the resolution of a differential module M only 
depend on M itself but not on the resolution. Roughly, the only important thing 
is the group, not the metric. In actual practice, the resolutions by themselves no 
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longer depend on the respective Kerr, Schwarzschild or Minkowski parameters. 
The same comment can be done on the link existing between electromagnetism 
and the conformal group ([24] [25] [26]) because the conformal sequence must 
be entirely revisited in order to agree with computer algebra results obtained by 
A. Quadrat (See [6], Appendix 2 and [27]). We finally hope that this paper will 
open a new domain for applying computer algebra and we are offering a collec-
tion of useful but tricky test examples. 
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